Freq. of school types

Yesodi

כפרי עירוני
חרדי 13 181
ממלכתי 149 289
ממלכתי-דתי 69 138
fit = chisq.test(tab)
fit
## 
##  Pearson's Chi-squared test
## 
## data:  tab
## X-squared = 54.919, df = 2, p-value = 1.187e-12
  • ‘Yesodi’ school types composition significantly different between urban and rural towns

Tihon

tab = 
  dat %>% 
  # filter(age_type == "יסודי") %>%
  filter(age_type == "תיכון") %>%
  select(system_type, town_type) %>% 
  table
כפרי עירוני
חרדי 1 82
ממלכתי 62 156
ממלכתי-דתי 34 88
fit = chisq.test(tab)
fit
## 
##  Pearson's Chi-squared test
## 
## data:  tab
## X-squared = 27.596, df = 2, p-value = 1.018e-06
  • ‘Tihon’ school types composition significantly different between urban and rural towns

Eshkol/dirug change 2008-2013

Dirug

# Model - dirug
fit = lm(
  formula = value ~ town_type2 + year,
  data = tmp[tmp$variable2 == "dirug", ]
)
summary(fit)
## 
## Call:
## lm(formula = value ~ town_type2 + year, data = tmp[tmp$variable2 == 
##     "dirug", ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -163.01  -34.29   -0.51   36.21  115.99 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     137.1388     6.8471  20.029  < 2e-16 ***
## town_type2rural  26.9991     7.5663   3.568 0.000458 ***
## year2013         -0.1277     7.4819  -0.017 0.986405    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51.29 on 185 degrees of freedom
## Multiple R-squared:  0.0644, Adjusted R-squared:  0.05428 
## F-statistic: 6.367 on 2 and 185 DF,  p-value: 0.002118
  • ‘Dirug’ significantly higher in rural towns
  • No difference in ‘Dirug’ between 2008 and 2013

Eshkol

# Model - eshkol
fit = lm(
  formula = value ~ town_type2 + year,
  data = tmp[tmp$variable2 == "eshkol", ]
)
summary(fit)
## 
## Call:
## lm(formula = value ~ town_type2 + year, data = tmp[tmp$variable2 == 
##     "eshkol", ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9582 -0.9582 -0.1436  1.0418  4.8564 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       5.1436     0.2260  22.755   <2e-16 ***
## town_type2rural   0.6019     0.2498   2.409    0.017 *  
## year2013          0.2128     0.2470   0.861    0.390    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.693 on 185 degrees of freedom
## Multiple R-squared:  0.03418,    Adjusted R-squared:  0.02374 
## F-statistic: 3.274 on 2 and 185 DF,  p-value: 0.04007
  • ‘Eshkol’ significantly higher in rural towns
  • No difference in ‘Eshkol’ between 2008 and 2013

Plot

Agreement Meizav vs. Tipuah/Eshkol

Tipuah

# Model - tipuah
fit = lm(
  formula = meitzav ~ town_type2 * value,
  data = tmp[tmp$variable2 == "tipuah", ]
)
summary(fit)
## 
## Call:
## lm(formula = meitzav ~ town_type2 * value, data = tmp[tmp$variable2 == 
##     "tipuah", ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -27.2548  -7.2001   0.9572   6.4846  29.2429 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            64.3024     4.2243  15.222  < 2e-16 ***
## town_type2rural         7.4270     5.1924   1.430    0.156    
## value                  -2.8083     0.6253  -4.491 2.16e-05 ***
## town_type2rural:value  -0.5604     0.8960  -0.625    0.533    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.32 on 87 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.4419, Adjusted R-squared:  0.4226 
## F-statistic: 22.96 on 3 and 87 DF,  p-value: 4.871e-11
  • ‘Meitzav’ negatively affected by ‘Tipuah’
  • No significant difference in ‘Meitzav’ between urban and rural towns

Eshkol

# Model - eshkol
fit = lm(
  formula = meitzav ~ town_type2 * value,
  data = tmp[tmp$variable2 == "eshkol_2013", ]
)
summary(fit)
## 
## Call:
## lm(formula = meitzav ~ town_type2 * value, data = tmp[tmp$variable2 == 
##     "eshkol_2013", ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -37.197  -6.900   0.341   7.574  28.450 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             18.756      5.924   3.166  0.00213 ** 
## town_type2rural         11.736      8.414   1.395  0.16661    
## value                    5.301      1.053   5.036 2.55e-06 ***
## town_type2rural:value   -0.772      1.413  -0.546  0.58630    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.29 on 87 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.4448, Adjusted R-squared:  0.4256 
## F-statistic: 23.23 on 3 and 87 DF,  p-value: 3.886e-11
  • ‘Meitzav’ positively affected by ‘Eshkol’
  • No significant difference in ‘Meitzav’ between urban and rural towns

Plot

Regional effects on Tipuah/Meitzav

Tipuah

# Fit model - Tipuah
fit = lm(
  formula = tipuah ~ town_type2 + system_type2 + age_type2 + region12,
  data =  dat[!is.na(dat$tipuah), ]
  )
summary(fit)
## 
## Call:
## lm(formula = tipuah ~ town_type2 + system_type2 + age_type2 + 
##     region12, data = dat[!is.na(dat$tipuah), ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0531 -1.5353 -0.1273  1.5430  5.6963 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.53528    0.12493  36.303   <2e-16 ***
## town_type2rural               -2.74946    0.17532 -15.682   <2e-16 ***
## system_type2secular-religious  0.31374    0.15908   1.972   0.0488 *  
## system_type2religious          0.34074    0.16796   2.029   0.0427 *  
## age_type2Tihon                 0.07421    0.13671   0.543   0.5874    
## region12North                  2.51784    0.17057  14.761   <2e-16 ***
## region12South                  2.33572    0.15310  15.256   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.114 on 1061 degrees of freedom
## Multiple R-squared:  0.3344, Adjusted R-squared:  0.3306 
## F-statistic: 88.84 on 6 and 1061 DF,  p-value: < 2.2e-16
  • ‘Tipuah’ significantly lower in rural towns
  • ‘Tipuah’ significantly higher in religious schools
  • ‘Tipuah’ significantly higher in the North and South compared to Center

Meitzav

# Fit model - Meitzav
fit = lm(
  formula = meitzav ~ town_type2 + system_type2 + age_type2 + region12,
  data =  dat[!is.na(dat$meitzav), ]
  )
summary(fit)
## 
## Call:
## lm(formula = meitzav ~ town_type2 + system_type2 + age_type2 + 
##     region12, data = dat[!is.na(dat$meitzav), ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.613 -14.912   0.224  14.574  60.451 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     61.150      1.402  43.601  < 2e-16 ***
## town_type2rural                 11.937      1.946   6.134 1.43e-09 ***
## system_type2secular-religious   -8.954      1.760  -5.087 4.68e-07 ***
## system_type2religious          -23.591      3.089  -7.636 7.30e-14 ***
## age_type2Tihon                  -5.474      1.803  -3.037  0.00248 ** 
## region12North                  -13.257      2.042  -6.493 1.59e-10 ***
## region12South                  -12.647      1.843  -6.864 1.47e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.86 on 705 degrees of freedom
## Multiple R-squared:  0.2237, Adjusted R-squared:  0.2171 
## F-statistic: 33.85 on 6 and 705 DF,  p-value: < 2.2e-16
  • ‘Meitzav’ significantly higher in rural towns
  • ‘Meitzav’ significantly lower in religious schools
  • ‘Meitzav’ significantly lower in Tihon compared to Yesodi
  • ‘Meitzav’ significantly lower in the North and South compared to Center