I would use the simio expression 2+Random.Exponential(9.92)

I would use the simio expression 2.76+Random.Lognormal(1.84,0.717)

I would use the simio expression 16+Random.Binomial(.015)


\(R = (X-a)/(b-a)\) =>

\(R(b-a) = (X-a)\) =>

\(R(b-a)+a = X\)

\(1-R=e^{-(x/\lambda )^k}\) =>

\(ln(1-R) =-(x/\lambda )^k\) =>

\(\lambda(-ln(1-R)) = X^k\) =>

\(x =\lambda(-ln(1-R))^{1/k}\)

So this question left out some needed information. I decided to uniformily distribute amount of customers, according to the max amount of customers walther could handle per grocery. Since Walther will always meet demand, but never go over a certain threshhold; I just assumed he would close up shop if the next purchase’s max would go over his leftover stock for the day.

#demand 10,8,14,11
#profit = .24,.59,.24,.7

oatsDist = c(0,.5,1,1.5,2,3,4,5,7.5,10)
oatsProb = c(.05,.07,.09,.11,.15,.25,.10,.09,.06,.03)

peasDist = c(0,.5,1,1.5,2,3)
peasProb = c(.1,.2,.2,.3,.1,.1)

beansDist = c(0,1,3,4.5)
beansProb = c(.2,.4,.3,.1)

barleyDist = c(0,.5,1,3.5)
barleyProb = c(.2,.4,.3,.1)


walthersShop = function(x,foodDist,demand){
  theMax = floor(demand/foodDist[2]) #max amount of customers Walther has accounted for
  amtCust = floor(runif(1,min=0,max=theMax+1)) #Lets give em a uniform dist
  return(amtCust)
}

theDaily = function(x,foodDist,foodProb,demand){
  total = 0
  for(cust in 1:x){
    newPurchase = sample(x=foodDist,1,prob = foodProb)
    total = total + newPurchase
    if((total+foodDist[length(foodDist)])>demand){
      break
    }
  }
return(total)
}

oats = sapply(vector(length = 90),walthersShop,oatsDist,10)
oats = sapply(oats,theDaily,oatsDist,oatsProb,10)

peas = sapply(vector(length = 90),walthersShop,peasDist,8)
peas = sapply(peas,theDaily,peasDist,peasProb,8)

beans = sapply(vector(length = 90),walthersShop,beansDist,14)
beans = sapply(beans,theDaily,beansDist,beansProb,14)

barley = sapply(vector(length = 90),walthersShop,barleyDist,11)
barley = sapply(barley,theDaily,barleyDist,barleyProb,11)
cbind(oats,peas,beans,barley)
##       oats peas beans barley
##  [1,]  3.0  6.5  10.0    7.0
##  [2,]  7.5  7.0   1.0    8.0
##  [3,]  5.0  5.5  10.0    2.0
##  [4,]  1.0  3.5   8.0    6.0
##  [5,]  1.0  6.5  12.5    4.0
##  [6,]  2.0  6.5   2.0    8.0
##  [7,]  4.0  5.0  12.0    8.5
##  [8,]  1.5  5.5  11.5    7.0
##  [9,]  4.0  4.5   0.0    7.0
## [10,]  3.0  5.0  12.5    6.5
## [11,]  1.5  6.0   8.0    2.0
## [12,]  3.0  5.5   5.0    8.0
## [13,]  7.5  5.5  10.0    3.5
## [14,]  1.0  6.5  10.0    8.0
## [15,]  2.0  5.5  11.5    5.5
## [16,]  3.0  2.0  11.0    8.0
## [17,]  0.5  5.5   4.0   10.5
## [18,]  3.0  0.5   9.0    8.5
## [19,]  5.0  1.5  12.5    6.5
## [20,]  5.0  8.0  12.0    1.0
## [21,]  1.5  6.0  13.0    1.5
## [22,]  2.0  6.5  10.0    1.0
## [23,]  2.0  6.0   3.0    8.0
## [24,]  1.0  6.5   8.5    8.0
## [25,]  3.0  5.5  10.5    8.5
## [26,]  1.5  5.5  12.5    0.5
## [27,]  3.0  3.5  10.5    3.5
## [28,]  2.0  5.5  10.5    5.5
## [29,]  1.5  7.5   3.0    1.5
## [30,]  2.0  6.5   9.0    8.5
## [31,]  5.0  3.0   5.5   11.0
## [32,]  3.0  5.5  10.5    8.0
## [33,]  1.5  8.0  10.0   11.0
## [34,]  3.0  6.0   9.0    6.0
## [35,]  3.0  5.5   5.5    3.0
## [36,]  3.0  5.5   5.5    8.0
## [37,]  2.0  6.5  11.0   10.5
## [38,]  3.0  5.5  10.0    8.0
## [39,]  4.0  6.5  10.5    5.5
## [40,]  1.0  3.0   1.0    8.5
## [41,]  2.0  6.0  11.5    9.5
## [42,]  2.0  5.5  12.5   10.5
## [43,]  3.0  6.0   9.0   10.0
## [44,]  3.0  5.5  10.0    5.5
## [45,]  7.5  6.5   3.0    3.0
## [46,]  1.5  6.0  10.5    8.0
## [47,]  1.5  0.0  11.0    5.5
## [48,]  4.0  3.0  10.5    8.0
## [49,]  0.5  5.5   3.0    6.5
## [50,]  0.5  3.5  10.0    7.0
## [51,]  1.0  3.5  11.0    3.0
## [52,]  3.0  7.0  11.0    1.0
## [53,]  3.0  5.0   9.5    8.0
## [54,]  1.0  2.0   1.0    7.5
## [55,]  4.0  6.5   8.0    8.0
## [56,] 10.0  6.0  12.5    8.0
## [57,]  4.0  4.0  13.5    9.5
## [58,]  0.5  5.5   5.0    2.5
## [59,]  7.5  6.0  12.0    4.5
## [60,] 10.0  1.5  10.0   10.5
## [61,]  5.0  5.5  10.0    0.5
## [62,]  2.0  3.0   1.0    9.5
## [63,]  0.5  1.5  10.5    9.0
## [64,]  3.0  1.5   5.0    1.0
## [65,]  3.0  6.5  10.5    2.0
## [66,]  2.0  3.0   1.0    8.0
## [67,]  5.0  7.0   3.0   10.5
## [68,]  5.0  6.0   6.0    2.0
## [69,]  3.0  5.5   7.5    8.0
## [70,]  2.0  8.0  10.5    4.5
## [71,]  0.5  3.0   9.5    0.0
## [72,]  3.0  6.5   8.0    4.5
## [73,]  3.0  6.0  10.0    9.0
## [74,]  1.5  8.0   2.0    2.0
## [75,]  0.5  5.5   2.0    4.5
## [76,]  3.0  4.0   8.0    4.0
## [77,]  3.0  8.0  10.0    1.5
## [78,]  0.5  6.5   7.0    8.0
## [79,]  1.0  5.5  12.5    4.5
## [80,]  1.0  6.0  12.0    4.5
## [81,]  2.0  6.5  10.5    7.0
## [82,]  1.5  8.0   2.0    8.0
## [83,]  3.0  3.5   5.0    8.0
## [84,]  3.0  3.0   4.0   10.0
## [85,]  3.0  1.5  10.0    6.0
## [86,]  3.0  6.5  10.0    8.0
## [87,]  3.0  6.5  10.5    4.0
## [88,]  1.0  1.5  10.0    8.0
## [89,]  3.0  5.5   4.0    8.0
## [90,]  3.0  5.5  12.5   11.0