INTRO
Data Upload - Human Resource Data
library(radiant.data)
library(readr)
jquit <- read_csv("/Users/Cruz/Desktop/jquit.csv", col_names = TRUE)
Parsed with column specification:
cols(
satisfaction_level = col_double(),
last_evaluation = col_double(),
number_project = col_integer(),
average_montly_hours = col_integer(),
time_spend_company = col_integer(),
Work_accident = col_integer(),
left = col_integer(),
promotion_last_5years = col_integer(),
sales = col_character(),
salary = col_character()
)
head(jquit)
Cleaning data set
jquit<-na.omit(jquit)
head(jquit)
Running a sample regression to get an idea of some of the variables in the data set.
glm.model <- glm(left ~ ., data = jquit, family = "binomial")
summary(glm.model)
Call:
glm(formula = left ~ ., family = "binomial", data = jquit)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2248 -0.6645 -0.4026 -0.1177 3.0688
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.4762862 0.1938373 -7.616 0.0000000000000261 ***
satisfaction_level -4.1356889 0.0980538 -42.178 < 0.0000000000000002 ***
last_evaluation 0.7309032 0.1491787 4.900 0.0000009607392419 ***
number_project -0.3150787 0.0213248 -14.775 < 0.0000000000000002 ***
average_montly_hours 0.0044603 0.0005161 8.643 < 0.0000000000000002 ***
time_spend_company 0.2677537 0.0155736 17.193 < 0.0000000000000002 ***
Work_accident -1.5298283 0.0895473 -17.084 < 0.0000000000000002 ***
promotion_last_5years -1.4301364 0.2574958 -5.554 0.0000000279174879 ***
saleshr 0.2323779 0.1313084 1.770 0.07678 .
salesIT -0.1807179 0.1221276 -1.480 0.13894
salesmanagement -0.4484236 0.1598254 -2.806 0.00502 **
salesmarketing -0.0120882 0.1319304 -0.092 0.92700
salesproduct_mng -0.1532529 0.1301538 -1.177 0.23901
salesRandD -0.5823659 0.1448848 -4.020 0.0000583195125819 ***
salessales -0.0387859 0.1024006 -0.379 0.70486
salessupport 0.0500251 0.1092834 0.458 0.64713
salestechnical 0.0701464 0.1065379 0.658 0.51027
salarylow 1.9440627 0.1286272 15.114 < 0.0000000000000002 ***
salarymedium 1.4132244 0.1293534 10.925 < 0.0000000000000002 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 16465 on 14998 degrees of freedom
Residual deviance: 12850 on 14980 degrees of freedom
AIC: 12888
Number of Fisher Scoring iterations: 5
xtabs(~time_spend_company, jquit)
time_spend_company
2 3 4 5 6 7 8 10
3244 6443 2557 1473 718 188 162 214
xtabs(~promotion_last_5years, jquit)
promotion_last_5years
0 1
14680 319
xtabs(~salary, jquit)
salary
high low medium
1237 7316 6446
xtabs(~left, jquit)
left
0 1
11428 3571
Preping data for ologit statistical model.
jquit$salary <- factor(jquit$salary, ordered = TRUE,
levels = c("low", "medium", "high"))
jquit <- jquit%>%
mutate(promotion_last_5years = as.factor(promotion_last_5years))
Statistical Model, ologit
z.ord <- zelig(salary ~ promotion_last_5years + time_spend_company + average_montly_hours, model = "ologit",
data = jquit, cite = F)
summary(z.ord)
Model:
Call:
z5$zelig(formula = salary ~ promotion_last_5years + time_spend_company +
average_montly_hours, data = jquit)
Coefficients:
Value Std. Error t value
promotion_last_5years1 1.2365287 0.1087756 11.3677
time_spend_company 0.0583458 0.0110104 5.2991
average_montly_hours -0.0002667 0.0003201 -0.8332
Intercepts:
Value Std. Error t value
low|medium 0.1245 0.0722 1.7232
medium|high 2.6071 0.0770 33.8654
Residual Deviance: 27402.43
AIC: 27412.43
Next step: Use 'setx' method
x.no <- setx(z.ord, promotion_last_5years = 0)
x.yes <- setx(z.ord, promotion_last_5years = 1)
s.ord <- sim(z.ord, x = x.no, x1 = x.yes)
summary(s.ord)
sim x :
-----
ev
mean sd 50% 2.5% 97.5%
low 0.49357425 0.004222154 0.49363490 0.4855003 0.5015480
medium 0.42599681 0.014192172 0.42670095 0.3961678 0.4519043
high 0.08042894 0.014225950 0.07984794 0.0544646 0.1098004
pv
mean sd 50% 2.5% 97.5%
[1,] 1.59 0.6326929 2 1 3
sim x1 :
-----
ev
mean sd 50% 2.5% 97.5%
low 0.2215416 0.01899078 0.2210196 0.1848516 0.2598762
medium 0.5478459 0.03385728 0.5474324 0.4800402 0.6105912
high 0.2306125 0.03880620 0.2284118 0.1580320 0.3108975
pv
mean sd 50% 2.5% 97.5%
[1,] 2.032 0.6718835 2 1 3
fd
mean sd 50% 2.5% 97.5%
low -0.2720326 0.01909066 -0.2726565 -0.30695112 -0.2331672
medium 0.1218491 0.02029567 0.1211630 0.08295922 0.1608032
high 0.1501836 0.02748536 0.1484966 0.10036369 0.2066461
graphics.off()
par("mar")
[1] 5.1 4.1 2.1 2.1
par(mar=c(1,1,1,1))
plot(s.ord)

c1x <- setx(z.ord, promotion_last_5years = "0", jquit )
c1x1 <- setx(z.ord, promotion_last_5years = "1", jquit)
c1s <- sim(z.ord, x = c1x, x1 = c1x1)
graphics.off()
par("mar")
[1] 5.1 4.1 2.1 2.1
par(mar=c(1,1,1,1))
plot(c1s)

d1 <- c1s$get_qi(xvalue="x1", qi="fd")
dfd <- as.data.frame(cbind(d1))
head(dfd)
LS0tCnRpdGxlOiAiQ1JVWl9NQTcxMl9IVzdIUkFfU1RBVElTVElDQUxNT0RFTFNfT0xPR0lUIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNJTlRSTwoKIyBIb3cgZG9lcyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gYSBwcm9tb3Rpb24sIGF2ZyBtb250aGx5IGhvdXJzIHdvcmtlZCBhbmQgdGltZSBzcGVudCB3aXRoIGEgY29tcGFueSBlZmZlY3Qgc2FsYXJ5ID8KCmBgYHtyfQpsaWJyYXJ5KFplbGlnKQpsaWJyYXJ5KFplbGlnQ2hvaWNlKQpsaWJyYXJ5KGZhcmF3YXkpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkoc3Vydml2YWwpCmBgYAojRGF0YSBVcGxvYWQgLSBIdW1hbiBSZXNvdXJjZSBEYXRhCmBgYHtyfQpsaWJyYXJ5KHJhZGlhbnQuZGF0YSkKbGlicmFyeShyZWFkcikKICBqcXVpdCA8LSByZWFkX2NzdigiL1VzZXJzL0NydXovRGVza3RvcC9qcXVpdC5jc3YiLCBjb2xfbmFtZXMgPSBUUlVFKQogaGVhZChqcXVpdCkKYGBgCiNDbGVhbmluZyBkYXRhIHNldApgYGB7cn0KanF1aXQ8LW5hLm9taXQoanF1aXQpCmhlYWQoanF1aXQpCmBgYAojUnVubmluZyBhIHNhbXBsZSByZWdyZXNzaW9uIHRvIGdldCBhbiBpZGVhIG9mIHNvbWUgb2YgdGhlIHZhcmlhYmxlcyBpbiB0aGUgZGF0YSBzZXQuCmBgYHtyfQpnbG0ubW9kZWwgPC0gZ2xtKGxlZnQgfiAuLCBkYXRhID0ganF1aXQsIGZhbWlseSA9ICJiaW5vbWlhbCIpCnN1bW1hcnkoZ2xtLm1vZGVsKQpgYGAKCgpgYGB7cn0KeHRhYnMofnRpbWVfc3BlbmRfY29tcGFueSwganF1aXQpCgp4dGFicyh+cHJvbW90aW9uX2xhc3RfNXllYXJzLCBqcXVpdCkKCnh0YWJzKH5zYWxhcnksIGpxdWl0KQoKeHRhYnMofmxlZnQsIGpxdWl0KQoKYGBgCiNQcmVwaW5nIGRhdGEgZm9yIG9sb2dpdCBzdGF0aXN0aWNhbCBtb2RlbC4KYGBge3J9CmpxdWl0JHNhbGFyeSA8LSBmYWN0b3IoanF1aXQkc2FsYXJ5LCBvcmRlcmVkID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoImxvdyIsICJtZWRpdW0iLCAiaGlnaCIpKQoKanF1aXQgPC0ganF1aXQlPiUKICBtdXRhdGUocHJvbW90aW9uX2xhc3RfNXllYXJzID0gYXMuZmFjdG9yKHByb21vdGlvbl9sYXN0XzV5ZWFycykpCmBgYAojU3RhdGlzdGljYWwgTW9kZWwsIG9sb2dpdApgYGB7cn0Kei5vcmQgPC0gemVsaWcoc2FsYXJ5IH4gcHJvbW90aW9uX2xhc3RfNXllYXJzICsgdGltZV9zcGVuZF9jb21wYW55ICsgYXZlcmFnZV9tb250bHlfaG91cnMsIG1vZGVsID0gIm9sb2dpdCIsCiAgICAgICAgICAgICAgIGRhdGEgPSBqcXVpdCwgY2l0ZSA9IEYpCnN1bW1hcnkoei5vcmQpCmBgYAoKYGBge3J9Cngubm8gPC0gc2V0eCh6Lm9yZCwgcHJvbW90aW9uX2xhc3RfNXllYXJzID0gMCkKeC55ZXMgPC0gc2V0eCh6Lm9yZCwgcHJvbW90aW9uX2xhc3RfNXllYXJzID0gMSkKYGBgCgpgYGB7cn0Kcy5vcmQgPC0gc2ltKHoub3JkLCB4ID0geC5ubywgeDEgPSB4LnllcykKc3VtbWFyeShzLm9yZCkKYGBgCgpgYGB7cn0KZ3JhcGhpY3Mub2ZmKCkKIHBhcigibWFyIikKIHBhcihtYXI9YygxLDEsMSwxKSkKcGxvdChzLm9yZCkKYGBgCgoKYGBge3J9CmMxeCA8LSBzZXR4KHoub3JkLCBwcm9tb3Rpb25fbGFzdF81eWVhcnMgPSAiMCIsIGpxdWl0ICkKYzF4MSA8LSBzZXR4KHoub3JkLCBwcm9tb3Rpb25fbGFzdF81eWVhcnMgPSAiMSIsIGpxdWl0KQpjMXMgPC0gc2ltKHoub3JkLCB4ID0gYzF4LCB4MSA9IGMxeDEpCmdyYXBoaWNzLm9mZigpCiBwYXIoIm1hciIpCmBgYAoKCmBgYHtyfQogcGFyKG1hcj1jKDEsMSwxLDEpKQpwbG90KGMxcykKYGBgCgoKCgpgYGB7cn0KZDEgPC0gYzFzJGdldF9xaSh4dmFsdWU9IngxIiwgcWk9ImZkIikKZGZkIDwtIGFzLmRhdGEuZnJhbWUoY2JpbmQoZDEpKQpoZWFkKGRmZCkKCmBgYAoKCgojRGlmZmVyZW5jZSBiZXR3ZWVuIHRob3NlIHdobyBkaWQgYW5kIGRpZCBub3QgcmVjZWl2ZSBhIHByb21vIGluIGxhc3QgNSBtb250aHMgaW4gTGlrZWxpaG9vZCBvZiBiZWluZyBpbiBMb3cgaW5jb21lIGdyb3VwID0gbWVhbiA9ICgtMC4yNjgpIHVuaXRzCgpgYGB7cn0KbGlicmFyeShnZ3Bsb3QyKQoKZ2dwbG90KGRmZCkrCiAgZ2VvbV9oaXN0b2dyYW0oYWVzKHg9bG93KSxjb2xvciA9ICJibGFjayIsIGZpbGwgPSAiYXF1YSBtYXJpbmUxIikKCmBgYAoKCiNEaWZmZXJlbmNlIGJldHdlZW4gdGhvc2Ugd2hvIGRpZCBhbmQgZGlkIG5vdCByZWNlaXZlIGEgcHJvbW8gaW4gbGFzdCA1IG1vbnRocyBpbiBMaWtlbGlob29kIG9mIGJlaW5nIGluIE1lZGl1bSBpbmNvbWUgZ3JvdXAgPSBtZWFuID0gKDAuMTI2KQpgYGB7cn0KZ2dwbG90KGRmZCkrCiAgZ2VvbV9oaXN0b2dyYW0oYWVzKHg9bWVkaXVtKSxjb2xvciA9ICJibGFjayIsIGZpbGwgPSAiYXF1YSBtYXJpbmUxIikKYGBgCgojRGlmZmVyZW5jZSBiZXR3ZWVuIHRob3NlIHdobyBkaWQgYW5kIGRpZCBub3QgcmVjZWl2ZSBhIHByb21vIGluIGxhc3QgNSBtb250aHMgaW4gTGlrZWxpaG9vZCBvZiBiZWluZyBpbiBIaWdoIGluY29tZSBncm91cCA9IG1lYW4gPSAoMC4xNTYpCmBgYHtyfQpnZ3Bsb3QoZGZkKSsKICBnZW9tX2hpc3RvZ3JhbShhZXMoeD1oaWdoKSxjb2xvciA9ICJibGFjayIsIGZpbGwgPSAiYXF1YSBtYXJpbmUxIikgCmBgYAoKCgoK