Expected value:
\[E[X_i]=\frac{1}{\lambda_i}\]
\[\lambda=\lambda_1+...+\lambda_{100}=\frac{100}{1000}=\frac{1}{10}\]
\[E[X_i]=\frac{1}{0.1}\]
Expected value is 10 hours.
\[fZ(z) = (1/2)\lambda e^{-\lambda\mid z\mid }\]
\[X_1 = Z + X_2\] When \(X_2 \geq X_1\), \(-\infty \; to \; 0\)
\[f_Z(z) = \int_{-\infty}^{\infty}f_{X_1}(x_1)f_{X_2}(x_2)dx_2\] \[f_Z(z) = \int_{-\infty}^{\infty}f_{X_1}(z+x_2)f_{X_2}(x_2)dx_2\] \[f_{X_1}(z+x_2) = \lambda e^{-\lambda (z+x_2)}\] \[f_{X_2}(x_2)= \lambda e^{-2\lambda x_2}\] \[f_Z(z) = \int_{-\infty}^0\lambda e^{-\lambda (z+x_2)} \lambda e^{-\lambda x_2}dx_2\] \[f_Z(z) = \lambda^2 e^{-\lambda z}(\frac{ -1}{2\lambda})\] \[f_Z(z) = \frac{-\lambda e^{-\lambda z}}{2}\]
when \(X_1 \geq X_2\), \(0 \; to \; \infty\) \[f_Z(z) = \int_0^{\infty}\lambda e^{-\lambda (z+x_2)} \lambda e^{-\lambda x_2}dx_2\] \[f_Z(z) = \lambda^2 e^{-\lambda z}(\frac{ -1}{2\lambda})\] \[f_Z(z) = \frac{\lambda e^{-\lambda z}}{2}\]
\[mean μ = 10\] \[variance σ^2 = 100/3\] \[Standard deviation σ = sqrt (100/3)\]
\[P(|X-\mu|\geq k\sigma)\leq\frac{1}{k^2}\]
\[ k \sigma=2 \] \[ k= \frac{2}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 2) = \frac{1}{k^{_{2}}} = 8.3333 \approx 1\]
\[ k \sigma=5 \] \[ k= \frac{5}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 5) = \frac{1}{k^{_{2}}} = 1.3333 \approx 1$ \]
\[ k \sigma=9 \] \[ k= \frac{9}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 9) = \frac{1}{k^{_{2}}} = 0.4115 \]
\[ k \sigma=20 \] \[ k= \frac{20}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 20) = \frac{1}{k^{_{2}}} = 0.0833$ \]
Test:
u <- 10
o <- sqrt(100/3)
x1 <-c(2, 5, 9, 20)
k <- (x1 )/o
p1 <- round(1/(k^2), 4)
p1
## [1] 8.3333 1.3333 0.4115 0.0833