based on June 27, 2016 document “Database_starting”
setwd("C:/Users/theco/Desktop/Fish Database Project")
database <- read.csv("database_0806.csv") ## change the name here to whatever you call the database
database <- database %>% rename(d15N = d15N.avg.,
d13C = d13C.avg.,
length = Length..mm..avg.,
baseline_d15N = Baselined15N,
ecology = FeedingHabits,
TL_fishbase = FishBase.Trophic.Level,
lat = Lat,
long = Long,
stationlocationdata = StationLocationData) #.eitherestimatedordirectlyfrompaper
# convert discrete variables to numeric
database$d15N <- as.numeric(as.character(database$d15N))
## Warning: NAs introduced by coercion
database$d13C <- as.numeric(as.character(database$d13C))
## Warning: NAs introduced by coercion
database$length <- as.numeric(as.character(database$length))
## Warning: NAs introduced by coercion
database$lat <- as.numeric(as.character(database$lat))
## Warning: NAs introduced by coercion
database$lon <- as.numeric(as.character(database$lon))
## Warning: NAs introduced by coercion
database$TL_fishbase <- as.numeric(as.character(database$TL_fishbase))
## Warning: NAs introduced by coercion
database$Authortrophiclevel <- as.numeric(as.character(database$Authortrophiclevel))
## Warning: NAs introduced by coercion
Butterfish data?
database %>% filter(CommonName %in% c("Butterfish", "Butter_sh")) %>%
ggplot() +
geom_point(aes(Environment, d15N))
btf <- database %>% filter(CommonName %in% c("Butterfish", "Butter_sh"))
#colnames(database)
#sort(unique(database$CommonName))
gbgom <- database %>%
filter(!is.na(jldCategory), GeneralLocation %in% c("Georges Bank", "Gulf of Maine")) %>%
ggplot(aes(shape = ecology, color = jldCategory, fill = ecology)) +
geom_point(aes(d13C, d15N), size = 8, stroke = 2) +
ggtitle("Georges Bank and Gulf of Maine all species") +
theme_bw() +
theme(axis.text.y = element_text(size = rel(2.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(3), color = "black")) +
theme(axis.text.x = element_text(size = rel(2.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(3), color = "black"))
gbgom
## Warning: Removed 13 rows containing missing values (geom_point).
#
# ## TO SEE WHAT THE "NOTHINGS" ARE HERE
# df <- gbgom <- database %>%
# filter(!is.na(jldCategory), GeneralLocation %in% c("Georges Bank", "Gulf of Maine"), ecology == "-")
#
# #View(df)
# sort(unique(database$jldCategory))
zoops <- database %>%
filter(jldCategory == "Gelatinous zooplankton") %>%
ggplot(aes(shape = Environment, color = GeneralLocation, fill = ecology)) +
geom_point(aes(d13C, d15N), size = 8, stroke = 2) +
ggtitle("Gelatinous zooplankton") +
theme_bw() +
theme(axis.text.y = element_text(size = rel(2.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(3), color = "black")) +
theme(axis.text.x = element_text(size = rel(2.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(3), color = "black"))
zoops
## Warning: Removed 10 rows containing missing values (geom_point).
# create dataframe of just Das et al data
df.Dasetal <- database %>%
filter(References %in% c("Das et al 2003", "Das et al. (2003)", "Das et al., 2003", "Das et al., 2003; Dehn et al., 2007", "Das et al., 2003; Hoekstra et al., 2002", "Das et al., 2003; Loseto et al., 2008", "Das et al., 2003; Loseto et al., 2008; Sara et al., 2009; Lesage et al., 2001; Dehn et al., 2007", "Das et al., 2003; Sara et al., 2009"))
#View(df.Dasetal)
# plot all Das et al data to see how these zooplankton compare to nekton
Dasetal <- database %>%
filter(References %in% c("Das et al 2003", "Das et al. (2003)", "Das et al., 2003", "Das et al., 2003; Dehn et al., 2007", "Das et al., 2003; Hoekstra et al., 2002", "Das et al., 2003; Loseto et al., 2008", "Das et al., 2003; Loseto et al., 2008; Sara et al., 2009; Lesage et al., 2001; Dehn et al., 2007", "Das et al., 2003; Sara et al., 2009")) %>%
ggplot(aes(shape = GeneralLocation, color = jldCategory)) +
geom_point(aes(d13C, d15N), size = 8, stroke = 2, alpha = 0.7) +
ggtitle("Das et al. 2003 -- what's going on with gelatinous zooplankton?") +
theme_bw()
Dasetal
#ggplotly()
# create tally of Das et al data
tally.das <- database %>%
filter(References %in% c("Das et al 2003", "Das et al. (2003)", "Das et al., 2003", "Das et al., 2003; Dehn et al., 2007", "Das et al., 2003; Hoekstra et al., 2002", "Das et al., 2003; Loseto et al., 2008", "Das et al., 2003; Loseto et al., 2008; Sara et al., 2009; Lesage et al., 2001; Dehn et al., 2007", "Das et al., 2003; Sara et al., 2009")) %>%
group_by(GeneralLocation, Environment) %>%
summarise(n = n()) #filter(year >= 1900)
#View(tally.das)
tally.das
## Source: local data frame [0 x 3]
## Groups: GeneralLocation [?]
##
## # ... with 3 variables: GeneralLocation <fctr>, Environment <fctr>,
## # n <int>
### plot of d15N vs d13C (gadiformes)
gads <- database %>%
filter(Category.of.Interest == "Gadiformes") %>%
ggplot(aes(shape = Environment, color = GeneralLocation)) + #fill = ecology
geom_point(aes(d13C, d15N), size = 8, stroke = 2) +
ggtitle("Gadiformes by general location") +
theme_bw() +
theme(axis.text.y = element_text(size = rel(2.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(3), color = "black")) +
theme(axis.text.x = element_text(size = rel(2.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(3), color = "black"))
gads
## Warning: Removed 41 rows containing missing values (geom_point).
# duplicates in the Carscallen or Badalamenti references? (gadiformes)
gadids <- database %>%
filter(Category.of.Interest == "Gadiformes") %>%
select(Category.of.Interest, d15N, d15N.sd., d13C, d13C.sd., CommonName, SpeciesName, GeneralLocation, References, lat, lon)
sort(gadids$d15N)
## [1] 9.30 9.40 9.40 9.50 9.50 9.50 9.60 9.96 10.10 10.20 10.30
## [12] 10.32 10.40 10.40 10.50 10.60 10.60 10.70 10.80 10.80 10.87 10.90
## [23] 10.90 10.99 11.00 11.00 11.06 11.10 11.10 11.10 11.10 11.14 11.20
## [34] 11.20 11.20 11.30 11.30 11.30 11.30 11.30 11.30 11.39 11.40 11.40
## [45] 11.50 11.60 11.60 11.80 11.80 11.80 11.86 11.90 11.90 12.00 12.00
## [56] 12.04 12.06 12.10 12.19 12.20 12.20 12.20 12.20 12.30 12.30 12.30
## [67] 12.30 12.30 12.30 12.30 12.36 12.40 12.40 12.45 12.60 12.60 12.69
## [78] 12.70 12.70 12.74 12.80 12.80 12.80 12.80 12.82 12.90 12.90 12.90
## [89] 12.97 12.99 13.00 13.00 13.00 13.00 13.10 13.10 13.10 13.10 13.15
## [100] 13.20 13.23 13.30 13.30 13.30 13.30 13.36 13.40 13.40 13.40 13.40
## [111] 13.46 13.49 13.50 13.50 13.50 13.50 13.50 13.60 13.60 13.60 13.60
## [122] 13.60 13.60 13.60 13.64 13.70 13.70 13.70 13.70 13.70 13.70 13.70
## [133] 13.70 13.78 13.80 13.80 13.86 13.92 13.97 14.00 14.00 14.00 14.06
## [144] 14.10 14.15 14.18 14.20 14.20 14.20 14.20 14.21 14.21 14.21 14.27
## [155] 14.27 14.30 14.30 14.30 14.30 14.30 14.30 14.30 14.31 14.31 14.36
## [166] 14.39 14.40 14.40 14.40 14.41 14.50 14.59 14.60 14.60 14.60 14.62
## [177] 14.70 14.70 14.70 14.70 14.70 14.70 14.75 14.80 14.80 14.80 14.80
## [188] 14.80 14.80 14.80 14.80 14.81 14.87 14.90 14.92 15.00 15.00 15.00
## [199] 15.04 15.07 15.10 15.11 15.12 15.19 15.20 15.20 15.20 15.20 15.20
## [210] 15.20 15.20 15.25 15.30 15.43 15.50 15.50 15.50 15.60 15.60 15.60
## [221] 15.70 15.70 15.70 15.70 15.73 15.80 15.80 15.86 15.87 16.00 16.08
## [232] 16.10 16.20 16.40 16.40 16.50 16.70 16.80 16.90 17.03 17.10 17.20
## [243] 17.30 17.30 17.90 19.10 19.10 19.20 19.20
#View(gadids)
# in black to see accidental replicates
# sort(colnames(database))
database %>%
filter(length %in% c(115:900), Category.of.Interest == "Gadiformes") %>%
ggplot(aes(x = length, y = d15N)) +
geom_point(aes(color = factor(lat), shape = GeneralLocation, fill = factor(lat)), stroke = 2, size = 4, alpha = 0.7) +
scale_shape_manual(values=1:nlevels(database$GeneralLocation)) +
theme_bw() +
theme(legend.background = element_rect(fill = 'pink', size = 3)) +
ggtitle("Gadiformes: shape = location, fill = latitude, size = spp")
database %>%
filter(length %in% c(115:900), Category.of.Interest == "Gadiformes") %>%
ggplot(aes(x = length, y = d15N)) +
geom_point(aes(fill = factor(lat)), stroke = 2, size = 4, alpha = 0.7) +
scale_shape_manual(values=1:nlevels(database$GeneralLocation)) +
theme_bw() +
theme(legend.background = element_rect(fill = 'pink', size = 3)) +
ggtitle("Gadiformes - replicates appear dark black")
# in color, with species identified (gadiformes)
database %>%
filter(length %in% c(115:900),
Category.of.Interest == "Gadiformes") %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(lat)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N of Gadiformes colored by latitude") +
xlab("Length (mm)") +
ylab("d15N (â°)")
# in color, with species identified (gadiformes)
database %>%
filter(length %in% c(115:900),
Category.of.Interest == "Gadiformes") %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by Gadiform species") +
xlab("Length (mm)") +
ylab("d15N (â°)")
### STILL TO DO/modify:
### plot of d15N vs. latitude (gadiformes)
# colored by length?
# Atlantic Ocean
database %>%
filter(length %in% c(115:900),
Category.of.Interest == "Gadiformes",
lon <= 30,
lon >= -90) %>%
ggplot() +
geom_point(aes(x = lat, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by Gadiform species in the Atlantic Ocean") +
xlab("Latitude") +
ylab("d15N (â°)")
# All oceans
database %>%
filter(length %in% c(115:900),
Category.of.Interest == "Gadiformes") %>%
ggplot() +
# geom_point(aes(x = lon, y = lat, colour = factor(lon)),
# size = 5,
# alpha = 0.7) +
geom_jitter(aes(x = lon, y = lat, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7,
position = position_jitter(width = 7, height = 7)) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Lat vs. lon colored by Gadiform species in the all oceans") +
ylab("Latitude") +
xlab("Longitude")
ggplotly()
###Length vs d15N across all oceans
unique(database$GeneralLocation)
## [1] Hawaii
## [2] Labrador Shelf
## [3] North Norway
## [4] Antarctic
## [5] Georges Bank
## [6] Canadian Arctic
## [7] Horn Island
## [8] Narragansett Bay
## [9] Mediterranean Sea
## [10] Mad Island Marsh
## [11] Northeast Pacific Ocean
## [12] Baffin Bay
## [13] Boston Harbor
## [14] Acquatina Lagoon
## [15] Sea of Japan
## [16] Norway
## [17] Mediterannean Sea
## [18] Gulf of St. Lawrence
## [19] Arctic
## [20] Lancaster Sound
## [21] Cananéia Lagoon Estuarine System
## [22] Hudson Bay
## [23] Saglek Bay
## [24] Caribbean Sea
## [25] St. Kitts
## [26] Isle of May
## [27] Chesapeake Bay
## [28] Cumberland Sound
## [29] Stellwagen Bay
## [30] West Greenland
## [31] Barrow Strait
## [32] North Sea
## [33] Denmark
## [34] Massachusetts Bay
## [35] North Sea
## [36] Gulf of Alaska
## [37] Greenland
## [38] Southwest Greenland
## [39] Spitsbergen
## [40] Iceland
## [41] Barents Sea
## [42] Prince William Sound
## [43] Benguela
## [44] California Current
## [45] Pacific Ocean
## [46] Newfoundland/Georges Band
## [47] Washington-Oregon
## [48] East Japan
## [49] Kuroshio-Oyashio
## [50] Taiwan
## [51] Atlantic Ocean
## [52] Bering Sea
## [53] Gulf of Maine
## [54] Mururoa Atoll, French Polynesia
## [55] Strangford Lough
## [56] Massachusetts, U.S.A. (shelf)
## [57] Dipper Harbor
## [58] Cutler
## [59] Scheldt Estuary
## [60] Everywhere
## [61] Baltic Sea
## [62] Salish Sea
## [63] Funk Island
## [64] St. Kilda
## [65] North Atlantic Ocean
## [66] Svalbard
## [67] East Greenland
## [68] Caribbean
## [69] St. Lawrence
## [70] Australia
## [71] Celtic Sea
## [72] Northeast Greenland
## [73] Gulf of Mexico
## [74] Tasma Sea Abyssal basin
## [75] Mid-Atlantic Ridge
## [76] Eastern Baltic Sea
## [77] Western Baltic Sea
## [78] Arabian Sea
## [79] Rhode Island and Block Island Sound
## [80] North Alaska
## [81] Hutt River, New Zealand
## [82] St. Marks
## [83] Shelikof Strait
## [84] Northern Norway
## [85] Southwest Alaska
## [86] South Alaska
## [87] Rio Santa Cruz
## [88] Northwest Miramichi River
## [89] European Lakes
## [90] Quebec
## [91] Bering Strait
## [92] Conception Bay
## [93] Georgia, USA and KZN shelf, South Africa
## [94] Cape Cod
## [95] Davis Strait
## [96] Joux (ch)
## [97] Little River
## [98] Snoqualmie River, Wash.
## [99] Headwater lake of the Pointe Wolfe River
## [100] Chip River
## [101] Meade River
## [102] Martha's Vineyard
## [103] Kvichak River, Alaska
## [104] Northwest Atlantic
## [105] Bay of Biscay
## [106] Mid-Atlantic Bight
## [107] Grenada
## [108] North Carolina Gulf Stream
## [109] Jan Mayen
## [110] Vestjorden/Lofoten
## [111] North Carolina
## 111 Levels: Acquatina Lagoon Antarctic Arabian Sea ... Western Baltic Sea
## number of individuals per species in each environment
tally_species_env <- database %>%
group_by(Environment, SpeciesName) %>%
summarise(n = n())
## number of species per environment
tally_species_env_tally <- tally_species_env %>%
group_by(Environment) %>%
summarise(NumberOfSp = n())
## plot
tally_species_env_tally %>% filter(Environment != "-", Environment != "") %>%
ggplot(aes(Environment, NumberOfSp)) +
geom_point(size = 5)+
labs(x = "", y = "Count of species", title = "# of species per environment")
## number of individuals per species in each part of the world
tally_species_loc <- database %>%
group_by(GeneralLocation, SpeciesName) %>%
summarise(n = n())
## number of species per environment
tally_species_loc_tally <- tally_species_loc %>%
group_by(GeneralLocation) %>%
summarise(NumberOfLoc = n())
## plot
tally_species_loc_tally %>% filter(GeneralLocation != "-", GeneralLocation != "") %>%
ggplot(aes(GeneralLocation, NumberOfLoc)) +
geom_point(size = 5) +
geom_text(aes(label=NumberOfLoc), hjust=-0.5, vjust=-0.5) +
labs(x = "", y = "Count of species", title = "# of species per location") +
theme(axis.text.x = element_text(angle=90, vjust=0.5, size=12))
# Atlantic
database %>%
filter(length %in% c(115:900),
#Category.of.Interest == "Gadiformes",
lon <= 30,
lon >= -90) %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
#stat_smooth(method="lm", x=length, y=d15N) + # Needs x and y aesthetics in the ggplot() thing
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by species in the Atlantic Ocean") +
xlab("Length") +
ylab("d15N (â°)")
databasestat <- database %>%
filter(length %in% c(115:900),
#Category.of.Interest == "Gadiformes",
lon <= 30,
lon >= -90)
x <- databasestat$length
y <- databasestat$d15N
cor.test(y,x)
##
## Pearson's product-moment correlation
##
## data: y and x
## t = 4.5801, df = 159, p-value = 9.333e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1971389 0.4711961
## sample estimates:
## cor
## 0.3414035
lm <- lm(y~x)
lm
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 11.908962 0.003755
summary(lm)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1835 -1.6497 -0.0614 1.1802 6.2640
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.191e+01 2.906e-01 40.99 < 2e-16 ***
## x 3.755e-03 8.199e-04 4.58 9.33e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.893 on 159 degrees of freedom
## Multiple R-squared: 0.1166, Adjusted R-squared: 0.111
## F-statistic: 20.98 on 1 and 159 DF, p-value: 9.333e-06
# Pacific
database %>%
filter(length %in% c(115:900),
#Category.of.Interest == "Gadiformes",
lon <= -75 || lon >= 120) %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by species in the Pacific Ocean") +
xlab("Length") +
ylab("d15N (â°)")
# Southern
database %>%
filter(length %in% c(115:900),
#Category.of.Interest == "Gadiformes",
lat <= -50) %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by species in the Southern Ocean") +
xlab("Length") +
ylab("d15N (â°)")
# Europe
database %>%
filter(length %in% c(115:900),
#Category.of.Interest == "Gadiformes",
lat >= 30,
lon <= 45,
lon >= -25) %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by species in Europe") +
xlab("Length") +
ylab("d15N (â°)")
# Indian
database %>%
filter(length %in% c(115:900),
#Category.of.Interest == "Gadiformes",
lat <= 30,
lat >= -45,
lon <= 120,
lon >= 30) %>%
ggplot() +
geom_point(aes(x = length, y = d15N, colour = factor(SpeciesName)),
size = 5,
alpha = 0.7) +
theme_bw() +
scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
ggtitle("Length vs. d15N colored by species in the Indian Ocean") +
xlab("Length") +
ylab("d15N (â°)")
## Not working
# # Data per region
# database %>%
# filter(length %in% c(115:900),
# !is.na(SpeciesName)
# #Category.of.Interest == "Gadiformes",
# ) %>%
# ggplot(aes(y=SpeciesName)) +
# facet_wrap(~Environment)
# theme_bw() +
# scale_fill_continuous(guide = guide_legend(title = "Species Name")) +
# # scale_x_continuous(breaks = seq(100, 2000, by = 100)) +
# theme(axis.text.y = element_text(size = rel(1.5), color = "black")) +
# theme(axis.title.y = element_text(size = rel(1.75), color = "black")) +
# theme(axis.text.x = element_text(size = rel(1.5), color = "black")) +
# theme(axis.title.x = element_text(size = rel(1.75), color = "black")) +
# ggtitle("Length vs. d15N colored by species in the Indian Ocean") +
# xlab("Length") +
# ylab("d15N (â°)")
#summarise_by, group_by
#View(database)
d <- database %>%
filter(jldCategory %in% c(1),
!is.na(d15N)) %>%,
inner_join(Station %>%
filter(gear.id %in% c(77,78),
month %in% c(9:11),
year %in% c(2013:2014),
lat >= 65.5,
lon <= -20,
lon >= -26) %>%
select(synis.id, year, month, square, gear.id,
sample.class, lon, lat, depth, botnhiti)) %>%
rename(temperature = botnhiti) %>%
mutate(sel.length = ifelse(length %in% 65:74,TRUE, FALSE))