IT100 Session 7: Exponent and Logarithmic systems
5 Sept 2017
\[ \begin{array}{rccc} 0&2^0&1&o\\ 1&2^1&2&oo\\ 2&2^2&4&oooo\\ 3&2^3&8&oooooooo\\ 4&2^4&16&oooooooooooooooo\\ 5&2^5&32&oooooooooooooooooooooooooooooooo\\ 6&2^5&64&oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\\ \end{array} \]
Rate | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
\( \large 1^n \) | 1 | 1 | 1 | 1 | 1 | 1 |
\( \large 2^n \) | 2 | 4 | 8 | 16 | 32 | 64 |
\( \large 4^n \) | 3 | 9 | 27 | 81 | 243 | 729 |
\( \large 6^n \) | 6 | 36 | 216 | 1296 | 7776 | 46656 |
\( \large 8^n \) | 8 | 64 | 512 | 4096 | 32768 | 262144 |
\( \large 10^n \) | 10 | 100 | 1000 | 10000 | 100000 | 1000000 |
\( \large 12^n \) | 12 | 144 | 1728 | 20736 | 248832 | 2985984 |
Rate | 1yr | 2yr | 3yr | 4yr | 5yr | 6yr | 7yr | 8yr |
---|---|---|---|---|---|---|---|---|
1% | 1.01 | 1.02 | 1.03 | 1.04 | 1.05 | 1.06 | 1.07 | 1.08 |
5% | 1.05 | 1.10 | 1.16 | 1.22 | 1.28 | 1.34 | 1.41 | 1.48 |
10% | 1.10 | 1.21 | 1.33 | 1.46 | 1.61 | 1.77 | 1.95 | 2.14 |
15% | 1.15 | 1.32 | 1.52 | 1.75 | 2.01 | 2.31 | 2.66 | 3.06 |
20% | 1.20 | 1.44 | 1.73 | 2.07 | 2.49 | 2.98 | 3.58 | 4.30 |
25% | 1.25 | 1.56 | 1.95 | 2.44 | 3.05 | 3.81 | 4.77 | 5.96 |
30% | 1.30 | 1.69 | 2.20 | 2.86 | 3.71 | 4.83 | 6.27 | 8.16 |
Rate | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
½ | 50.0000 | 25.0000 | 12.5000 | 6.2500 | 3.1250 | 1.5625 |
¼ | 25.0000 | 6.2500 | 1.5625 | 0.3906 | 0.0977 | 0.0244 |
1/6 | 16.6667 | 2.7778 | 0.4630 | 0.0772 | 0.0129 | 0.0021 |
1/8 | 12.5000 | 1.5625 | 0.1953 | 0.0244 | 0.0031 | 0.0004 |
1/10 | 10.0000 | 1.0000 | 0.1000 | 0.0100 | 0.0010 | 0.0001 |
1/12 | 8.3333 | 0.6944 | 0.0579 | 0.0048 | 0.0004 | 0.0000 |
Rate | 1yr | 2yr | 3yr | 4yr | 5yr | 6yr | 7yr | 8yr |
---|---|---|---|---|---|---|---|---|
-1% | 99.0 | 98.0 | 97.0 | 96.1 | 95.1 | 94.1 | 93.2 | 92.3 |
-5% | 95.0 | 90.3 | 85.7 | 81.5 | 77.4 | 73.5 | 69.8 | 66.3 |
-10% | 90.0 | 81.0 | 72.9 | 65.6 | 59.0 | 53.1 | 47.8 | 43.0 |
-15% | 85.0 | 72.3 | 61.4 | 52.2 | 44.4 | 37.7 | 32.1 | 27.2 |
-20% | 80.0 | 64.0 | 51.2 | 41.0 | 32.8 | 26.2 | 21.0 | 16.8 |
-25% | 75.0 | 56.3 | 42.2 | 31.6 | 23.7 | 17.8 | 13.3 | 10.0 |
-30% | 70.0 | 49.0 | 34.3 | 24.0 | 16.8 | 11.8 | 8.2 | 5.8 |
\[ \Large\begin{array}{rc} \hbox{Product Rule} & {a^m\times a^n} = a^{m+n} \\ \hbox{Quotient Rule} & {a^m\over a^n} = a^{m-n} \\ \hbox{Product Rule} & (a^m)^n = a^{m \times n} \\ \hbox{Zero Exponent Rule} & a^0 = 1 \\ \hbox{Negative Exponent Rule} & a^{-n} = {1\over a^n} \\ \hbox{Power of ratio} & \left({a\over b}\right)^n = {a^n \over b^n}\\ \end{array} \]
\[ \Large N(t) = P \ b^t \]
*Population of 3 Provinces *
Provinces | 1999 | 2014 | 2016 |
---|---|---|---|
Chiang Mai | 1,587,465 | 1,678,284 | 1,735,762 |
Songkla | 1,223,833 | 1,401,303 | 1,417,440 |
Khon Khan | 1,747,730 | 1,790,049 | 1,801,753 |
Phuket | 241,489 | 378,364 | 386,605 |
\[ \large\begin{array}{rclcrclrl} 1.736 &=& 1.587\ b_{cm}^{17}& &1.678 &=& 1.587\ b_{cm}^{15} \\ 1.093888 &=& b_{cm}^{17}& & 1.057341 &= & b_{cm}^{15}\\ 1.00529&=&b_{cm} & & 1.00372 &=& b_{cm} &b_{cm} & =1.004505 \\ \\ 1.417 &=& 1.224 b_{sng}^{17} & & 1.401 &=& 1.224 b_{sng}^{15}\\ 1.15768 &=& b_{sng}^{17} & & 1.14461 &=& b_{sng}^{15}\\ 1.00865 &=& b_{sng} & & 1.009045 &=& b_{sng}&b_{sng}&=1.00847\\ \\ 1.801 &=& 1.747\ b_{kk}^{17} & & 1.790 &=& 1.747\ b_{kk}^{15}\\ 1.03091 &=& b_{kk}^{17} & & 1.024614 &=& b_{kk}^{15}\\ 1.001792 &=& b_{kk} & & 1.001622 &=& b_{kk}&b_{kk} &= 1.001707 \\ \\ 0.387 &=& 0.241\ b_{pk}^{17} & & 0.378 &=& 0.241\ b_{pk}^{15}\\ 1.605809 &=& b_{pk}^{17} & & 1.568465 &=& b_{pk}^{15}\\ 1.028252 &=& b_{pk} & & 1.030461 &=& b_{pk}&b_{pk} &= 1.029357 \\ \end{array} \]
Device on Internet
In 2005 there were 5 million devices connected to the Internet in Thailand. In 2017 the number of devices has grown to 35 million.
Determine the average annual growth rate assuming linear growth.
Determine the annual rate of growth assuming constant exponential grown.
Estimate the number of devices connected in the year 2020?
\[ \Large A(t) = P\left(1+{r\over n}\right)^{nt} \]
\[ \Huge\begin{array}{rcl} y &=& \log_{10}(x)\\ x &=& 10^y\\ x_1 \times x_2 &=& 10^{\left(log(x_1)+log(x_2)\right)}\\ \sqrt[4]{x} &=& 10^{{\log_{10}(x)\over 4}}\\ \end{array} \]
Find the following values using the virtual slide rule:
\[ \Large \begin{array}{lrclr} Area of circle: & A & = & \pi r^2 = \pi \times 3^2 & ......(1)\\ Ratios: & {a\over b} &=& {2\over 5} = {?\over 40} = {?\over 10} = {20\over ?}& ......(2)\\ Volume of a box: & h \times l \times 2 &=& 5 \times 15 \times 20&.....(3)\\ Volume of a cylinder:& \pi r^2 h &=& \pi 4^2 \times 10 & ......(4)\\ \end{array} \]
\[ \Large \begin{array}{rcl} y &=& 3x\\ y &=& 25/x\\ y &=& x^2\\ y &=& x^3\\ y&=& 2^x\\ y&=& 3^x\\ \end{array} \]
Note the scale of the linear-linear,log-linear and log-log plots
Determine which relationships become linear in log-linear plots
Determine which relationships become linear in log-log plots
Note the angles and shape of the curves in each of the plots