Fundamental Math

IT100 Session 7: Exponent and Logarithmic systems
5 Sept 2017

Agenda

Agenda

  • Exponential Functions
  • Logarithmic Functions
  • Graphs of logarithmic Functions
  • Exponential and logarithmic Models
  • Fitting exponential Models to Data

Exponential Functions (4.1)

Binary Growth rates

\[ \begin{array}{rccc} 0&2^0&1&o\\ 1&2^1&2&oo\\ 2&2^2&4&oooo\\ 3&2^3&8&oooooooo\\ 4&2^4&16&oooooooooooooooo\\ 5&2^5&32&oooooooooooooooooooooooooooooooo\\ 6&2^5&64&oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\\ \end{array} \]

Exponential Growth

plot of chunk unnamed-chunk-1

Rate 1 2 3 4 5 6
\( \large 1^n \) 1 1 1 1 1 1
\( \large 2^n \) 2 4 8 16 32 64
\( \large 4^n \) 3 9 27 81 243 729
\( \large 6^n \) 6 36 216 1296 7776 46656
\( \large 8^n \) 8 64 512 4096 32768 262144
\( \large 10^n \) 10 100 1000 10000 100000 1000000
\( \large 12^n \) 12 144 1728 20736 248832 2985984

Exponential Growth

plot of chunk unnamed-chunk-2

plot of chunk unnamed-chunk-3

Interest Rate Growth

plot of chunk unnamed-chunk-4

Rate 1yr 2yr 3yr 4yr 5yr 6yr 7yr 8yr
1% 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08
5% 1.05 1.10 1.16 1.22 1.28 1.34 1.41 1.48
10% 1.10 1.21 1.33 1.46 1.61 1.77 1.95 2.14
15% 1.15 1.32 1.52 1.75 2.01 2.31 2.66 3.06
20% 1.20 1.44 1.73 2.07 2.49 2.98 3.58 4.30
25% 1.25 1.56 1.95 2.44 3.05 3.81 4.77 5.96
30% 1.30 1.69 2.20 2.86 3.71 4.83 6.27 8.16

Interest Rate Growth

plot of chunk unnamed-chunk-5

plot of chunk unnamed-chunk-6

Degradation Rates

plot of chunk unnamed-chunk-7

Rate 1 2 3 4 5 6
½ 50.0000 25.0000 12.5000 6.2500 3.1250 1.5625
¼ 25.0000 6.2500 1.5625 0.3906 0.0977 0.0244
1/6 16.6667 2.7778 0.4630 0.0772 0.0129 0.0021
1/8 12.5000 1.5625 0.1953 0.0244 0.0031 0.0004
1/10 10.0000 1.0000 0.1000 0.0100 0.0010 0.0001
1/12 8.3333 0.6944 0.0579 0.0048 0.0004 0.0000

Degradation Rates

plot of chunk unnamed-chunk-8

plot of chunk unnamed-chunk-9

Degradation as percentage

plot of chunk unnamed-chunk-10

Rate 1yr 2yr 3yr 4yr 5yr 6yr 7yr 8yr
-1% 99.0 98.0 97.0 96.1 95.1 94.1 93.2 92.3
-5% 95.0 90.3 85.7 81.5 77.4 73.5 69.8 66.3
-10% 90.0 81.0 72.9 65.6 59.0 53.1 47.8 43.0
-15% 85.0 72.3 61.4 52.2 44.4 37.7 32.1 27.2
-20% 80.0 64.0 51.2 41.0 32.8 26.2 21.0 16.8
-25% 75.0 56.3 42.2 31.6 23.7 17.8 13.3 10.0
-30% 70.0 49.0 34.3 24.0 16.8 11.8 8.2 5.8

Degradation as percentage

plot of chunk unnamed-chunk-11

plot of chunk unnamed-chunk-12

Exponent Rules

\[ \Large\begin{array}{rc} \hbox{Product Rule} & {a^m\times a^n} = a^{m+n} \\ \hbox{Quotient Rule} & {a^m\over a^n} = a^{m-n} \\ \hbox{Product Rule} & (a^m)^n = a^{m \times n} \\ \hbox{Zero Exponent Rule} & a^0 = 1 \\ \hbox{Negative Exponent Rule} & a^{-n} = {1\over a^n} \\ \hbox{Power of ratio} & \left({a\over b}\right)^n = {a^n \over b^n}\\ \end{array} \]

Population Growth

\[ \Large N(t) = P \ b^t \]

  • \( \Large N \) : Population at time \( \Large t \)
  • \( \Large P \) : Initial population
  • \( \Large b \) : base of population growth
  • \( \Large t \) : Time in years

*Population of 3 Provinces *

Provinces 1999 2014 2016
Chiang Mai 1,587,465 1,678,284 1,735,762
Songkla 1,223,833 1,401,303 1,417,440
Khon Khan 1,747,730 1,790,049 1,801,753
Phuket 241,489 378,364 386,605

Calculations

\[ \large\begin{array}{rclcrclrl} 1.736 &=& 1.587\ b_{cm}^{17}& &1.678 &=& 1.587\ b_{cm}^{15} \\ 1.093888 &=& b_{cm}^{17}& & 1.057341 &= & b_{cm}^{15}\\ 1.00529&=&b_{cm} & & 1.00372 &=& b_{cm} &b_{cm} & =1.004505 \\ \\ 1.417 &=& 1.224 b_{sng}^{17} & & 1.401 &=& 1.224 b_{sng}^{15}\\ 1.15768 &=& b_{sng}^{17} & & 1.14461 &=& b_{sng}^{15}\\ 1.00865 &=& b_{sng} & & 1.009045 &=& b_{sng}&b_{sng}&=1.00847\\ \\ 1.801 &=& 1.747\ b_{kk}^{17} & & 1.790 &=& 1.747\ b_{kk}^{15}\\ 1.03091 &=& b_{kk}^{17} & & 1.024614 &=& b_{kk}^{15}\\ 1.001792 &=& b_{kk} & & 1.001622 &=& b_{kk}&b_{kk} &= 1.001707 \\ \\ 0.387 &=& 0.241\ b_{pk}^{17} & & 0.378 &=& 0.241\ b_{pk}^{15}\\ 1.605809 &=& b_{pk}^{17} & & 1.568465 &=& b_{pk}^{15}\\ 1.028252 &=& b_{pk} & & 1.030461 &=& b_{pk}&b_{pk} &= 1.029357 \\ \end{array} \]

Population Modelling

plot of chunk unnamed-chunk-13

Challenge

plot of chunk unnamed-chunk-14

Device on Internet

In 2005 there were 5 million devices connected to the Internet in Thailand. In 2017 the number of devices has grown to 35 million.

  • Determine the average annual growth rate assuming linear growth.

  • Determine the annual rate of growth assuming constant exponential grown.

  • Estimate the number of devices connected in the year 2020?

Compound Interest

\[ \Large A(t) = P\left(1+{r\over n}\right)^{nt} \]

  • \( \Large P \) : Principle
  • \( \Large t \) : Time in years
  • \( \Large r \) : Annual Percentage Rate (APR)
  • \( \Large n \) : Compound periods per year

plot of chunk unnamed-chunk-15

Logarithmic Functions (4.3)

Logarithmic conversions

\[ \Huge\begin{array}{rcl} y &=& \log_{10}(x)\\ x &=& 10^y\\ x_1 \times x_2 &=& 10^{\left(log(x_1)+log(x_2)\right)}\\ \sqrt[4]{x} &=& 10^{{\log_{10}(x)\over 4}}\\ \end{array} \]

Log Scale

plot of chunk unnamed-chunk-16

Slide rule

sliderule

Slide rule

sliderule

  • Based on corresponding log10 of the C/D scales
  • Adding L values equals the product of numbers
  • Multiplication of L value by 2 used for \( \large x^2 \)
  • Division of L value by 2 used for \( \large \sqrt{x} \)

Challenge

Find the following values using the virtual slide rule:

\[ \Large \begin{array}{lrclr} Area of circle: & A & = & \pi r^2 = \pi \times 3^2 & ......(1)\\ Ratios: & {a\over b} &=& {2\over 5} = {?\over 40} = {?\over 10} = {20\over ?}& ......(2)\\ Volume of a box: & h \times l \times 2 &=& 5 \times 15 \times 20&.....(3)\\ Volume of a cylinder:& \pi r^2 h &=& \pi 4^2 \times 10 & ......(4)\\ \end{array} \]

Log-Linear and Log-log plots

plot of chunk unnamed-chunk-17

plot of chunk unnamed-chunk-18

Graphs (4.2, 4.4)

Linear - Linear Plot

\[ \Large \begin{array}{rcl} y &=& 3x\\ y &=& 25/x\\ y &=& x^2\\ y &=& x^3\\ y&=& 2^x\\ y&=& 3^x\\ \end{array} \]

plot of chunk unnamed-chunk-19

Log Plots

plot of chunk unnamed-chunk-20

plot of chunk unnamed-chunk-21

Challenge

  • Note the scale of the linear-linear,log-linear and log-log plots

  • Determine which relationships become linear in log-linear plots

  • Determine which relationships become linear in log-log plots

  • Note the angles and shape of the curves in each of the plots

Exponential and Logarithmic Models (4.7)

Challenge

  • Plot the data for Population A and B
  • Determine the best trendline
  • Determine the R2 for the trendline
  • Identify which population is moving toward steady-state