Introducción

Highcharter

Highcharter es un paquete de R para crear gráficos dinámicos de Highcharts que utilizan internamente javascript.

Highcharts es una biblioteca de gráficos javascript muy madura y flexible y tiene una gran y poderosa API.

Las principales características de este paquete son:

La función hchart permite visualizar los siguientes tipos de gráficos:

    Data Frames   ·   Numeric & Histograms   ·   Densities   ·   Character & Factor   ·   Time Series   ·   Seasonal Decomposition of Time Series by Loess   ·   Forecast package   ·   igraph   ·   xts from quantmod package   ·   xts ohlc objects   ·   Autocovariance & Autocorrelation   ·   Multivariate Time series   ·   Survival Models   ·   Principal Components   ·   Matrix   ·   Distance matrix   ·   Correlation matrix

Todo esto lo puedes revisar en la web oficial de highcharter.

Gráficos dinámicos

Función hchart - “Dispersión”

easypackages::libraries(c("dplyr", "highcharter"))
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: highcharter
## Highcharts (www.highcharts.com) is a Highsoft software product which is
## not free for commercial and Governmental use
## All packages loaded successfully
data(diamonds, mpg, package = "ggplot2")

hchart(mpg, "scatter", hcaes(x = displ, y = hwy, group = class)) %>%
  hc_title(text = "Dispersión diamonds") %>%
  hc_add_theme(hc_theme_economist())
Created with Highstock 5.0.6displhwyDispersión diamonds2seatercompactmidsizeminivanpickupsubcompactsuv22.533.544.555.566.57101520253035404550

Función hchart - “columnas”

mpgman2 <- mpg %>%
  count(class, year) %>%
  glimpse()
## Observations: 14
## Variables: 3
## $ class <chr> "2seater", "2seater", "compact", "compact", "midsize", "...
## $ year  <int> 1999, 2008, 1999, 2008, 1999, 2008, 1999, 2008, 1999, 20...
## $ n     <int> 2, 3, 25, 22, 20, 21, 6, 5, 16, 17, 19, 16, 29, 33
hchart(mpgman2, "column", hcaes(x = class, y = n, group = year)) %>% hc_add_theme(hc_theme_darkunica())
Created with Highstock 5.0.6classn199920082seatercompactmidsizeminivanpickupsubcompactsuv05101520253035

Función hchart - “barras”

hchart(mpgman2, "bar", hcaes(x = class, y = n, group = year))  %>% hc_add_theme(hc_theme_gridlight())
Created with Highstock 5.0.6classn199920082seatercompactmidsizeminivanpickupsubcompactsuv02.557.51012.51517.52022.52527.53032.535

Función hchart - “treemap”

mpgman3 <- mpg %>% 
  group_by(manufacturer) %>% 
  summarise(n = n(), unique = length(unique(model))) %>% 
  arrange(-n, -unique) %>% 
  glimpse()
## Observations: 15
## Variables: 3
## $ manufacturer <chr> "dodge", "toyota", "volkswagen", "ford", "chevrol...
## $ n            <int> 37, 34, 27, 25, 19, 18, 14, 14, 13, 9, 8, 5, 4, 4, 3
## $ unique       <int> 4, 6, 4, 4, 4, 3, 2, 2, 3, 1, 1, 1, 1, 1, 1
hchart(mpgman3, "treemap", hcaes(x = manufacturer, value = n, color = unique)) 
Created with Highstock 5.0.6No data to displaydodgedodgetoyotatoyotavolkswagenvolkswagenfordfordchevroletchevroletaudiaudihyundaihyundaisubarusubarunissannissanhondahondajeepjeeppontiacpontiacland roverland rovermercurymercurylincolnlincoln0246

Función hchart - “lineal”

library(ggplot2)
economics_long2 <- economics_long %>% 
  filter(variable %in% c("pop", "uempmed", "unemploy")) %>% 
  print()
## Source: local data frame [1,722 x 4]
## Groups: variable [3]
## 
##          date variable  value     value01
##        <date>   <fctr>  <dbl>       <dbl>
## 1  1967-07-01      pop 198712 0.000000000
## 2  1967-08-01      pop 198911 0.001628811
## 3  1967-09-01      pop 199113 0.003282177
## 4  1967-10-01      pop 199311 0.004902803
## 5  1967-11-01      pop 199498 0.006433395
## 6  1967-12-01      pop 199657 0.007734807
## 7  1968-01-01      pop 199808 0.008970739
## 8  1968-02-01      pop 199920 0.009887457
## 9  1968-03-01      pop 200056 0.011000614
## 10 1968-04-01      pop 200208 0.012244731
## # ... with 1,712 more rows
hchart(economics_long2, "line", hcaes(x = date, y = value01, group = variable)) %>% hc_add_theme(hc_theme_google())
Created with Highstock 5.0.6datevalue01popuempmedunemploy197019751980198519901995200020052010201500.20.40.60.811.2

Función hchart - “numérico o histograma”

hchart(diamonds$price) %>% hc_add_theme(hc_theme_elementary())
Created with Highstock 5.0.6Series 12k4k6k8k10k12k14k16k18k01k2k3k4k5k6k

Función hchart - “sectores”

hchart(mpgman2 %>% filter(year==2008) , "pie", hcaes(x = class, y = n)) %>% hc_add_theme(hc_theme_538())
Created with Highstock 5.0.62seater2seatercompactcompactmidsizemidsizeminivanminivanpickuppickupsubcompactsubcompactsuvsuv

Función hchart - “densidad”

hchart(density(diamonds$price), type = "area", color = "#B71C1C", name = "Price") %>% hc_add_theme(hc_theme_elementary())
Created with Highstock 5.0.6Price02.5k5k7.5k10k12.5k15k17.5k20k00.000050.00010.000150.00020.000250.00030.000350.0004

Función hchart - “quantmod”

library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
x <- getSymbols("USD/JPY", src = "oanda", auto.assign = FALSE)
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
hchart(x)
Created with Highstock 5.0.6Zoom1m3m6mYTD1yAllFromApr 23, 2017ToOct 18, 20171. May15. May29. May12. Jun26. Jun10. Jul24. Jul7. Aug21. Aug4. Sep18. Sep2. Oct16. OctMay '17Jun '17Jul '17Aug '17Sep '17Oct '17107108109110111112113114115

Función hchart - “forecast”

library("forecast")
airforecast <- forecast(auto.arima(AirPassengers), level = 95)
hchart(airforecast) %>% hc_add_theme(hc_theme_sandsignika())
Created with Highstock 5.0.6SeriesARIMA(2,1,1)(0,1,0)[12]19501952195419561958196019620100200300400500600700800

Función hchart - “Componentes Principales”

hchart(princomp(USArrests, cor = TRUE)) %>% hc_add_theme(hc_theme_538())
Created with Highstock 5.0.6AlabamaAlabamaAlaskaAlaskaArizonaArizonaArkansasArkansasCaliforniaCaliforniaColoradoColoradoConnecticutConnecticutDelawareDelawareFloridaFloridaGeorgiaGeorgiaHawaiiHawaiiIdahoIdahoIllinoisIllinoisIndianaIndianaIowaIowaKansasKansasKentuckyKentuckyLouisianaLouisianaMaineMaineMarylandMarylandMassachusettsMassachusettsMichiganMichiganMinnesotaMinnesotaMississippiMississippiMissouriMissouriMontanaMontanaNebraskaNebraskaNevadaNevadaNew HampshireNew HampshireNew JerseyNew JerseyNew MexicoNew MexicoNew YorkNew YorkNorth CarolinaNorth CarolinaNorth DakotaNorth DakotaOhioOhioOklahomaOklahomaOregonOregonPennsylvaniaPennsylvaniaRhode IslandRhode IslandSouth CarolinaSouth CarolinaSouth DakotaSouth DakotaTennesseeTennesseeTexasTexasUtahUtahVermontVermontVirginiaVirginiaWashingtonWashingtonWest VirginiaWest VirginiaWisconsinWisconsinWyomingWyomingobservationsAssaultMurderRapeUrbanPop-0.4-0.3-0.2-0.100.10.20.30.4-0.5-0.4-0.3-0.2-0.100.10.20.30.4

Boxplot

data(diamonds, package = "ggplot2")

hcboxplot(x = diamonds$x, var = diamonds$color,
          name = "Length", color = "#2980b9") %>%
  hc_add_theme(hc_theme_economist())
Created with Highstock 5.0.6DEFGHIJ-10123456789101112

Gráfico de barras y de sectores incrustado

data("favorite_bars")
data("favorite_pies")

highchart() %>%
  # Data
  hc_add_series(favorite_pies, "column", hcaes(x = pie, y = percent), name = "Pie") %>%
  hc_add_series(favorite_bars, "pie", hcaes(name = bar, y = percent), name = "Bars") %>% 
        hc_add_theme(hc_theme_ffx()) %>%
  # Optiosn for each type of series
  hc_plotOptions(
    series = list(
      showInLegend = FALSE,
      pointFormat = "{point.y}%"
    ),
    column = list(
      colorByPoint = TRUE
    ),
    pie = list(
      colorByPoint = TRUE, center = c('30%', '10%'),
      size = 120, dataLabels = list(enabled = FALSE)
    )) %>%
  # Axis
  hc_yAxis(
    title = list(text = "percentage of tastiness"),
    labels = list(format = "{value}%"), max = 100
  ) %>%
  hc_xAxis(categories = favorite_pies$pie) %>%
  # Titles and credits
  hc_title(
    text = "This is a bar graph describing my favorite pies
    including a pie chart describing my favorite bars"
  ) %>%
  hc_subtitle(text = "In percentage of tastiness and awesomeness") %>%
  hc_credits(
    enabled = TRUE, text = "Source: HIMYM",
    style = list(fontSize = "12px")
  )
Created with Highstock 5.0.6percentage of tastinessThis is a bar graph describing my favorite pies including a pie chart describing my favoritebarsThis is a bar graph describing my favorite pies including a pie chart describing my favorite barsIn percentage of tastiness and awesomenessStrawberry RhubarbPumpkinLemon MeringueBlueberryKey Lime0%20%40%60%80%100%Source: HIMYM

Mapas dinámicos

mapdata <- get_data_from_map(download_map_data("countries/us/us-all"))
glimpse(mapdata)
## Observations: 52
## Variables: 19
## $ hc-group    <chr> "admin1", "admin1", "admin1", "admin1", "admin1", ...
## $ hc-middle-x <dbl> 0.36, 0.56, 0.51, 0.47, 0.41, 0.43, 0.71, 0.46, 0....
## $ hc-middle-y <dbl> 0.47, 0.52, 0.67, 0.52, 0.38, 0.40, 0.67, 0.38, 0....
## $ hc-key      <chr> "us-ma", "us-wa", "us-ca", "us-or", "us-wi", "us-m...
## $ hc-a2       <chr> "MA", "WA", "CA", "OR", "WI", "ME", "MI", "NV", "N...
## $ labelrank   <chr> "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", ...
## $ hasc        <chr> "US.MA", "US.WA", "US.CA", "US.OR", "US.WI", "US.M...
## $ woe-id      <chr> "2347580", "2347606", "2347563", "2347596", "23476...
## $ state-fips  <chr> "25", "53", "6", "41", "55", "23", "26", "32", "35...
## $ fips        <chr> "US25", "US53", "US06", "US41", "US55", "US23", "U...
## $ postal-code <chr> "MA", "WA", "CA", "OR", "WI", "ME", "MI", "NV", "N...
## $ name        <chr> "Massachusetts", "Washington", "California", "Oreg...
## $ country     <chr> "United States of America", "United States of Amer...
## $ region      <chr> "Northeast", "West", "West", "West", "Midwest", "N...
## $ longitude   <chr> "-71.99930000000001", "-120.361", "-119.591", "-12...
## $ woe-name    <chr> "Massachusetts", "Washington", "California", "Oreg...
## $ latitude    <chr> "42.3739", "47.4865", "36.7496", "43.8333", "44.37...
## $ woe-label   <chr> "Massachusetts, US, United States", "Washington, U...
## $ type        <chr> "State", "State", "State", "State", "State", "Stat...
set.seed(1234)

data_fake <- mapdata %>% 
  select(code = `hc-a2`) %>% 
  mutate(value = 1e5 * abs(rt(nrow(.), df = 10)))

glimpse(data_fake)
## Observations: 52
## Variables: 2
## $ code  <chr> "MA", "WA", "CA", "OR", "WI", "ME", "MI", "NV", "NM", "C...
## $ value <dbl> 119426.518, 255662.317, 3668.575, 122246.930, 79283.064,...
hcmap("countries/us/us-all", data = data_fake, value = "value",
      joinBy = c("hc-a2", "code"), name = "Fake data",
      dataLabels = list(enabled = TRUE, format = '{point.name}'),
      borderColor = "#0EAD82", borderWidth = 0.1,
      tooltip = list(valueDecimals = 2, valuePrefix = "$", valueSuffix = " USD")) 
Created with Highstock 5.0.6MassachusettsMassachusettsWashingtonWashingtonCaliforniaCaliforniaOregonOregonWisconsinWisconsinMaineMaineMichiganMichiganNevadaNevadaNew MexicoNew MexicoColoradoColoradoWyomingWyomingKansasKansasNebraskaNebraskaOklahomaOklahomaMissouriMissouriIllinoisIllinoisIndianaIndianaVermontVermontArkansasArkansasTexasTexasRhode IslandRhode IslandAlabamaAlabamaMississippiMississippiNorth CarolinaNorth CarolinaVirginiaVirginiaIowaIowaMarylandMarylandDelawareDelawarePennsylvaniaPennsylvaniaNew JerseyNew JerseyNew YorkNew YorkIdahoIdahoSouth DakotaSouth DakotaConnecticutConnecticutNew HampshireNew HampshireKentuckyKentuckyOhioOhioTennesseeTennesseeWest VirginiaWest VirginiaDistrict of ColumbiaDistrict of ColumbiaLouisianaLouisianaFloridaFloridaGeorgiaGeorgiaSouth CarolinaSouth CarolinaMinnesotaMinnesotaMontanaMontanaNorth DakotaNorth DakotaArizonaArizonaUtahUtahHawaiiHawaiiAlaskaAlaska0100k200k300kHighcharts.com © Natural EarthCopyright (c) 2015 Highsoft AS, Based on data from Natural Earth