\[mean μ = 10\] \[variance σ^2 = 100/3\] \[Standard deviation σ = sqrt (100/3)\]
\[P(|X-\mu|\geq k\sigma)\leq\frac{1}{k^2}\]
\[ k \sigma=2 \] \[ k= \frac{2}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 2) = \frac{1}{k^{_{2}}} = 8.3333 \approx 1\]
\[ k \sigma=5 \] \[ k= \frac{5}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 5) = \frac{1}{k^{_{2}}} = 1.3333 \approx 1$ \]
\[ k \sigma=9 \] \[ k= \frac{9}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 9) = \frac{1}{k^{_{2}}} = 0.4115 \]
\[ k \sigma=20 \] \[ k= \frac{20}{\sqrt{100/3}} \] \[ P(|X - 10|\geqslant 20) = \frac{1}{k^{_{2}}} = 0.0833$ \]
Test:
u <- 10
o <- sqrt(100/3)
x1 <-c(2, 5, 9, 20)
k <- (x1 )/o
p1 <- round(1/(k^2), 4)
p1
## [1] 8.3333 1.3333 0.4115 0.0833