Function base
1. InfoEn.R
#load sample data
#setwd("~/Desktop/R/samplefile")
#library(readr)
#In <- read_csv("InEn_J.csv", col_names = F) #local download
In <-read.csv("https://raw.githubusercontent.com/andychuangkl/sample_file/master/InEn_J.csv",header = F)
names(In) = c("T1","S1","T2","S2","T3","S3")
#load function
devtools::source_gist("8a66656e57f5a0019dedf5b764f04d99" ,filename ="InfoEn.R" )
#information join entropy
InfoEn(datavector = cbind(In$T1,In$S1),
bin = 20,
scale_size = 0.8,
normal_range1 = c(In$T1,In$T2,In$T3),
normal_range2 = c(In$S1,In$S2,In$S3),
xlab = "tempol_error(ms)",
ylab = "spatial_error(mm)",
Join = 2)

## [1] 5.674515
## <environment: 0x7fc62ea6c028>
#information entropy
InfoEn(datavector = In$T1,
bin = 20,
scale_size = 0.8,
normal_range1 = c(In$T1,In$T2,In$T3),
normal_range2 = c(In$S1,In$S2,In$S3),
Join = 1)

## [1] 3.641596
## <environment: 0x7fc630752c08>
2. Two_variables_test.R
#load sample data
sdata= read.csv("https://raw.githubusercontent.com/andychuangkl/sample_file/master/Two_variables_test.csv",header = T)
#load Two_variables_test function
devtools::source_gist(id = "8825c62d09f702d020f68359cfe3dba5",filename = "Two_variables_test.R")
devtools::source_gist("a17c23e19554049be0d455560014e0c4" ,
filename ="theme_apa.R" )
#select the two variables
variable1 <- sdata[sdata$Fgroup == "creeping" & sdata$phase == 2 & sdata$group == "15",]$slope
variable2 <- sdata[sdata$Fgroup == "creeping" & sdata$phase == 2 & sdata$group == "20",]$slope
#nonparametric wilcoxon test
Two_variables_test(
variable1 = variable1,
variable2 = variable2,
xlab = "",
ylab = "slope",
name1 = "success_15",
name2 = "success_20",
paired = F, #paired or not
normal_distribution = F #parametric or nonparametric
)
##
## Wilcoxon rank sum test
##
## data: a and b
## W = 33, p-value = 0.06527
## alternative hypothesis: true location shift is not equal to 0

## <environment: 0x7fc63384afc8>
#parametric t test
t1 = Two_variables_test(
variable1 = variable1,
variable2 = variable2,
xlab = "",
ylab = "slope",
name1 = "success_15",
name2 = "success_20",
paired = F, #paired or not
normal_distribution = T #parametric or nonparametric
)
## [1] "success_15 ( mean:-0.3, sd:0.73 ) - success_20 ( mean:-1.34, sd:0.8 ): t(11) = 2.42, p = .034, d = 1.34"

devtools::source_gist("09d796e017dfb2e8fcdc324234514feb" ,
filename ="significant_plot.R" )
#significant plot
significant_plot(
gdata = t1$plot,
h = -2.5, #sign" * "height
v1 = 1,
v2 = 2,
v1h = -1.5, #fist variable height
v2h = -2.3) #second height

3. multiple_way_statistic.R
#names("fill","facet","x","N","DV","sd") 3way_plot
#names(c("fill","x","N","DV","sd")) 2way_plot
#need to change the dependent_varialbe name to "d"
#data form should be reguler that likes this sample
#form: c(factors, participant_numer, trial_n, Dv, sd)
#check the factors and particiapnt need to be a "factor" in r
#load samle data
anova_data_sample = read.csv("https://raw.githubusercontent.com/andychuangkl/sample_file/master/anova_data_sample.csv",header = T)[,-c(1)]
names(anova_data_sample)[which(names(anova_data_sample)=="slope")] = "d"
head(anova_data_sample,5)
## Fgroup head_tail participant N d sd
## 1 creeping head 1 7 0.03090655 0.3473885
## 2 creeping head 2 7 -1.81504006 0.4102210
## 3 creeping head 3 7 0.07919867 0.9589423
## 4 creeping head 4 7 -0.63334370 0.9925303
## 5 creeping head 5 7 -0.82213941 0.2450437
#load multiple_way_statistic.R function
devtools::source_gist(id = "f3da90d0ceee72c8126cec418938b01c", filename = "multiple_way_statistic.R")
#shows how to use this function for mixed desgin 2 way ANOVA
g1 = multiple_way_statistic(data = anova_data_sample,
dv = d,
wid = participant,
within = c(head_tail), #depandent variable
between = Fgroup, #indepandent variable
ylabs<-"slope",
xlabs<-"",
fill_color<-c("gray","gray30"),
detailed = TRUE)
## Effect
## 1 (Intercept) F(1, 17) = 5.85, p = .027, petasq = .26 *
## 2 Fgroup F(1, 17) = 0.27, p = .610, petasq = .02
## 3 head_tail F(1, 17) = 8.19, p = .011, petasq = .33 *
## 4 Fgroup:head_tail F(1, 17) = 2.82, p = .111, petasq = .14

4. plot_FFT.R
#load sample data
rm(list = ls())
pistol = read.csv("https://raw.githubusercontent.com/andychuangkl/sample_file/master/plotFFT.csv",header = T)[,-c(1)]
#load multiple_way_statistic.R function
devtools::source_gist(id = "2c8fe35bab19ece40f74c68e1ae672ce", filename = "plotFFT.R")
devtools::source_gist("a17c23e19554049be0d455560014e0c4" ,
filename ="theme_apa.R" )
#create data
p = which(diff(diff(pistol$acc_x.1))>0.1)[1]-4999
pistol = pistol[p:(p+4999),]
ffa_time = pistol$Time
ffa_data = pistol$acc_x.1
plot(ffa_data)

#use plotFFT() function now !!
d = plotFFT(ffa_time, #data time scale
ffa_data, #data
1500, #sampling frequence
plotFreqs = 200, #plot frequence
dominant_frequency_order = 1, #choose number 1 of dominant frequency
PSD = T) #use

Plot Gallery
1. multiple line chart
rollerballdata = read.csv("https://raw.githubusercontent.com/andychuangkl/sample_file/master/rollerballdata.csv",header = T)[,-c(1)]
rollerballdata$participant = as.factor(rollerballdata$participant)
rollerballdata$group = as.factor(rollerballdata$group)
rollerballdata$phase = as.factor(rollerballdata$phase)
ggplot()+
geom_line(data = rollerballdata,
aes(x = day, y = slope ,color = Fgroup, shape = participant))+
facet_grid(Fgroup~group~phase) +
theme_apa()+geom_hline(yintercept = 0)

2. HKB Landscape
x<- seq(-240, 240, length= 201)
a<-1
b<-1
y <- -a*cos(x/180*3.14)-b*cos(2*x/180*3.14)
plot(x,y,main=paste0("b/a=",b/a),xaxt="n")
axis(side=1,at=c(-180,0,180),lwd=3)

x <- seq(-240, 240, length= 51)
y <- seq(0,1,0.02)
f <-function(x,y){ -cos(x/180*3.14)-y*cos(2*x/180*3.14) }
z <- outer(x, y, f)
persp(x, y, z, theta = 160 , phi = 35, expand = 0.5, col = "lightblue",
axes=T, ticktype="detailed",
zlab = c("V"),xlab = c("raltive phase"),ylab = c("b/a"))
