Modified from hybridInflo Biomass.Rmd (April 2017)
Identify reproductive barriers between two sympatric moth-pollinated plant species, Schiedea kaalae and S. hookeri by fitting a generalized linear mixed model (GLMM).
In the experimental design, the following crosstypes were made:
In this analysis the response variable is the biomass of the offspring produced by each cross. Other barriers (hybrid survival, flowering) could be analyzed in a similar framework, with appropriate changes to the underlying distribution.
Fixed effects:
Potential random effects:
ib <- read.table("inflobiomass.csv", header=T, sep="\t",
colClasses=c(collect.date="Date", weigh.date="Date"))
crosses <- read.table("hybrids.csv", header=T, sep="\t", colClasses=c(mompop="factor", dadpop="factor"))
crosscol <- c("green","blue","orange","red")
#treat populations as factors
ib$mompop <- crosses$mompop[match(ib$crossid, crosses$crossid)]
ib$momid <- crosses$momid[match(ib$crossid, crosses$crossid)]
ib$species <- crosses$momsp[match(ib$crossid, crosses$crossid)]
ib$dadpop <- crosses$dadpop[match(ib$crossid, crosses$crossid)]
ib$dadid <- crosses$dadid[match(ib$crossid, crosses$crossid)]
ib$dadsp <- crosses$dadsp[match(ib$crossid, crosses$crossid)]
ib$crosstype <- crosses$crosstype[match(ib$crossid, crosses$crossid)]
ib$cross <- crosses$cross[match(ib$crossid, crosses$crossid)]
#rename crosstype codes
ib$crosstype <- factor(ib$crosstype, levels=c("between", "within", "hybrid"))
#made "between" the first reference level to facilitate comparison between outcrossing populations and hybridizing species
ib$mompop <- sapply(ib$mompop, mapvalues, from = c("794","866","899","879","892","904","3587"), to = c("WK","WK","WK","879WKG","892WKG","904WPG","3587WP"))
ib$dadpop <- sapply(ib$dadpop, mapvalues, from = c("794","866","899","879","892","904","3587"), to = c("WK","WK","WK","879WKG","892WKG","904WPG","3587WP"))
#define interactions
ib <- within(ib, sxc <- interaction(species,crosstype))
ib <- within(ib, sxcxm <- interaction(species,crosstype,mompop,momid))
ib <- within(ib, mompid <- as.factor(paste(mompop,momid,sep=".")))
ib <- within(ib, dadpid <- as.factor(paste(dadpop,dadid,sep=".")))
ib <- within(ib, smompop <- as.factor(paste(species,mompop,sep="")))
ib$collect.date <- round(difftime(ib$collect.date, "2016-03-10"))
#check final structure
str(ib)
'data.frame': 1528 obs. of 28 variables:
$ crossid : int 1 1 1 1 1 1 1 1 1 1 ...
$ plantid : Factor w/ 25 levels "1","10","11",..: 1 15 20 23 24 24 2 2 3 4 ...
$ cross : Factor w/ 4 levels "HH","HK","KH",..: 1 1 1 1 1 1 1 1 1 1 ...
$ block1 : int 12 12 11 12 12 12 12 12 12 12 ...
$ blockAB : Factor w/ 3 levels "","A","B": 1 1 1 1 1 1 1 1 1 1 ...
$ collect.date:Class 'difftime' atomic [1:1528] 341 344 338 345 316 316 335 335 346 323 ...
.. ..- attr(*, "units")= chr "days"
$ regression : Factor w/ 5 levels "","backup R",..: 4 4 4 4 3 5 3 5 4 3 ...
$ flrs : int NA NA NA NA NA 41 NA 34 NA NA ...
$ inflo.e : int 1 4 10 7 31 1 3 1 6 10 ...
$ inflo : int 1 4 10 7 32 NA 4 NA 6 11 ...
$ weigh.date : Date, format: "17-07-14" "17-05-18" ...
$ mass : num 0.053 0.075 1.113 0.44 2.14 ...
$ initials : Factor w/ 4 levels "AK","AK ","SS",..: 3 3 3 3 3 3 3 3 3 3 ...
$ check : Factor w/ 22 levels "","AK 8/15/17",..: 2 2 2 2 2 2 2 2 2 2 ...
$ comments : Factor w/ 66 levels "","11 open fls",..: 1 1 1 1 1 1 21 1 1 1 ...
$ linenum : num 1 2 3 4 5 6 7 8 9 10 ...
$ mompop : Factor w/ 5 levels "3587WP","WK",..: 3 3 3 3 3 3 3 3 3 3 ...
$ momid : Factor w/ 17 levels "1","10","10-1",..: 7 7 7 7 7 7 7 7 7 7 ...
$ species : Factor w/ 2 levels "hook","kaal": 1 1 1 1 1 1 1 1 1 1 ...
$ dadpop : Factor w/ 5 levels "3587WP","WK",..: 3 3 3 3 3 3 3 3 3 3 ...
$ dadid : Factor w/ 23 levels "1","10","10-1",..: 19 19 19 19 19 19 19 19 19 19 ...
$ dadsp : Factor w/ 2 levels "hook","kaal": 1 1 1 1 1 1 1 1 1 1 ...
$ crosstype : Factor w/ 3 levels "between","within",..: 2 2 2 2 2 2 2 2 2 2 ...
$ sxc : Factor w/ 6 levels "hook.between",..: 3 3 3 3 3 3 3 3 3 3 ...
$ sxcxm : Factor w/ 510 levels "hook.between.3587WP.1",..: 195 195 195 195 195 195 195 195 195 195 ...
$ mompid : Factor w/ 21 levels "3587WP.10","3587WP.14",..: 8 8 8 8 8 8 8 8 8 8 ...
$ dadpid : Factor w/ 23 levels "3587WP.10","3587WP.14",..: 9 9 9 9 9 9 9 9 9 9 ...
$ smompop : Factor w/ 5 levels "hook879WKG","hookWK",..: 1 1 1 1 1 1 1 1 1 1 ...
library(ggplot2)
qplot(log10(mass), log10(flrs), col=cross, data=ib, weight=mass) + geom_smooth(method="lm", se=T) + scale_color_manual(values=crosscol) + ggtitle("cross")
qplot(log10(mass), log10(flrs), col=cross, group=paste(mompop,dadpop), data=ib) + geom_smooth(method="lm", se=F) + scale_color_manual(values=crosscol) + ggtitle("mompop*dadpop")
#qplot(log10(mass), log10(flrs), col=cross, data=ib, weight=mass) + geom_quantile(quantiles = 0.9) + scale_color_manual(values=crosscol)
#plot(log10(flrs)~log10(mass), data=ib, type="n")
#text(log10(ib$mass), log10(ib$flrs), 1:length(ib$plantid), col=crosscol[ib$cross])
#library(quantreg,log10(flrs)~log10(mass)*cross, data=ib[-exclude,], weights=mass)
#qr <- rq(log10(flrs)~log10(mass)*cross, data=ib[-exclude,], tau = 0.9)
#summary(qr)
mf <- lm(log10(flrs)~log10(mass)*cross, data=ib, weights=mass)
plot(mf)
mass.flrs <- summary(mf)
mass.flrs
Call:
lm(formula = log10(flrs) ~ log10(mass) * cross, data = ib, weights = mass)
Weighted Residuals:
Min 1Q Median 3Q Max
-0.32549 -0.04318 0.00825 0.05360 0.32532
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.54429 0.07685 33.108 < 2e-16 ***
log10(mass) 0.91156 0.08689 10.491 < 2e-16 ***
crossHK 0.22495 0.07812 2.879 0.004158 **
crossKH 0.25375 0.08232 3.082 0.002169 **
crossKK -0.05870 0.07723 -0.760 0.447550
log10(mass):crossHK 0.24313 0.09610 2.530 0.011715 *
log10(mass):crossKH 0.22703 0.11299 2.009 0.045047 *
log10(mass):crossKK 0.30545 0.09000 3.394 0.000744 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.08916 on 495 degrees of freedom
(1025 observations deleted due to missingness)
Multiple R-squared: 0.9156, Adjusted R-squared: 0.9144
F-statistic: 766.8 on 7 and 495 DF, p-value: < 2.2e-16
slopes <- mass.flrs$coefficients[c(2,6,7,8),"Estimate"]
slopes[c(2,3,4)] <- slopes[c(2,3,4)]+slopes[1]
names(slopes) <- levels(ib$cross)
slopes
HH HK KH KK
0.911560 1.154691 1.138592 1.217012
intercepts <- mass.flrs$coefficients[c(1,3,4,5),"Estimate"]
intercepts[c(2,3,4)] <- intercepts[c(2,3,4)]+intercepts[1]
names(intercepts) <- levels(ib$cross)
intercepts
HH HK KH KK
2.544293 2.769240 2.798040 2.485588
#with(ib, plot(mass,flrs, col=crosscol[cross], xlim=c(0,0.5), ylim=c(0,240)))
#for(i in 1:4) { curve(10^intercepts[i]*x^slopes[i], from=0, to=6, col=crosscol[i], add=T) }
#with(ib, plot(log10(mass),log10(flrs), col=crosscol[cross]))
#for(i in 1:4) { curve(intercepts[i]+x*slopes[i], from=-2, to=1, col=crosscol[i], add=T) }
#Add together envelopes for regression and the rest
ibold <- ib
ib <- aggregate(mass ~ crossid+plantid+cross+mompop+momid+species+dadpop+dadid+dadsp+crosstype+sxc+sxcxm+mompid+dadpid+smompop, ib, sum, na.action=na.pass)
ib$collect.date <- aggregate(collect.date ~ crossid+plantid+cross+mompop+momid+species+dadpop+dadid+dadsp+crosstype+sxc+sxcxm+mompid+dadpid+smompop, ibold, max, na.action=na.pass)$collect.date
library(ggplot2)
ggplot(ib, aes(x=log10(mass), fill=cross, color=cross)) + geom_density(alpha=0.1) + scale_fill_manual(values=crosscol) +scale_color_manual(values=crosscol)
The sample sizes are unbalanced at all levels, including maternal population:
reptab <- with(ib, table(smompop,crosstype))
mosaic(reptab, pop=F)
labeling_cells(text = reptab, margin = 0)(reptab)
Replication is low for some within-population crosses. The replication is even lower for each maternal plant, so we need to be wary of estimates when subsetting at this level:
with(ib, kable(table(mompid,crosstype)))
| between | within | hybrid | |
|---|---|---|---|
| 3587WP.10 | 0 | 1 | 0 |
| 3587WP.14 | 15 | 0 | 6 |
| 3587WP.15 | 4 | 0 | 0 |
| 3587WP.7 | 19 | 14 | 8 |
| 3587WP.A | 5 | 0 | 0 |
| 3587WP.C | 12 | 1 | 0 |
| 879WKG.10-1 | 48 | 1 | 35 |
| 879WKG.2-2 | 31 | 35 | 89 |
| 879WKG.G-2 | 15 | 5 | 26 |
| 879WKG.H-2 | 0 | 0 | 7 |
| 879WKG.N-5 | 8 | 6 | 22 |
| 892WKG.1 | 23 | 0 | 6 |
| 892WKG.3 | 1 | 0 | 3 |
| 892WKG.4 | 1 | 0 | 1 |
| 892WKG.5 | 8 | 5 | 6 |
| 904WPG.2 | 13 | 9 | 7 |
| 904WPG.3 | 16 | 27 | 3 |
| 904WPG.5 | 77 | 32 | 17 |
| WK.2 | 137 | 18 | 91 |
| WK.2E- 1 | 0 | 0 | 19 |
| WK.4 | 55 | 6 | 25 |
To identify the best-fitting distribution, we make quantile-quantile plots of the raw data against various distributions. The more points within the confidence interval envelopes, the better the fit. Later, we present quantile-quantile plots of the model residuals to assess model fit.
#QQ plots against various distributions
set.seed(1)
par(mfrow=c(1,3))
normal <- fitdistr(log10(ib$mass+1), "normal")
qqp(log10(ib$mass+1), "norm", main="Normal")
lognormal <- fitdistr(ib$mass+1, "lognormal")
qqp(ib$mass+1, "lnorm", main="Log Normal")
#pois <- fitdistr(ib$mass+1, "Poisson")
#qqp(ib$mass, "pois", pois$estimate, main="Poisson")
#nbinom <- fitdistr(ib$mass+1, "Negative Binomial")
#qqp(ib$mass+1, "nbinom", size = nbinom$estimate[[1]], mu=nbinom$estimate[[2]], main="Negative Binomial")
gamma <- fitdistr(ib$mass+1, "gamma")
qqp(ib$mass+1, "gamma", shape = gamma$estimate[[1]], rate = gamma$estimate[[2]], main="Gamma")
ggplot(ib, aes(x = mass, fill=species)) +
geom_histogram(data=subset(ib,species == "hook"), aes(y=-..density..),binwidth=1)+
geom_histogram(data=subset(ib,species == "kaal"), aes(y= ..density..),binwidth=1)+
coord_flip() + facet_grid(~crosstype) + labs(y="Histogram", x="Inflo Biomass")
ggplot(aes(y=mass, x=mompid, color=crosstype), data=ib) + geom_count(alpha=0.8) + coord_flip() + labs(x="Maternal plant", y="Mass")
Our mixed model uses one parameter to capture random effect variance, which is assumed to be homogeneous. Plotting on a log scale should uncouple variances from means to assess this visually. Subsets are species * crosstype * maternal plant.
Subset variances are not homogeneous:
ggplot(aes(y=log10(mass+1), x=sxcxm, color=crosstype), data=ib) + geom_boxplot() + coord_flip() + labs(y="ln(Inflo Biomass + 1)",x="Subsets")
Various distributions make different assumptions about the mean-variance (µ-Var) ratio.
grpVars <- with(ib, tapply(mass, list(sxcxm), var))
grpMeans <- with(ib, tapply(mass, list(sxcxm), mean))
grpCounts <- with(ib, tapply(mass, list(sxcxm), length))
#set weight=grpCounts to weight loess by sample sizes
ggplot(na.omit(data.frame(grpMeans,grpVars,grpCounts)),
aes(x=grpMeans,y=grpVars, weight=1))+geom_point(aes(size=grpCounts))+
guides(colour=guide_legend(title="Fit"),size=guide_legend(title="Sample size")) + labs(x="Subset Mean", y="Subset Variance") + labs(subtitle="Subset: species*crosstype*mompid")
Effects and interactions in these plots are simply given by the mean, which may be unduly influenced by high values.
intplot <- ggplot(ib,aes(x=crosstype,y=mass))+
geom_count(aes(size = ..prop.., group=sxc),alpha=0.5)+
stat_summary(aes(x=as.numeric(crosstype)),fun.y=mean,geom="line")+ facet_grid(~species)
intplot + aes(group=species, color=species)
intplot + aes(group=mompop, color=mompop)
intplot + aes(group=mompid, color=mompop)
intplot + aes(group=dadpop, color=dadpop)
Run many generalized linear models on subsets of the data defined by crosstype | mompid to see if effects estimates are consistent within maternal plants.
Most maternal plant subsets agree, but some are problematic outliers. These plants can be picked out visually from the random effects interaction plot above, the estimated parameters of each subset model, and the QQ plot of the estimated parameters:
#had to get rid of species or mompid since mompid is nested inside species. dadpop also works
glm.lis <- lmList(log10(mass)~crosstype|mompid,data=ib, family="gaussian")
plot.lmList(glm.lis,scale=list(x=list(relation="free")))
Loading required package: reshape
Attaching package: 'reshape'
The following objects are masked from 'package:plyr':
rename, round_any
The following object is masked from 'package:Matrix':
expand
Using grp as id variables
qqmath.lmList(glm.lis)#
Using as id variables
We constructed the following models with the package glmmADMB. They all have the same fixed effects, species x crosstype, and response variable, log10(mass)
| Distribution, Random Effects: | None | Maternal plant | Maternal population |
|---|---|---|---|
| normal (norm) | X | X | X |
#Normal (Gaussian) distribution, identity link
ib <- ib[!is.na(ib$collect.date),]
sc.norm.l <- lm(log10(mass)~species*crosstype+collect.date, data=ib)
sc.mix.mompid.l <- lmer(log10(mass)~species*crosstype+collect.date + (1|mompid), data=ib)
sc.nd.mix.momdadpid.l <- lmer(log10(mass)~species*crosstype + (1|mompid)+ (1|dadpid), data=ib)
sc.mix.mompop.l <- lmer(log10(mass)~species*crosstype+collect.date + (1|mompop), data=ib)
sc.mix.momdadpid.l <- lmer(log10(mass)~species*crosstype+collect.date + (1|mompid) + (1|dadpid), data=ib)
sc.mix.momdadpop.l <- lmer(log10(mass)~species*crosstype+collect.date + (1|mompop) + (1|dadpop), data=ib)
We will use the Aikake Information Criterion to pick the model the best fits the data, penalized by the number of parameters. Differences of 2 units are significant.
sc.names <- c("sc.norm.l","sc.mix.mompid.l","sc.mix.mompop.l","sc.mix.momdadpid.l","sc.mix.momdadpop.l")
sc.list <- sapply(sc.names, get, USE.NAMES=T)
sc.AIC <- ICtab(sc.list,mnames=sc.names,type="AIC", base=T, delta=F) # for AICc, nobs=nobs(sc.list[[1]])
class(sc.AIC)<-"data.frame"
all.names <- c(sc.names)
all.list <- sapply(all.names, get, USE.NAMES=T)
all.AIC <- dfun(rbind(sc.AIC))
all.AIC <- all.AIC[order(all.AIC$dAIC),]
kable(all.AIC, format.arg=list(digits=3))
| dAIC | df | |
|---|---|---|
| sc.norm.l | 0.0 | 8 |
| sc.mix.mompid.l | 36.0 | 9 |
| sc.mix.momdadpid.l | 36.8 | 10 |
| sc.mix.momdadpop.l | 39.8 | 10 |
| sc.mix.mompop.l | 41.0 | 9 |
The best-fiting model is a mixed model with the following components:
Looking at the normal, fixed effects model, we see that the residuals are not normal:
shapiro.test(sc.norm.l$residuals)#raw residuals!
Shapiro-Wilk normality test
data: sc.norm.l$residuals
W = 0.93245, p-value < 2.2e-16
The coefficients estimated for each model agree qualitatively.
sc.log.names <- sc.names
sc.log <- sapply(sc.log.names, get, USE.NAMES=T)
coefplot2(sc.log, legend.x="topright",legend=T,legend.args=list(cex=0.8, xpd=T, inset=c(-0.1,0)), col.pts=sample(gg_color_hue(length(sc.log.names))), spacing=0.05, lwd.2=2, lwd.1=4, intercept=F)
We chose the model with nearly the best (lowest) AIC, to carry out inference tests and parameter estimation.
mod <- sc.mix.momdadpid.l
print(mod)
Linear mixed model fit by REML ['lmerMod']
Formula:
log10(mass) ~ species * crosstype + collect.date + (1 | mompid) +
(1 | dadpid)
Data: ib
REML criterion at convergence: 1400.953
Random effects:
Groups Name Std.Dev.
dadpid (Intercept) 0.04366
mompid (Intercept) 0.07815
Residual 0.47644
Number of obs: 997, groups: dadpid, 23; mompid, 21
Fixed Effects:
(Intercept) specieskaal
0.646671 0.562378
crosstypewithin crosstypehybrid
-0.053021 0.410157
collect.date specieskaal:crosstypewithin
-0.002629 0.001903
specieskaal:crosstypehybrid
-0.711009
Using a likelihood ratio test, with a null hypothesis of zero variance, the random effect (maternal plant) is significant for both model parts:
anova(sc.norm.l, sc.mix.mompid.l) #double this p-value. or simulate null by permuting data.
By dropping it from the model and performing a likelihood-ratio test, we see that the species x crosstype interaction is significant for the count model but not the binary model:
sxc.chisq <- drop1(mod, test="Chisq") #load from file
dfun(sxc.chisq)
Single term deletions
Model:
log10(mass) ~ species * crosstype + collect.date + (1 | mompid) +
(1 | dadpid)
Df dAIC LRT Pr(Chi)
<none> 0.000
collect.date 1 15.930 17.930 2.291e-05 ***
species:crosstype 2 24.795 28.795 5.588e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The model estimated the following parameters, with individual parameter significance determined by the Wald z-test, and fixed effect significance determined by analysis of deviance Wald test.
summary(mod)
Linear mixed model fit by REML ['lmerMod']
Formula:
log10(mass) ~ species * crosstype + collect.date + (1 | mompid) +
(1 | dadpid)
Data: ib
REML criterion at convergence: 1401
Scaled residuals:
Min 1Q Median 3Q Max
-4.4254 -0.5161 0.2024 0.7027 1.7542
Random effects:
Groups Name Variance Std.Dev.
dadpid (Intercept) 0.001906 0.04366
mompid (Intercept) 0.006107 0.07815
Residual 0.226996 0.47644
Number of obs: 997, groups: dadpid, 23; mompid, 21
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.6466713 0.2014437 3.210
specieskaal 0.5623783 0.0673054 8.356
crosstypewithin -0.0530208 0.0661296 -0.802
crosstypehybrid 0.4101567 0.0473467 8.663
collect.date -0.0026286 0.0006194 -4.244
specieskaal:crosstypewithin 0.0019032 0.0938162 0.020
specieskaal:crosstypehybrid -0.7110086 0.0956978 -7.430
Correlation of Fixed Effects:
(Intr) spcskl crsstypw crsstyph cllct. spcskl:crsstypw
specieskaal -0.075
crsstypwthn -0.072 0.219
crsstyphybr -0.014 0.475 0.323
collect.dat -0.972 -0.094 -0.002 -0.124
spcskl:crsstypw 0.037 -0.351 -0.708 -0.240 0.016
spcskl:crsstyph 0.018 -0.502 -0.156 -0.591 0.062 0.254
Anova(mod, type=3)
Analysis of Deviance Table (Type III Wald chisquare tests)
Response: log10(mass)
Chisq Df Pr(>Chisq)
(Intercept) 10.305 1 0.001327 **
species 69.816 1 < 2.2e-16 ***
crosstype 89.502 2 < 2.2e-16 ***
collect.date 18.011 1 2.196e-05 ***
species:crosstype 59.096 2 1.470e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
These are box and QQ (to check normality) plots of the estimated random effect of each maternal plant.
predre <- setNames(data.frame(RE=ranef(mod)$mompid,SD=ranef(mod, sd=T)$`1`),c("RE","SD"))
ggplot(predre, aes(x = rownames(predre),y=RE)) +
geom_point(size = 2) + coord_flip()+
geom_errorbar(aes(ymin = RE-SD, ymax = RE+SD)) + labs(x="Maternal plants", y="Predicted random effects")
#Count
reStack <- ldply(ranef(mod))
print( qqmath( ~`(Intercept)`|.id, data=reStack, scales=list(relation="free"),
prepanel = prepanel.qqmathline,
panel = function(x, ...) {
panel.qqmathline(x, ...)
panel.qqmath(x, ...)
},
layout=c(1,1)))
The least square means procedure can generate predictor estimates of each type, and give their significance groupings with a post-hoc Tukey test. S. hookeri-produced hybrids produce less Inflo Biomass than either crosses between or within S. hookeri populations. The other differences are not significant, but remember that the fixed effect of hybrid (vs. between) was significant (model summary).
#Count
rg <- ref.grid(sc.mix.momdadpid.l)
Loading required namespace: lmerTest
#summary(rg)
sxc.lsm <- lsmeans(rg, ~ crosstype*species)
plot(sxc.lsm)
options(digits=4)
cld.mod <- cld(sxc.lsm, Letters=letters) #tukey letterings
cld.mod$response <- 10 ^ cld.mod$lsmean
cld.mod$uSE <- 10 ^ (cld.mod$lsmean+cld.mod$SE)
cld.mod$lSE <- 10 ^ (cld.mod$lsmean-cld.mod$SE)
cld.mod[rev(order(cld.mod$species, cld.mod$crosstype)),]
crosstype species lsmean SE df lower.CL upper.CL .group
hybrid kaal 0.06001 0.07310 99.85 -0.08501 0.20504 b
within kaal 0.30975 0.06488 46.92 0.17922 0.44028 bc
between kaal 0.36086 0.04734 25.59 0.26347 0.45826 c
hybrid hook 0.20864 0.04362 12.64 0.11413 0.30315 bc
within hook -0.25453 0.06847 60.03 -0.39149 -0.11758 a
between hook -0.20151 0.04763 13.75 -0.30385 -0.09918 a
response uSE lSE
1.1482 1.3587 0.9703
2.0405 2.3693 1.7574
2.2954 2.5598 2.0584
1.6167 1.7876 1.4623
0.5565 0.6515 0.4753
0.6288 0.7016 0.5634
Degrees-of-freedom method: satterthwaite
Results are given on the log10 (not the response) scale.
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 6 estimates
significance level used: alpha = 0.05
H.wb <- with(cld.mod[cld.mod$species=="hook",], response[crosstype=="within"]/response[crosstype=="between"] - 1)
K.wb <- with(cld.mod[cld.mod$species=="kaal",], response[crosstype=="within"]/response[crosstype=="between"] - 1)
K.H <- with(cld.mod[cld.mod$crosstype=="between",], response[species=="kaal"]/response[species=="hook"] - 1)
maxsp <- ifelse(K.H>0, "kaal","hook")
minsp <- ifelse(K.H<0, "kaal","hook")
maxresp <- with(cld.mod, response[species==maxsp & crosstype=="between"])
minresp <- with(cld.mod, response[species==minsp & crosstype=="between"])
HK.resp <- with(cld.mod, response[species=="hook" & crosstype=="hybrid"])
KH.resp <- with(cld.mod, response[species=="kaal" & crosstype=="hybrid"])
HK.int <- with(cld.mod, ifelse(HK.resp > minresp & HK.resp < maxresp, (HK.resp-minresp)/(maxresp-minresp),
ifelse(HK.resp < minresp, HK.resp/minresp-1, HK.resp/maxresp-1)))
KH.int <- with(cld.mod, ifelse(KH.resp > minresp & KH.resp < maxresp, (KH.resp-minresp)/(maxresp-minresp),
ifelse(KH.resp < minresp, KH.resp/minresp-1, KH.resp/maxresp-1)))
intermed <- (minresp + maxresp) / 2
with(ib, wilcox.test(ib[species=="kaal" & crosstype=="hybrid","mass"], mu=intermed))
Wilcoxon signed rank test with continuity correction
data: ib[species == "kaal" & crosstype == "hybrid", "mass"]
V = 1000, p-value = 0.09
alternative hypothesis: true location is not equal to 1.462
with(ib, wilcox.test(ib[species=="hook" & crosstype=="hybrid","mass"], mu=intermed))
Wilcoxon signed rank test with continuity correction
data: ib[species == "hook" & crosstype == "hybrid", "mass"]
V = 36000, p-value = 6e-16
alternative hypothesis: true location is not equal to 1.462
round(c(H.wb,K.wb,K.H,HK.int,KH.int),2)
[1] -0.11 -0.11 2.65 0.59 0.31
ggplot(as.data.frame(cld.mod), aes(y=response, x=relevel(crosstype, "within"), fill=species)) +
geom_col(position=position_dodge2()) +
geom_linerange(aes(ymin=lSE, ymax=uSE), position=position_dodge(0.9)) +
labs(x="", y="Inflorescence biomass (g)",fill="Maternal species") +
scale_fill_manual(labels = c("S. hookeri ", "S. kaalae "), values=brewer.pal(name="Set1", n=3)[c(3,2)]) +
scale_x_discrete(labels = c("Intrapopulation", "Interpopulation", "Hybrid")) +
geom_text(aes(label=.group), position=position_dodge(0.9), hjust=0, vjust=-1) +
scale_y_continuous(expand = expand_scale(add=c(0,0)), breaks = scales::pretty_breaks(n = 5)) +
theme_classic() + theme(legend.text=element_text(face="italic", size=rel(1)), legend.position="bottom", axis.text = element_text(colour="black", size=rel(1)), text=element_text(size=14), axis.ticks.x = element_blank()) + geom_segment(aes(x=2.5, y=intermed, xend=3.5, yend=intermed))