Q

To solve this we need to know that…\(E[X_i] = 1/\lambda_i\) and \(E[minX_i]=1/\lambda\)

\(1/\lambda_i = 1000\)

\(\lambda_i = 1/1000\)

\(\lambda = \lambda_1+\lambda_2...+\lambda_{100}\)

\(\lambda=1/10\)

\(E[minX_i]=10\)

Basic PDF \(\lambda e^{-\lambda x}\)

To complete this problem using what we’ve learned in chapter 7; we can use the method of convolution.

\(fZ(z) =\int_{-\infty}^{\infty}fX_1(z+x_2)fX_2(x_2)dx_2\)

Insert exp func

\(fZ(z) =\int_0^{z}\lambda e^{-\lambda (z+x_2)}\lambda e^{-\lambda x_2}dx_2\)

\(fZ(z) =\int_0^{z}\lambda^2e^{-\lambda z}dx_2\)

\(fZ(z) =\lambda/2e^{-\lambda |z|}\)

This is all we’ll need.

Lets turn it into a function.

CE = function(e){
  ub = (100/3)/e^2
  if(ub>=1){print(1)}
  else{print(ub)}
}
CE(2)
## [1] 1
CE(5)
## [1] 1
CE(9)
## [1] 0.4115226
CE(20)
## [1] 0.08333333