Qiushun Liang 3584868
Last updated: 19 October, 2017
You must publish your presentation to RPubs (see here) and add this link to your presentation here.
Rpubs link comes here: www………
This online version of the presentation will be used for marking. Failure to add your link will delay your feedback and risk late penalties.
people would suffer from different kind of physical and emotional effects after the experiance of crime.
Ensure each slide fits on one screen. The reader should not have to scroll down.
plot(Sepal.Length ~ Petal.Length, data = iris)knitr:kable function to print nice HTML tables. Here is an example R code:iris %>% group_by(Species) %>% summarise(Min = min(Petal.Length,na.rm = TRUE),
Q1 = quantile(Petal.Length,probs = .25,na.rm = TRUE),
Median = median(Petal.Length, na.rm = TRUE),
Q3 = quantile(Petal.Length,probs = .75,na.rm = TRUE),
Max = max(Petal.Length,na.rm = TRUE),
Mean = mean(Petal.Length, na.rm = TRUE),
SD = sd(Petal.Length, na.rm = TRUE),
n = n(),
Missing = sum(is.na(Petal.Length))) -> table1
knitr::kable(table1)| Species | Min | Q1 | Median | Q3 | Max | Mean | SD | n | Missing |
|---|---|---|---|---|---|---|---|---|---|
| setosa | 1.0 | 1.4 | 1.50 | 1.575 | 1.9 | 1.462 | 0.1736640 | 50 | 0 |
| versicolor | 3.0 | 4.0 | 4.35 | 4.600 | 5.1 | 4.260 | 0.4699110 | 50 | 0 |
| virginica | 4.5 | 5.1 | 5.55 | 5.875 | 6.9 | 5.552 | 0.5518947 | 50 | 0 |
model1 <- lm(Sepal.Length ~ Petal.Length, data = iris)
model1 %>% summary()##
## Call:
## lm(formula = Sepal.Length ~ Petal.Length, data = iris)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.24675 -0.29657 -0.01515 0.27676 1.00269
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.30660 0.07839 54.94 <2e-16 ***
## Petal.Length 0.40892 0.01889 21.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4071 on 148 degrees of freedom
## Multiple R-squared: 0.76, Adjusted R-squared: 0.7583
## F-statistic: 468.6 on 1 and 148 DF, p-value: < 2.2e-16
\[H_0: \mu_1 = \mu_2 \]
\[H_A: \mu_1 \ne \mu_2\]
\[S = \sum^n_{i = 1}d^2_i\]