Sample Size N = 613 (473, 44% had missing data and were listwise deleted) Note: I tried a sample N = 995 with estimating missing data via maximum liklihood however, this led to worse entropy by aprox 10%, but similar models.

Model Fit Summary

aBIC LRT.p LMR.p BLRT.p Entropy
LCA_2 7086.49 0 0 0 0.66
LCA_3 6911.565 0 1e-04 0 0.773
LCA_4 6855.47 0.0302 0.0331 0 0.761
LCA_5 6828.879 0.2667 0.2768 0 0.742
  • LMR.p = p value for VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST
  • LRT.p = p value for LO-MENDELL-RUBIN ADJUSTED LRT TEST
  • BLRT.p = p value for BOOTSTRAPPED LIKELIHOOD RATIO TEST
  • aBIC = Sample-Size Adjusted BIC

Class Counts

class count proportion
LCA 2
1 338 0.55139
2 275 0.44861
LCA 3
1 316 0.51550
2 265 0.43230
3 32 0.05220
LCA 4
1 30 0.04894
2 216 0.35237
3 281 0.45840
4 86 0.14029
LCA 5
1 192 0.31321
2 29 0.04731
3 277 0.45188
4 57 0.09299
5 58 0.09462

Plots of estimates of Activity Engagement and Pain Willingness per class membership

  • AE = Activity Engagement
  • PW = Pain Willingness
  • VIs = Values Inventory Success Score (higher score = more success)
  • VIi = Values Inventory Importance Score (higher score = more importance)