install.packages("MKmisc")
Installing package into ‘/home/sergiouribe/R/x86_64-pc-linux-gnu-library/3.4’
(as ‘lib’ is unspecified)
probando la URL 'https://cran.rstudio.com/src/contrib/MKmisc_0.993.tar.gz'
Content type 'application/x-gzip' length 42863 bytes (41 KB)
==================================================
downloaded 41 KB
* installing *source* package ‘MKmisc’ ...
** package ‘MKmisc’ successfully unpacked and MD5 sums checked
** R
** inst
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
* DONE (MKmisc)
The downloaded source packages are in
‘/tmp/Rtmp8urSj7/downloaded_packages’
power.diagnostic.test(sens = 0.95,
sig.level = 0.05,
delta = 0.1,
power = 0.8)
Diagnostic test exact power calculation
sens = 0.95
n = 68
n1 = 68
delta = 0.1
sig.level = 0.05
power = 0.8
prev = NULL
NOTE: n is number of cases, n1 is number of controls
power.diagnostic.test(spec = 0.95,
delta = 0.1,
power = 0.8)
Diagnostic test exact power calculation
sens = NULL
n = 68
n1 = 68
delta = 0.1
sig.level = 0.05
power = 0.8
prev = NULL
NOTE: n is number of controls, n1 is number of cases
Adding alpha = 5%
power.diagnostic.test(spec = 0.95,
delta = 0.1,
sig.level = 0.5,
power = 0.8)
Diagnostic test exact power calculation
sens = NULL
n = 18
n1 = 18
delta = 0.1
sig.level = 0.5
power = 0.8
prev = NULL
NOTE: n is number of controls, n1 is number of cases
power.diagnostic.test(spec = 0.95,
delta = 0.1,
prev = 0.2,
sig.level = 0.5,
power = 0.8)
Diagnostic test exact power calculation
sens = NULL
n = 18
n1 = 4.5
delta = 0.1
sig.level = 0.5
power = 0.8
prev = 0.2
NOTE: n is number of controls, n1 is number of cases
power.diagnostic.test(spec = 0.95,
delta = 0.1,
NMAX = 20,
sig.level = 0.5,
power = 0.8)
Diagnostic test exact power calculation
sens = NULL
n = 18
n1 = 18
delta = 0.1
sig.level = 0.5
power = 0.8
prev = NULL
NOTE: n is number of controls, n1 is number of cases
library(pROC)
Type 'citation("pROC")' for a citation.
Attaching package: ‘pROC’
The following objects are masked from ‘package:stats’:
cov, smooth, var
print(rocobj) # also smooth print(smooth(rocobj))
Call:
roc.default(response = aSAH$outcome, predictor = aSAH$s100b)
Data: aSAH$s100b in 72 controls (aSAH$outcome Good) < 41 cases (aSAH$outcome Poor).
Area under the curve: 0.7314
Plot
power.roc.test(rocobj)
One ROC curve power calculation
ncases = 41
ncontrols = 72
auc = 0.7313686
sig.level = 0.05
power = 0.9904833
power.roc.test(ncases = 41,
ncontrols = 72,
auc = 0.73,
sig.level = 0.05)
One ROC curve power calculation
ncases = 41
ncontrols = 72
auc = 0.73
sig.level = 0.05
power = 0.9897453
power.roc.test(ncases = 41,
ncontrols = 72,
auc = 0.73)
One ROC curve power calculation
ncases = 41
ncontrols = 72
auc = 0.73
sig.level = 0.05
power = 0.9897453
power.roc.test(auc = rocobj$auc,
sig.level = 0.05,
power = 0.95,
kappa=1.7)
One ROC curve power calculation
ncases = 29.29764
ncontrols = 49.806
auc = 0.7313686
sig.level = 0.05
power = 0.95
power.roc.test(auc = 0.73,
sig.level = 0.05,
power = 0.95,
kappa=1.7)
One ROC curve power calculation
ncases = 29.6702
ncontrols = 50.43933
auc = 0.73
sig.level = 0.05
power = 0.95
power.roc.test(ncases = 41,
ncontrols = 72,
auc = 0.73,
power = 0.95,
sig.level=NULL)
One ROC curve power calculation
ncases = 41
ncontrols = 72
auc = 0.73
sig.level = 0.009238584
power = 0.95
power.roc.test(ncases = 41,
ncontrols = 72,
sig.level = 0.05,
power = 0.95)
One ROC curve power calculation
ncases = 41
ncontrols = 72
auc = 0.6961054
sig.level = 0.05
power = 0.95
A. Flahault, M. Cadilhac, and G. Thomas (2005). Sample size calculation should be performed for design accuracy in diagnostic test studies. Journal of Clinical Epidemiology, 58(8):859-862.
H. Chu and S.R. Cole (2007). Sample size calculation using exact methods in diagnostic test studies. Journal of Clinical Epidemiology, 60(11):1201-1202.
M.R. Chernick amd C.Y. Liu (2002). The saw-toothed behavior of power versus sample size and software solutions: single binomial proportion using exact methods. Am Stat, 56:149-155.
Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-2105-12-77.