Y=c(78.5,74.3,104.3,87.6,95.9,109.2,102.7)
X1=c(7,1,11,11,7,11,3)
X2=c(2.6,2.9,5.6,3.1,5.2,5.5,7.1)
X0=c(rep(1,7))
#a
X=cbind(X0,X1,X2)
X
## X0 X1 X2
## [1,] 1 7 2.6
## [2,] 1 1 2.9
## [3,] 1 11 5.6
## [4,] 1 11 3.1
## [5,] 1 7 5.2
## [6,] 1 11 5.5
## [7,] 1 3 7.1
#b
t(X)%*%X
## X0 X1 X2
## X0 7 51 32.00
## X1 51 471 235.00
## X2 32 235 163.84
t(X)%*%Y
## [,1]
## X0 652.50
## X1 4915.30
## X2 3103.66
#c
solve(t(X)%*%X)
## X0 X1 X2
## X0 1.79959717 -0.06854721 -0.25316476
## X1 -0.06854721 0.01007738 -0.00106613
## X2 -0.25316476 -0.00106613 0.05707894
beta.hat<-solve(t(X)%*%X)%*%t(X)%*%Y
model<-lm(Y~X1+X2)
model$coefficients
## (Intercept) X1 X2
## 51.569698 1.497410 6.723256
#Y=51.569698+1.497410*X1+6.723256*X2
#當X1每增加1時,Y會增加1.497410
#當X2每增加1時,Y會增加6.723256
#d
Y.hat<-X%*%beta.hat
e=Y-Y.hat
Y.hat
## [,1]
## [1,] 79.53204
## [2,] 72.56455
## [3,] 105.69144
## [4,] 88.88331
## [5,] 97.01250
## [6,] 105.01912
## [7,] 103.79704
e
## [,1]
## [1,] -1.032036
## [2,] 1.735450
## [3,] -1.391445
## [4,] -1.283305
## [5,] -1.112501
## [6,] 4.180881
## [7,] -1.097045
#e
MSE=2.626
P=X%*%solve(t(X)%*%X)%*%t(X)
var.beta.hat=solve(t(X)%*%X)*MSE^2
var.y.hat=P*MSE^2
var.e=(diag(1,7)-P)*MSE^2
#第二題
library(alr3)
## Loading required package: car
x=c(0,0,0,4,4,4,6,6,6,6,6,8,8,8,8,12,12)
y=c(121,130,100,128,124,132,141,145,150,148,151,152,146,149,133,125,121)
df=data.frame(x,y)
kk=lm(y~x)
pureErrorAnova(kk)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 441.16 441.16 6.7012 0.023716 *
## Residuals 15 2875.78 191.72
## Lack of fit 3 2085.78 695.26 10.5609 0.001102 **
## Pure Error 12 790.00 65.83
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1