Listing 8.1 - Simple linear regression

Listing 8.1

fit <- lm(weight ~ height, data=women)
summary(fit)
## 
## Call:
## lm(formula = weight ~ height, data = women)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7333 -1.1333 -0.3833  0.7417  3.1167 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -87.51667    5.93694  -14.74 1.71e-09 ***
## height        3.45000    0.09114   37.85 1.09e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.525 on 13 degrees of freedom
## Multiple R-squared:  0.991,  Adjusted R-squared:  0.9903 
## F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14
women$weight
##  [1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 112.5833 116.0333 119.4833 122.9333 126.3833 129.8333 133.2833 136.7333 
##        9       10       11       12       13       14       15 
## 140.1833 143.6333 147.0833 150.5333 153.9833 157.4333 160.8833
residuals(fit)
##           1           2           3           4           5           6 
##  2.41666667  0.96666667  0.51666667  0.06666667 -0.38333333 -0.83333333 
##           7           8           9          10          11          12 
## -1.28333333 -1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.53333333 
##          13          14          15 
##  0.01666667  1.56666667  3.11666667
plot(women$height,women$weight,
     main="Women Age 30-39", 
     xlab="Height (in inches)", 
     ylab="Weight (in pounds)")
# add the line of best fit
abline(fit)

Listing 8.2 -

Listing 8.2

# Insert code for Listing 8.2 here