library("epiR")
## Loading required package: survival
## Package epiR 0.9-82 is loaded
## Type help(epi.about) for summary information
## 
library("FRESA.CAD")
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, round.POSIXt, trunc.POSIXt, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
library(network)
## network: Classes for Relational Data
## Version 1.13.0 created on 2015-08-31.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##                     Mark S. Handcock, University of California -- Los Angeles
##                     David R. Hunter, Penn State University
##                     Martina Morris, University of Washington
##                     Skye Bender-deMoll, University of Washington
##  For citation information, type citation("network").
##  Type help("network-package") to get started.
## 
## Attaching package: 'network'
## The following object is masked from 'package:Hmisc':
## 
##     is.discrete
library(GGally)
library("e1071")
## Warning: package 'e1071' was built under R version 3.4.2
## 
## Attaching package: 'e1071'
## The following object is masked from 'package:Hmisc':
## 
##     impute
madelonTrain <- read.delim("./MADELON/MADELON/madelon.txt")
madelonTrain$Label <-  1*(madelonTrain$Label>0)
madeloncontrol <- subset(madelonTrain,Label==0)
vartoadjust <- colnames(madelonTrain)
vartoadjust <- cbind(vartoadjust[-1],vartoadjust[-1])
madelon.norm <- rankInverseNormalDataFrame(vartoadjust, madelonTrain,madeloncontrol)
## Min Strata: 1 Max Strata: 1 
##  Variable:  V1 Min:  462  Max:  501 
##  Variable:  V2 Min:  386  Max:  584 
##  Variable:  V3 Min:  370  Max:  632 
##  Variable:  V4 Min:  456  Max:  519 
##  Variable:  V5 Min:  371  Max:  647 
##  Variable:  V6 Min:  459  Max:  505 
##  Variable:  V7 Min:  334  Max:  611 
##  Variable:  V8 Min:  471  Max:  481 
##  Variable:  V9 Min:  440  Max:  536 
##  Variable:  V10 Min:  455  Max:  502 
##  Variable:  V11 Min:  354  Max:  593 
##  Variable:  V12 Min:  389  Max:  585 
##  Variable:  V13 Min:  347  Max:  593 
##  Variable:  V14 Min:  359  Max:  609 
##  Variable:  V15 Min:  444  Max:  523 
##  Variable:  V16 Min:  410  Max:  551 
##  Variable:  V17 Min:  433  Max:  523 
##  Variable:  V18 Min:  377  Max:  592 
##  Variable:  V19 Min:  419  Max:  566 
##  Variable:  V20 Min:  445  Max:  513 
##  Variable:  V21 Min:  426  Max:  526 
##  Variable:  V22 Min:  428  Max:  571 
##  Variable:  V23 Min:  456  Max:  499 
##  Variable:  V24 Min:  449  Max:  510 
##  Variable:  V25 Min:  343  Max:  653 
##  Variable:  V26 Min:  417  Max:  586 
##  Variable:  V27 Min:  423  Max:  568 
##  Variable:  V28 Min:  441  Max:  528 
##  Variable:  V29 Min:  439  Max:  516 
##  Variable:  V30 Min:  417  Max:  573 
##  Variable:  V31 Min:  451  Max:  505 
##  Variable:  V32 Min:  382  Max:  609 
##  Variable:  V33 Min:  369  Max:  614 
##  Variable:  V34 Min:  363  Max:  637 
##  Variable:  V35 Min:  405  Max:  555 
##  Variable:  V36 Min:  343  Max:  619 
##  Variable:  V37 Min:  441  Max:  515 
##  Variable:  V38 Min:  396  Max:  550 
##  Variable:  V39 Min:  464  Max:  496 
##  Variable:  V40 Min:  471  Max:  480 
##  Variable:  V41 Min:  464  Max:  487 
##  Variable:  V42 Min:  370  Max:  643 
##  Variable:  V43 Min:  392  Max:  568 
##  Variable:  V44 Min:  438  Max:  548 
##  Variable:  V45 Min:  410  Max:  590 
##  Variable:  V46 Min:  412  Max:  557 
##  Variable:  V47 Min:  371  Max:  601 
##  Variable:  V48 Min:  373  Max:  619 
##  Variable:  V49 Min:  382  Max:  614 
##  Variable:  V50 Min:  382  Max:  571 
##  Variable:  V51 Min:  381  Max:  655 
##  Variable:  V52 Min:  390  Max:  635 
##  Variable:  V53 Min:  399  Max:  555 
##  Variable:  V54 Min:  465  Max:  498 
##  Variable:  V55 Min:  404  Max:  587 
##  Variable:  V56 Min:  433  Max:  560 
##  Variable:  V57 Min:  360  Max:  615 
##  Variable:  V58 Min:  377  Max:  617 
##  Variable:  V59 Min:  378  Max:  653 
##  Variable:  V60 Min:  408  Max:  543 
##  Variable:  V61 Min:  400  Max:  558 
##  Variable:  V62 Min:  463  Max:  502 
##  Variable:  V63 Min:  387  Max:  606 
##  Variable:  V64 Min:  459  Max:  505 
##  Variable:  V65 Min:  248  Max:  768 
##  Variable:  V66 Min:  385  Max:  640 
##  Variable:  V67 Min:  373  Max:  607 
##  Variable:  V68 Min:  423  Max:  563 
##  Variable:  V69 Min:  462  Max:  498 
##  Variable:  V70 Min:  456  Max:  501 
##  Variable:  V71 Min:  362  Max:  668 
##  Variable:  V72 Min:  442  Max:  536 
##  Variable:  V73 Min:  402  Max:  549 
##  Variable:  V74 Min:  354  Max:  629 
##  Variable:  V75 Min:  456  Max:  508 
##  Variable:  V76 Min:  371  Max:  651 
##  Variable:  V77 Min:  450  Max:  508 
##  Variable:  V78 Min:  396  Max:  581 
##  Variable:  V79 Min:  395  Max:  640 
##  Variable:  V80 Min:  424  Max:  546 
##  Variable:  V81 Min:  415  Max:  578 
##  Variable:  V82 Min:  385  Max:  674 
##  Variable:  V83 Min:  396  Max:  613 
##  Variable:  V84 Min:  430  Max:  523 
##  Variable:  V85 Min:  372  Max:  647 
##  Variable:  V86 Min:  391  Max:  583 
##  Variable:  V87 Min:  461  Max:  494 
##  Variable:  V88 Min:  406  Max:  567 
##  Variable:  V89 Min:  456  Max:  498 
##  Variable:  V90 Min:  386  Max:  631 
##  Variable:  V91 Min:  474  Max:  478 
##  Variable:  V92 Min:  395  Max:  609 
##  Variable:  V93 Min:  399  Max:  551 
##  Variable:  V94 Min:  438  Max:  557 
##  Variable:  V95 Min:  452  Max:  501 
##  Variable:  V96 Min:  384  Max:  595 
##  Variable:  V97 Min:  468  Max:  491 
##  Variable:  V98 Min:  406  Max:  554 
##  Variable:  V99 Min:  421  Max:  537 
##  Variable:  V100 Min:  355  Max:  603 
##  Variable:  V101 Min:  453  Max:  507 
##  Variable:  V102 Min:  448  Max:  509 
##  Variable:  V103 Min:  463  Max:  506 
##  Variable:  V104 Min:  434  Max:  533 
##  Variable:  V105 Min:  361  Max:  645 
##  Variable:  V106 Min:  0  Max:  896 
##  Variable:  V107 Min:  349  Max:  566 
##  Variable:  V108 Min:  385  Max:  592 
##  Variable:  V109 Min:  404  Max:  599 
##  Variable:  V110 Min:  449  Max:  518 
##  Variable:  V111 Min:  392  Max:  610 
##  Variable:  V112 Min:  356  Max:  611 
##  Variable:  V113 Min:  452  Max:  506 
##  Variable:  V114 Min:  385  Max:  585 
##  Variable:  V115 Min:  353  Max:  617 
##  Variable:  V116 Min:  425  Max:  545 
##  Variable:  V117 Min:  418  Max:  564 
##  Variable:  V118 Min:  443  Max:  521 
##  Variable:  V119 Min:  389  Max:  592 
##  Variable:  V120 Min:  419  Max:  564 
##  Variable:  V121 Min:  469  Max:  483 
##  Variable:  V122 Min:  405  Max:  574 
##  Variable:  V123 Min:  439  Max:  516 
##  Variable:  V124 Min:  358  Max:  615 
##  Variable:  V125 Min:  415  Max:  549 
##  Variable:  V126 Min:  410  Max:  612 
##  Variable:  V127 Min:  442  Max:  530 
##  Variable:  V128 Min:  387  Max:  569 
##  Variable:  V129 Min:  435  Max:  510 
##  Variable:  V130 Min:  361  Max:  613 
##  Variable:  V131 Min:  401  Max:  618 
##  Variable:  V132 Min:  425  Max:  552 
##  Variable:  V133 Min:  402  Max:  556 
##  Variable:  V134 Min:  466  Max:  491 
##  Variable:  V135 Min:  413  Max:  560 
##  Variable:  V136 Min:  382  Max:  634 
##  Variable:  V137 Min:  369  Max:  639 
##  Variable:  V138 Min:  425  Max:  555 
##  Variable:  V139 Min:  461  Max:  503 
##  Variable:  V140 Min:  436  Max:  534 
##  Variable:  V141 Min:  427  Max:  566 
##  Variable:  V142 Min:  393  Max:  641 
##  Variable:  V143 Min:  443  Max:  512 
##  Variable:  V144 Min:  458  Max:  508 
##  Variable:  V145 Min:  421  Max:  549 
##  Variable:  V146 Min:  398  Max:  553 
##  Variable:  V147 Min:  468  Max:  493 
##  Variable:  V148 Min:  369  Max:  624 
##  Variable:  V149 Min:  466  Max:  496 
##  Variable:  V150 Min:  376  Max:  618 
##  Variable:  V151 Min:  325  Max:  603 
##  Variable:  V152 Min:  447  Max:  529 
##  Variable:  V153 Min:  437  Max:  517 
##  Variable:  V154 Min:  182  Max:  814 
##  Variable:  V155 Min:  473  Max:  481 
##  Variable:  V156 Min:  398  Max:  583 
##  Variable:  V157 Min:  406  Max:  546 
##  Variable:  V158 Min:  408  Max:  545 
##  Variable:  V159 Min:  419  Max:  589 
##  Variable:  V160 Min:  400  Max:  587 
##  Variable:  V161 Min:  379  Max:  563 
##  Variable:  V162 Min:  443  Max:  519 
##  Variable:  V163 Min:  444  Max:  518 
##  Variable:  V164 Min:  458  Max:  497 
##  Variable:  V165 Min:  335  Max:  661 
##  Variable:  V166 Min:  414  Max:  579 
##  Variable:  V167 Min:  471  Max:  480 
##  Variable:  V168 Min:  466  Max:  493 
##  Variable:  V169 Min:  473  Max:  481 
##  Variable:  V170 Min:  389  Max:  664 
##  Variable:  V171 Min:  350  Max:  638 
##  Variable:  V172 Min:  397  Max:  637 
##  Variable:  V173 Min:  380  Max:  633 
##  Variable:  V174 Min:  474  Max:  481 
##  Variable:  V175 Min:  431  Max:  519 
##  Variable:  V176 Min:  393  Max:  616 
##  Variable:  V177 Min:  446  Max:  526 
##  Variable:  V178 Min:  457  Max:  504 
##  Variable:  V179 Min:  347  Max:  620 
##  Variable:  V180 Min:  397  Max:  632 
##  Variable:  V181 Min:  381  Max:  615 
##  Variable:  V182 Min:  393  Max:  644 
##  Variable:  V183 Min:  397  Max:  557 
##  Variable:  V184 Min:  387  Max:  571 
##  Variable:  V185 Min:  438  Max:  542 
##  Variable:  V186 Min:  412  Max:  575 
##  Variable:  V187 Min:  362  Max:  631 
##  Variable:  V188 Min:  387  Max:  591 
##  Variable:  V189 Min:  387  Max:  641 
##  Variable:  V190 Min:  457  Max:  492 
##  Variable:  V191 Min:  372  Max:  553 
##  Variable:  V192 Min:  417  Max:  568 
##  Variable:  V193 Min:  428  Max:  552 
##  Variable:  V194 Min:  364  Max:  654 
##  Variable:  V195 Min:  350  Max:  651 
##  Variable:  V196 Min:  453  Max:  516 
##  Variable:  V197 Min:  461  Max:  496 
##  Variable:  V198 Min:  455  Max:  512 
##  Variable:  V199 Min:  472  Max:  481 
##  Variable:  V200 Min:  393  Max:  609 
##  Variable:  V201 Min:  417  Max:  558 
##  Variable:  V202 Min:  427  Max:  557 
##  Variable:  V203 Min:  430  Max:  550 
##  Variable:  V204 Min:  332  Max:  647 
##  Variable:  V205 Min:  376  Max:  595 
##  Variable:  V206 Min:  471  Max:  481 
##  Variable:  V207 Min:  383  Max:  641 
##  Variable:  V208 Min:  466  Max:  492 
##  Variable:  V209 Min:  427  Max:  530 
##  Variable:  V210 Min:  427  Max:  550 
##  Variable:  V211 Min:  444  Max:  530 
##  Variable:  V212 Min:  374  Max:  600 
##  Variable:  V213 Min:  402  Max:  565 
##  Variable:  V214 Min:  358  Max:  608 
##  Variable:  V215 Min:  443  Max:  517 
##  Variable:  V216 Min:  370  Max:  632 
##  Variable:  V217 Min:  406  Max:  630 
##  Variable:  V218 Min:  452  Max:  510 
##  Variable:  V219 Min:  400  Max:  581 
##  Variable:  V220 Min:  456  Max:  520 
##  Variable:  V221 Min:  381  Max:  569 
##  Variable:  V222 Min:  350  Max:  646 
##  Variable:  V223 Min:  399  Max:  583 
##  Variable:  V224 Min:  367  Max:  606 
##  Variable:  V225 Min:  370  Max:  605 
##  Variable:  V226 Min:  417  Max:  601 
##  Variable:  V227 Min:  426  Max:  550 
##  Variable:  V228 Min:  470  Max:  485 
##  Variable:  V229 Min:  473  Max:  479 
##  Variable:  V230 Min:  412  Max:  555 
##  Variable:  V231 Min:  436  Max:  527 
##  Variable:  V232 Min:  420  Max:  561 
##  Variable:  V233 Min:  439  Max:  530 
##  Variable:  V234 Min:  429  Max:  547 
##  Variable:  V235 Min:  432  Max:  560 
##  Variable:  V236 Min:  438  Max:  562 
##  Variable:  V237 Min:  448  Max:  529 
##  Variable:  V238 Min:  468  Max:  488 
##  Variable:  V239 Min:  410  Max:  541 
##  Variable:  V240 Min:  458  Max:  499 
##  Variable:  V241 Min:  408  Max:  586 
##  Variable:  V242 Min:  363  Max:  653 
##  Variable:  V243 Min:  402  Max:  579 
##  Variable:  V244 Min:  434  Max:  530 
##  Variable:  V245 Min:  372  Max:  622 
##  Variable:  V246 Min:  418  Max:  626 
##  Variable:  V247 Min:  358  Max:  588 
##  Variable:  V248 Min:  468  Max:  492 
##  Variable:  V249 Min:  457  Max:  510 
##  Variable:  V250 Min:  401  Max:  579 
##  Variable:  V251 Min:  383  Max:  580 
##  Variable:  V252 Min:  399  Max:  584 
##  Variable:  V253 Min:  466  Max:  489 
##  Variable:  V254 Min:  418  Max:  628 
##  Variable:  V255 Min:  454  Max:  506 
##  Variable:  V256 Min:  399  Max:  628 
##  Variable:  V257 Min:  350  Max:  688 
##  Variable:  V258 Min:  330  Max:  645 
##  Variable:  V259 Min:  455  Max:  520 
##  Variable:  V260 Min:  450  Max:  527 
##  Variable:  V261 Min:  419  Max:  535 
##  Variable:  V262 Min:  461  Max:  502 
##  Variable:  V263 Min:  432  Max:  560 
##  Variable:  V264 Min:  360  Max:  610 
##  Variable:  V265 Min:  451  Max:  509 
##  Variable:  V266 Min:  425  Max:  569 
##  Variable:  V267 Min:  332  Max:  623 
##  Variable:  V268 Min:  431  Max:  554 
##  Variable:  V269 Min:  398  Max:  587 
##  Variable:  V270 Min:  434  Max:  590 
##  Variable:  V271 Min:  442  Max:  526 
##  Variable:  V272 Min:  369  Max:  639 
##  Variable:  V273 Min:  322  Max:  613 
##  Variable:  V274 Min:  380  Max:  692 
##  Variable:  V275 Min:  423  Max:  521 
##  Variable:  V276 Min:  442  Max:  517 
##  Variable:  V277 Min:  474  Max:  478 
##  Variable:  V278 Min:  395  Max:  613 
##  Variable:  V279 Min:  422  Max:  576 
##  Variable:  V280 Min:  387  Max:  593 
##  Variable:  V281 Min:  473  Max:  482 
##  Variable:  V282 Min:  317  Max:  635 
##  Variable:  V283 Min:  420  Max:  527 
##  Variable:  V284 Min:  472  Max:  480 
##  Variable:  V285 Min:  374  Max:  609 
##  Variable:  V286 Min:  363  Max:  619 
##  Variable:  V287 Min:  376  Max:  571 
##  Variable:  V288 Min:  342  Max:  616 
##  Variable:  V289 Min:  468  Max:  495 
##  Variable:  V290 Min:  437  Max:  561 
##  Variable:  V291 Min:  396  Max:  583 
##  Variable:  V292 Min:  401  Max:  605 
##  Variable:  V293 Min:  431  Max:  574 
##  Variable:  V294 Min:  455  Max:  499 
##  Variable:  V295 Min:  325  Max:  626 
##  Variable:  V296 Min:  396  Max:  603 
##  Variable:  V297 Min:  400  Max:  561 
##  Variable:  V298 Min:  372  Max:  679 
##  Variable:  V299 Min:  406  Max:  578 
##  Variable:  V300 Min:  421  Max:  563 
##  Variable:  V301 Min:  359  Max:  597 
##  Variable:  V302 Min:  433  Max:  531 
##  Variable:  V303 Min:  463  Max:  492 
##  Variable:  V304 Min:  422  Max:  570 
##  Variable:  V305 Min:  389  Max:  602 
##  Variable:  V306 Min:  378  Max:  571 
##  Variable:  V307 Min:  436  Max:  530 
##  Variable:  V308 Min:  450  Max:  511 
##  Variable:  V309 Min:  415  Max:  606 
##  Variable:  V310 Min:  347  Max:  541 
##  Variable:  V311 Min:  402  Max:  566 
##  Variable:  V312 Min:  414  Max:  540 
##  Variable:  V313 Min:  402  Max:  599 
##  Variable:  V314 Min:  390  Max:  605 
##  Variable:  V315 Min:  445  Max:  520 
##  Variable:  V316 Min:  385  Max:  582 
##  Variable:  V317 Min:  450  Max:  510 
##  Variable:  V318 Min:  457  Max:  506 
##  Variable:  V319 Min:  346  Max:  607 
##  Variable:  V320 Min:  383  Max:  650 
##  Variable:  V321 Min:  440  Max:  522 
##  Variable:  V322 Min:  374  Max:  571 
##  Variable:  V323 Min:  429  Max:  555 
##  Variable:  V324 Min:  439  Max:  524 
##  Variable:  V325 Min:  442  Max:  556 
##  Variable:  V326 Min:  462  Max:  497 
##  Variable:  V327 Min:  409  Max:  549 
##  Variable:  V328 Min:  399  Max:  570 
##  Variable:  V329 Min:  444  Max:  526 
##  Variable:  V330 Min:  395  Max:  658 
##  Variable:  V331 Min:  372  Max:  605 
##  Variable:  V332 Min:  437  Max:  517 
##  Variable:  V333 Min:  473  Max:  479 
##  Variable:  V334 Min:  383  Max:  581 
##  Variable:  V335 Min:  352  Max:  627 
##  Variable:  V336 Min:  455  Max:  528 
##  Variable:  V337 Min:  180  Max:  795 
##  Variable:  V338 Min:  378  Max:  626 
##  Variable:  V339 Min:  263  Max:  770 
##  Variable:  V340 Min:  378  Max:  618 
##  Variable:  V341 Min:  383  Max:  618 
##  Variable:  V342 Min:  413  Max:  564 
##  Variable:  V343 Min:  389  Max:  606 
##  Variable:  V344 Min:  415  Max:  628 
##  Variable:  V345 Min:  358  Max:  678 
##  Variable:  V346 Min:  452  Max:  512 
##  Variable:  V347 Min:  457  Max:  503 
##  Variable:  V348 Min:  355  Max:  634 
##  Variable:  V349 Min:  409  Max:  545 
##  Variable:  V350 Min:  398  Max:  608 
##  Variable:  V351 Min:  459  Max:  504 
##  Variable:  V352 Min:  347  Max:  624 
##  Variable:  V353 Min:  351  Max:  619 
##  Variable:  V354 Min:  442  Max:  520 
##  Variable:  V355 Min:  431  Max:  561 
##  Variable:  V356 Min:  430  Max:  545 
##  Variable:  V357 Min:  366  Max:  667 
##  Variable:  V358 Min:  471  Max:  482 
##  Variable:  V359 Min:  405  Max:  621 
##  Variable:  V360 Min:  359  Max:  651 
##  Variable:  V361 Min:  375  Max:  589 
##  Variable:  V362 Min:  416  Max:  561 
##  Variable:  V363 Min:  293  Max:  605 
##  Variable:  V364 Min:  415  Max:  565 
##  Variable:  V365 Min:  465  Max:  501 
##  Variable:  V366 Min:  361  Max:  642 
##  Variable:  V367 Min:  407  Max:  582 
##  Variable:  V368 Min:  448  Max:  527 
##  Variable:  V369 Min:  440  Max:  527 
##  Variable:  V370 Min:  376  Max:  650 
##  Variable:  V371 Min:  374  Max:  602 
##  Variable:  V372 Min:  342  Max:  612 
##  Variable:  V373 Min:  424  Max:  570 
##  Variable:  V374 Min:  399  Max:  567 
##  Variable:  V375 Min:  411  Max:  583 
##  Variable:  V376 Min:  381  Max:  594 
##  Variable:  V377 Min:  456  Max:  507 
##  Variable:  V378 Min:  410  Max:  560 
##  Variable:  V379 Min:  348  Max:  661 
##  Variable:  V380 Min:  361  Max:  630 
##  Variable:  V381 Min:  465  Max:  500 
##  Variable:  V382 Min:  404  Max:  569 
##  Variable:  V383 Min:  383  Max:  624 
##  Variable:  V384 Min:  443  Max:  525 
##  Variable:  V385 Min:  424  Max:  532 
##  Variable:  V386 Min:  442  Max:  511 
##  Variable:  V387 Min:  419  Max:  577 
##  Variable:  V388 Min:  472  Max:  483 
##  Variable:  V389 Min:  429  Max:  552 
##  Variable:  V390 Min:  344  Max:  607 
##  Variable:  V391 Min:  463  Max:  496 
##  Variable:  V392 Min:  350  Max:  626 
##  Variable:  V393 Min:  468  Max:  487 
##  Variable:  V394 Min:  393  Max:  600 
##  Variable:  V395 Min:  470  Max:  490 
##  Variable:  V396 Min:  407  Max:  547 
##  Variable:  V397 Min:  455  Max:  522 
##  Variable:  V398 Min:  346  Max:  616 
##  Variable:  V399 Min:  347  Max:  647 
##  Variable:  V400 Min:  462  Max:  504 
##  Variable:  V401 Min:  461  Max:  489 
##  Variable:  V402 Min:  392  Max:  606 
##  Variable:  V403 Min:  472  Max:  480 
##  Variable:  V404 Min:  387  Max:  567 
##  Variable:  V405 Min:  475  Max:  479 
##  Variable:  V406 Min:  372  Max:  571 
##  Variable:  V407 Min:  354  Max:  596 
##  Variable:  V408 Min:  459  Max:  491 
##  Variable:  V409 Min:  396  Max:  556 
##  Variable:  V410 Min:  455  Max:  500 
##  Variable:  V411 Min:  419  Max:  562 
##  Variable:  V412 Min:  369  Max:  615 
##  Variable:  V413 Min:  389  Max:  602 
##  Variable:  V414 Min:  426  Max:  536 
##  Variable:  V415 Min:  398  Max:  603 
##  Variable:  V416 Min:  385  Max:  721 
##  Variable:  V417 Min:  448  Max:  520 
##  Variable:  V418 Min:  375  Max:  630 
##  Variable:  V419 Min:  361  Max:  657 
##  Variable:  V420 Min:  387  Max:  596 
##  Variable:  V421 Min:  461  Max:  500 
##  Variable:  V422 Min:  427  Max:  530 
##  Variable:  V423 Min:  444  Max:  518 
##  Variable:  V424 Min:  474  Max:  478 
##  Variable:  V425 Min:  445  Max:  520 
##  Variable:  V426 Min:  437  Max:  542 
##  Variable:  V427 Min:  435  Max:  549 
##  Variable:  V428 Min:  372  Max:  610 
##  Variable:  V429 Min:  362  Max:  593 
##  Variable:  V430 Min:  463  Max:  493 
##  Variable:  V431 Min:  398  Max:  557 
##  Variable:  V432 Min:  404  Max:  597 
##  Variable:  V433 Min:  383  Max:  584 
##  Variable:  V434 Min:  263  Max:  687 
##  Variable:  V435 Min:  421  Max:  558 
##  Variable:  V436 Min:  389  Max:  648 
##  Variable:  V437 Min:  436  Max:  514 
##  Variable:  V438 Min:  393  Max:  653 
##  Variable:  V439 Min:  368  Max:  583 
##  Variable:  V440 Min:  452  Max:  515 
##  Variable:  V441 Min:  349  Max:  626 
##  Variable:  V442 Min:  423  Max:  542 
##  Variable:  V443 Min:  244  Max:  743 
##  Variable:  V444 Min:  345  Max:  640 
##  Variable:  V445 Min:  435  Max:  575 
##  Variable:  V446 Min:  472  Max:  483 
##  Variable:  V447 Min:  435  Max:  517 
##  Variable:  V448 Min:  449  Max:  532 
##  Variable:  V449 Min:  368  Max:  613 
##  Variable:  V450 Min:  435  Max:  507 
##  Variable:  V451 Min:  433  Max:  536 
##  Variable:  V452 Min:  450  Max:  502 
##  Variable:  V453 Min:  436  Max:  569 
##  Variable:  V454 Min:  84  Max:  807 
##  Variable:  V455 Min:  461  Max:  500 
##  Variable:  V456 Min:  265  Max:  735 
##  Variable:  V457 Min:  462  Max:  501 
##  Variable:  V458 Min:  387  Max:  586 
##  Variable:  V459 Min:  350  Max:  650 
##  Variable:  V460 Min:  383  Max:  592 
##  Variable:  V461 Min:  392  Max:  606 
##  Variable:  V462 Min:  407  Max:  552 
##  Variable:  V463 Min:  383  Max:  625 
##  Variable:  V464 Min:  347  Max:  615 
##  Variable:  V465 Min:  432  Max:  546 
##  Variable:  V466 Min:  426  Max:  566 
##  Variable:  V467 Min:  456  Max:  508 
##  Variable:  V468 Min:  364  Max:  634 
##  Variable:  V469 Min:  408  Max:  539 
##  Variable:  V470 Min:  342  Max:  633 
##  Variable:  V471 Min:  406  Max:  666 
##  Variable:  V472 Min:  465  Max:  493 
##  Variable:  V473 Min:  358  Max:  590 
##  Variable:  V474 Min:  472  Max:  484 
##  Variable:  V475 Min:  459  Max:  499 
##  Variable:  V476 Min:  308  Max:  680 
##  Variable:  V477 Min:  432  Max:  526 
##  Variable:  V478 Min:  423  Max:  548 
##  Variable:  V479 Min:  347  Max:  630 
##  Variable:  V480 Min:  451  Max:  527 
##  Variable:  V481 Min:  418  Max:  554 
##  Variable:  V482 Min:  402  Max:  587 
##  Variable:  V483 Min:  443  Max:  505 
##  Variable:  V484 Min:  394  Max:  601 
##  Variable:  V485 Min:  376  Max:  614 
##  Variable:  V486 Min:  446  Max:  523 
##  Variable:  V487 Min:  444  Max:  512 
##  Variable:  V488 Min:  355  Max:  613 
##  Variable:  V489 Min:  417  Max:  606 
##  Variable:  V490 Min:  449  Max:  513 
##  Variable:  V491 Min:  424  Max:  549 
##  Variable:  V492 Min:  463  Max:  492 
##  Variable:  V493 Min:  413  Max:  566 
##  Variable:  V494 Min:  130  Max:  920 
##  Variable:  V495 Min:  368  Max:  613 
##  Variable:  V496 Min:  403  Max:  627 
##  Variable:  V497 Min:  457  Max:  500 
##  Variable:  V498 Min:  435  Max:  531 
##  Variable:  V499 Min:  363  Max:  633 
##  Variable:  V500 Min:  407  Max:  583
madelonCV <- FRESA.Model(formula = Label ~ 1,data = madelonTrain,pvalue=0.05,filter.p.value = 0.1,CVfolds = 25,repeats = 1,equivalent = TRUE , usrFitFun= svm)
## Unadjusted size: 72  Adjusted Size: 20 
## ..
##  Vars: 500 Size: 100 , Fraction=  0.824,  Average random size =  10.56, Size:211.20 
## 
##  Z:  1.644854 , Var Max:  20 , s1: 501 , s2: 223 , Independent Size: 422 
## [1] "V476 + V242 + V49 + V324 + V425 + V283 + V412 + V206 + V297 + V497"
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6151263 : Label  ~ 1 + V476 + V49 
## 1 : 18 : 0.6118669 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5961139 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.5900495 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 4  To Test: 8  TopFreq: 1  Thrf: 0  Removed: 0 
## CV pvalue    : 0.05352224 
## Update    : Label ~ 1 + V425 + V476 + V49 + V206 + V324 
## At Accuray: Label  ~ 1 + V476 + V49 
## B:SWiMS   : Label  ~ 1 + V476 + V49 
## Loop : 1 Input Cases = 1000 Input Control = 1000 
## Loop : 1 Train Cases = 960 Train Control = 960 
## Loop : 1 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6138677 : Label  ~ 1 + V476 + V425 + V49 
## 1 : 17 : 0.6157567 : Label  ~ 1 + V242 + V379 
## 2 : 15 : 0.5857045 : Label  ~ 1 + V324 + V454 + V129 
## 3 : 12 : 0.5835986 : Label  ~ 1 + V494 + V106 
## 4 : 10 : 0.5915924 : Label  ~ 1 + V443 + V337 
## 5 : 8 : 0.5949769 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 6  To Test: 14  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V324 + V476 + V425 + V497 + V49 + V206 + V412 + V283 
## At Accuracy: Label  ~ 1 + V476 + V425 + V49 
## B:SWiMS    : Label  ~ 1 + V476 + V425 + V49 
## 
## Num. Models: 32  To Test: 14  TopFreq: 26  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 10  To Test: 12  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 1 Blind Cases = 40 Blind Control = 40 Total = 80 Size Cases = 40 Size Control = 40 
## Accumulated Models CV Accuracy        = 0.525 Sensitivity = 0.5 Specificity = 0.55 Forw. Ensemble Accuracy= 0.55 
## Initial Model Accumulated CV Accuracy = 0.5625 Sensitivity = 0.575 Specificity = 0.55 
## Initial Model Bootstrapped Accuracy   = 0.6181853 Sensitivity = 0.607183 Specificity = 0.6291876 
## Current Model Bootstrapped Accuracy   = 0.6138677 Sensitivity = 0.6115233 Specificity = 0.616212 
## Current KNN Accuracy   = 0.8 Sensitivity = 0.725 Specificity = 0.875 
## Initial KNN Accuracy   = 0.7125 Sensitivity = 0.7 Specificity = 0.725 
## Train Correlation:  0.9652786  Blind Correlation : 0.9172527 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE    31   15
##   TRUE     11   23
## Loop : 2 Input Cases = 1000 Input Control = 1000 
## Loop : 2 Train Cases = 960 Train Control = 960 
## Loop : 2 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6110135 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6117845 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5849633 : Label  ~ 1 + V324 + V454 + V106 
## 3 : 13 : 0.5778937 : Label  ~ 1 + V494 + V129 
## 4 : 11 : 0.5935258 : Label  ~ 1 + V443 + V65 
## 5 : 9 : 0.5923359 : Label  ~ 1 + V337 + V473 
## 
## Num. Models: 6  To Test: 13  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V324 + V206 + V283 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 12  TopFreq: 25  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 3  To Test: 4  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 2 Blind Cases = 40 Blind Control = 40 Total = 160 Size Cases = 80 Size Control = 80 
## Accumulated Models CV Accuracy        = 0.54375 Sensitivity = 0.5375 Specificity = 0.55 Forw. Ensemble Accuracy= 0.54375 
## Initial Model Accumulated CV Accuracy = 0.59375 Sensitivity = 0.575 Specificity = 0.6125 
## Initial Model Bootstrapped Accuracy   = 0.6129354 Sensitivity = 0.6090072 Specificity = 0.6168635 
## Current Model Bootstrapped Accuracy   = 0.6110135 Sensitivity = 0.605633 Specificity = 0.616394 
## Current KNN Accuracy   = 0.85 Sensitivity = 0.8125 Specificity = 0.8875 
## Initial KNN Accuracy   = 0.75 Sensitivity = 0.7875 Specificity = 0.7125 
## Train Correlation:  0.9997752  Blind Correlation : 0.9406235 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE    56   30
##   TRUE     25   49
## Loop : 3 Input Cases = 1000 Input Control = 1000 
## Loop : 3 Train Cases = 960 Train Control = 960 
## Loop : 3 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6130782 : Label  ~ 1 + V476 + V49 
## 1 : 18 : 0.6136439 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5914681 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.5965638 : Label  ~ 1 + V65 + V473 
## 4 : 12 : 0.575371 : Label  ~ 1 + V454 + V106 
## 
## Num. Models: 5  To Test: 10  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V206 + V476 + V205 + V425 + V49 + V297 + V324 + V56 
## At Accuracy: Label  ~ 1 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V476 + V49 
## 
## Num. Models: 32  To Test: 12  TopFreq: 29  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 3 Blind Cases = 40 Blind Control = 40 Total = 240 Size Cases = 120 Size Control = 120 
## Accumulated Models CV Accuracy        = 0.5708333 Sensitivity = 0.5416667 Specificity = 0.6 Forw. Ensemble Accuracy= 0.5666667 
## Initial Model Accumulated CV Accuracy = 0.6125 Sensitivity = 0.5666667 Specificity = 0.6583333 
## Initial Model Bootstrapped Accuracy   = 0.6130144 Sensitivity = 0.6042164 Specificity = 0.6218123 
## Current Model Bootstrapped Accuracy   = 0.6130782 Sensitivity = 0.6040664 Specificity = 0.62209 
## Current KNN Accuracy   = 0.8291667 Sensitivity = 0.7916667 Specificity = 0.8666667 
## Initial KNN Accuracy   = 0.7583333 Sensitivity = 0.775 Specificity = 0.7416667 
## Train Correlation:  0.9999627  Blind Correlation : 0.9658228 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE    90   39
##   TRUE     37   74
## Loop : 4 Input Cases = 1000 Input Control = 1000 
## Loop : 4 Train Cases = 960 Train Control = 960 
## Loop : 4 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6199194 : Label  ~ 1 + V425 + V476 + V205 + V49 
## 1 : 16 : 0.6104286 : Label  ~ 1 + V242 + V379 
## 
## Num. Models: 2  To Test: 6  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V476 + V205 + V206 + V49 + V497 + V324 + V421 + V283 
## At Accuracy: Label  ~ 1 + V425 + V476 + V205 + V49 
## B:SWiMS    : Label  ~ 1 + V425 + V476 + V205 + V49 
## 
## Num. Models: 32  To Test: 12  TopFreq: 29  Thrf: 0  Removed: 0 
## ...::::
## Num. Models: 3  To Test: 6  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 4 Blind Cases = 40 Blind Control = 40 Total = 320 Size Cases = 160 Size Control = 160 
## Accumulated Models CV Accuracy        = 0.58125 Sensitivity = 0.55625 Specificity = 0.60625 Forw. Ensemble Accuracy= 0.571875 
## Initial Model Accumulated CV Accuracy = 0.6125 Sensitivity = 0.575 Specificity = 0.65 
## Initial Model Bootstrapped Accuracy   = 0.6131765 Sensitivity = 0.6058931 Specificity = 0.6204599 
## Current Model Bootstrapped Accuracy   = 0.6199194 Sensitivity = 0.6186639 Specificity = 0.6211749 
## Current KNN Accuracy   = 0.765625 Sensitivity = 0.725 Specificity = 0.80625 
## Initial KNN Accuracy   = 0.76875 Sensitivity = 0.8 Specificity = 0.7375 
## Train Correlation:  0.9337489  Blind Correlation : 0.9305907 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   127   46
##   TRUE     41  106
## Loop : 5 Input Cases = 1000 Input Control = 1000 
## Loop : 5 Train Cases = 960 Train Control = 960 
## Loop : 5 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6141934 : Label  ~ 1 + V425 + V476 + V49 
## 1 : 17 : 0.6100535 : Label  ~ 1 + V242 + V379 
## 2 : 15 : 0.5958461 : Label  ~ 1 + V443 + V337 
## 3 : 13 : 0.5891642 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 4  To Test: 9  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V476 + V324 + V49 + V297 + V497 + V56 + V283 + V200 
## At Accuracy: Label  ~ 1 + V425 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V425 + V476 + V49 
## 
## Num. Models: 32  To Test: 12  TopFreq: 28  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 3  To Test: 5  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 5 Blind Cases = 40 Blind Control = 40 Total = 400 Size Cases = 200 Size Control = 200 
## Accumulated Models CV Accuracy        = 0.59 Sensitivity = 0.575 Specificity = 0.605 Forw. Ensemble Accuracy= 0.5825 
## Initial Model Accumulated CV Accuracy = 0.625 Sensitivity = 0.6 Specificity = 0.65 
## Initial Model Bootstrapped Accuracy   = 0.609438 Sensitivity = 0.6030005 Specificity = 0.6158756 
## Current Model Bootstrapped Accuracy   = 0.6141934 Sensitivity = 0.6131721 Specificity = 0.6152148 
## Current KNN Accuracy   = 0.7825 Sensitivity = 0.76 Specificity = 0.805 
## Initial KNN Accuracy   = 0.7825 Sensitivity = 0.82 Specificity = 0.745 
## Train Correlation:  0.9531343  Blind Correlation : 0.9629395 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   152   57
##   TRUE     54  137
## Loop : 6 Input Cases = 1000 Input Control = 1000 
## Loop : 6 Train Cases = 960 Train Control = 960 
## Loop : 6 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6130956 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6123562 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5932229 : Label  ~ 1 + V337 + V443 
## 3 : 14 : 0.5945158 : Label  ~ 1 + V65 + V473 
## 5 : 12 : 0.5776797 : Label  ~ 1 + V494 + V106 
## 7 : 10 : 0.5781069 : Label  ~ 1 + V129 + V454 
## 
## Num. Models: 6  To Test: 12  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V206 + V425 + V324 + V497 + V297 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 11  TopFreq: 25  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 12  To Test: 13  TopFreq: 11  Thrf: 0  Removed: 0 
## .Loop : 6 Blind Cases = 40 Blind Control = 40 Total = 480 Size Cases = 240 Size Control = 240 
## Accumulated Models CV Accuracy        = 0.5916667 Sensitivity = 0.5791667 Specificity = 0.6041667 Forw. Ensemble Accuracy= 0.5791667 
## Initial Model Accumulated CV Accuracy = 0.6229167 Sensitivity = 0.5916667 Specificity = 0.6541667 
## Initial Model Bootstrapped Accuracy   = 0.6150833 Sensitivity = 0.6082224 Specificity = 0.6219443 
## Current Model Bootstrapped Accuracy   = 0.6130956 Sensitivity = 0.6078699 Specificity = 0.6183212 
## Current KNN Accuracy   = 0.775 Sensitivity = 0.7583333 Specificity = 0.7916667 
## Initial KNN Accuracy   = 0.7645833 Sensitivity = 0.8 Specificity = 0.7291667 
## Train Correlation:  0.9998893  Blind Correlation : 0.9817862 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   180   68
##   TRUE     66  166
## Loop : 7 Input Cases = 1000 Input Control = 1000 
## Loop : 7 Train Cases = 960 Train Control = 960 
## Loop : 7 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6115593 : Label  ~ 1 + V425 + V476 + V49 
## 1 : 17 : 0.6085821 : Label  ~ 1 + V242 + V379 
## 2 : 15 : 0.5952708 : Label  ~ 1 + V337 + V443 
## 3 : 13 : 0.5913433 : Label  ~ 1 + V65 + V473 
## 4 : 11 : 0.5758012 : Label  ~ 1 + V129 + V454 
## 
## Num. Models: 5  To Test: 11  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V476 + V49 + V297 + V324 + V299 + V283 
## At Accuracy: Label  ~ 1 + V425 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V425 + V476 + V49 
## 
## Num. Models: 32  To Test: 11  TopFreq: 27  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 10  To Test: 12  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 7 Blind Cases = 40 Blind Control = 40 Total = 560 Size Cases = 280 Size Control = 280 
## Accumulated Models CV Accuracy        = 0.5982143 Sensitivity = 0.5892857 Specificity = 0.6071429 Forw. Ensemble Accuracy= 0.5839286 
## Initial Model Accumulated CV Accuracy = 0.625 Sensitivity = 0.5964286 Specificity = 0.6535714 
## Initial Model Bootstrapped Accuracy   = 0.6133814 Sensitivity = 0.6008617 Specificity = 0.625901 
## Current Model Bootstrapped Accuracy   = 0.6115593 Sensitivity = 0.6092408 Specificity = 0.6138777 
## Current KNN Accuracy   = 0.7892857 Sensitivity = 0.775 Specificity = 0.8035714 
## Initial KNN Accuracy   = 0.7642857 Sensitivity = 0.8071429 Specificity = 0.7214286 
## Train Correlation:  0.9653428  Blind Correlation : 0.9620722 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   206   82
##   TRUE     79  193
## Loop : 8 Input Cases = 1000 Input Control = 1000 
## Loop : 8 Train Cases = 960 Train Control = 960 
## Loop : 8 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6185583 : Label  ~ 1 + V476 + V49 
## 1 : 18 : 0.6161106 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5967442 : Label  ~ 1 + V443 + V337 
## 4 : 14 : 0.596176 : Label  ~ 1 + V473 + V454 + V106 + V339 
## 
## Num. Models: 4  To Test: 10  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V476 + V206 + V49 + V283 + V324 + V297 
## At Accuracy: Label  ~ 1 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V476 + V49 
## 
## Num. Models: 32  To Test: 12  TopFreq: 25  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 3  To Test: 4  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 8 Blind Cases = 40 Blind Control = 40 Total = 640 Size Cases = 320 Size Control = 320 
## Accumulated Models CV Accuracy        = 0.5875 Sensitivity = 0.590625 Specificity = 0.584375 Forw. Ensemble Accuracy= 0.56875 
## Initial Model Accumulated CV Accuracy = 0.6046875 Sensitivity = 0.590625 Specificity = 0.61875 
## Initial Model Bootstrapped Accuracy   = 0.616862 Sensitivity = 0.6059882 Specificity = 0.6277358 
## Current Model Bootstrapped Accuracy   = 0.6185583 Sensitivity = 0.608803 Specificity = 0.6283135 
## Current KNN Accuracy   = 0.784375 Sensitivity = 0.778125 Specificity = 0.790625 
## Initial KNN Accuracy   = 0.7578125 Sensitivity = 0.8 Specificity = 0.715625 
## Train Correlation:  0.9999992  Blind Correlation : 0.9678387 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   227   97
##   TRUE     91  225
## Loop : 9 Input Cases = 1000 Input Control = 1000 
## Loop : 9 Train Cases = 960 Train Control = 960 
## Loop : 9 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6095839 : Label  ~ 1 + V425 + V49 + V476 
## 1 : 17 : 0.6088223 : Label  ~ 1 + V242 + V379 
## 2 : 15 : 0.590003 : Label  ~ 1 + V65 + V443 
## 3 : 13 : 0.5925996 : Label  ~ 1 + V337 + V473 
## 4 : 11 : 0.5740424 : Label  ~ 1 + V454 + V129 
## 
## Num. Models: 5  To Test: 11  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V49 + V476 + V283 + V205 + V297 + V324 
## At Accuracy: Label  ~ 1 + V425 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V425 + V49 + V476 
## 
## Num. Models: 32  To Test: 13  TopFreq: 29  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 9  To Test: 11  TopFreq: 8  Thrf: 0  Removed: 0 
## Loop : 9 Blind Cases = 40 Blind Control = 40 Total = 720 Size Cases = 360 Size Control = 360 
## Accumulated Models CV Accuracy        = 0.5972222 Sensitivity = 0.6 Specificity = 0.5944444 Forw. Ensemble Accuracy= 0.5763889 
## Initial Model Accumulated CV Accuracy = 0.6152778 Sensitivity = 0.6027778 Specificity = 0.6277778 
## Initial Model Bootstrapped Accuracy   = 0.6057805 Sensitivity = 0.5975207 Specificity = 0.6140404 
## Current Model Bootstrapped Accuracy   = 0.6095839 Sensitivity = 0.6079612 Specificity = 0.6112067 
## Current KNN Accuracy   = 0.7861111 Sensitivity = 0.7777778 Specificity = 0.7944444 
## Initial KNN Accuracy   = 0.7541667 Sensitivity = 0.8 Specificity = 0.7083333 
## Train Correlation:  0.9571252  Blind Correlation : 0.8851852 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   258  108
##   TRUE    100  254
## Loop : 10 Input Cases = 1000 Input Control = 1000 
## Loop : 10 Train Cases = 960 Train Control = 960 
## Loop : 10 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6132404 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6121688 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5897031 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.5879488 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 4  To Test: 8  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V425 + V324 + V206 + V120 + V283 + V56 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 15  TopFreq: 24  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 3  To Test: 4  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 10 Blind Cases = 40 Blind Control = 40 Total = 800 Size Cases = 400 Size Control = 400 
## Accumulated Models CV Accuracy        = 0.6025 Sensitivity = 0.6025 Specificity = 0.6025 Forw. Ensemble Accuracy= 0.57875 
## Initial Model Accumulated CV Accuracy = 0.6175 Sensitivity = 0.6025 Specificity = 0.6325 
## Initial Model Bootstrapped Accuracy   = 0.615304 Sensitivity = 0.6094284 Specificity = 0.6211795 
## Current Model Bootstrapped Accuracy   = 0.6132404 Sensitivity = 0.6026786 Specificity = 0.6238023 
## Current KNN Accuracy   = 0.7875 Sensitivity = 0.7875 Specificity = 0.7875 
## Initial KNN Accuracy   = 0.75875 Sensitivity = 0.8075 Specificity = 0.71 
## Train Correlation:  0.9999784  Blind Correlation : 0.9837084 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   284  116
##   TRUE    116  284
## Loop : 11 Input Cases = 1000 Input Control = 1000 
## Loop : 11 Train Cases = 960 Train Control = 960 
## Loop : 11 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6136784 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6117427 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5941024 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.5926336 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 4  To Test: 8  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V206 + V378 + V324 + V497 + V120 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 11  TopFreq: 25  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 3  To Test: 4  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 11 Blind Cases = 40 Blind Control = 40 Total = 880 Size Cases = 440 Size Control = 440 
## Accumulated Models CV Accuracy        = 0.6034091 Sensitivity = 0.6045455 Specificity = 0.6022727 Forw. Ensemble Accuracy= 0.5795455 
## Initial Model Accumulated CV Accuracy = 0.6159091 Sensitivity = 0.6045455 Specificity = 0.6272727 
## Initial Model Bootstrapped Accuracy   = 0.6111233 Sensitivity = 0.603623 Specificity = 0.6186235 
## Current Model Bootstrapped Accuracy   = 0.6136784 Sensitivity = 0.6038923 Specificity = 0.6234645 
## Current KNN Accuracy   = 0.7829545 Sensitivity = 0.7840909 Specificity = 0.7818182 
## Initial KNN Accuracy   = 0.7568182 Sensitivity = 0.8022727 Specificity = 0.7113636 
## Train Correlation:  0.9999418  Blind Correlation : 0.9401078 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   310  129
##   TRUE    129  312
## Loop : 12 Input Cases = 1000 Input Control = 1000 
## Loop : 12 Train Cases = 960 Train Control = 960 
## Loop : 12 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6100257 : Label  ~ 1 + V49 + V425 + V476 
## 1 : 17 : 0.6105823 : Label  ~ 1 + V242 + V379 
## 3 : 15 : 0.5754209 : Label  ~ 1 + V454 + V129 
## 4 : 13 : 0.5744833 : Label  ~ 1 + V494 + V106 
## 5 : 11 : 0.5934376 : Label  ~ 1 + V443 + V337 
## 6 : 9 : 0.5944272 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 6  To Test: 13  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V425 + V476 + V205 + V421 + V324 + V497 
## At Accuracy: Label  ~ 1 + V49 + V425 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V425 + V476 
## 
## Num. Models: 32  To Test: 12  TopFreq: 29  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 10  To Test: 12  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 12 Blind Cases = 40 Blind Control = 40 Total = 960 Size Cases = 480 Size Control = 480 
## Accumulated Models CV Accuracy        = 0.6083333 Sensitivity = 0.60625 Specificity = 0.6104167 Forw. Ensemble Accuracy= 0.5875 
## Initial Model Accumulated CV Accuracy = 0.621875 Sensitivity = 0.6083333 Specificity = 0.6354167 
## Initial Model Bootstrapped Accuracy   = 0.6102917 Sensitivity = 0.6042852 Specificity = 0.6162982 
## Current Model Bootstrapped Accuracy   = 0.6100257 Sensitivity = 0.6059552 Specificity = 0.6140961 
## Current KNN Accuracy   = 0.7875 Sensitivity = 0.78125 Specificity = 0.79375 
## Initial KNN Accuracy   = 0.753125 Sensitivity = 0.7916667 Specificity = 0.7145833 
## Train Correlation:  0.9628324  Blind Correlation : 0.9064463 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   343  143
##   TRUE    139  335
## Loop : 13 Input Cases = 1000 Input Control = 1000 
## Loop : 13 Train Cases = 960 Train Control = 960 
## Loop : 13 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6064593 : Label  ~ 1 + V49 + V242 
## 1 : 18 : 0.6121364 : Label  ~ 1 + V476 + V379 
## 2 : 16 : 0.5903705 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.58315 : Label  ~ 1 + V65 + V473 
## 5 : 12 : 0.5737412 : Label  ~ 1 + V129 + V454 
## 
## Num. Models: 5  To Test: 10  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V324 + V385 + V242 + V497 + V205 + V283 + V297 + V412 
## At Accuracy: Label  ~ 1 + V49 + V242 
## B:SWiMS    : Label  ~ 1 + V49 + V242 
## 
## Num. Models: 32  To Test: 12  TopFreq: 25  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 13 Blind Cases = 40 Blind Control = 40 Total = 1040 Size Cases = 520 Size Control = 520 
## Accumulated Models CV Accuracy        = 0.6105769 Sensitivity = 0.6115385 Specificity = 0.6096154 Forw. Ensemble Accuracy= 0.5894231 
## Initial Model Accumulated CV Accuracy = 0.6221154 Sensitivity = 0.6115385 Specificity = 0.6326923 
## Initial Model Bootstrapped Accuracy   = 0.6068234 Sensitivity = 0.5979203 Specificity = 0.6157265 
## Current Model Bootstrapped Accuracy   = 0.6064593 Sensitivity = 0.5993712 Specificity = 0.6135474 
## Current KNN Accuracy   = 0.7903846 Sensitivity = 0.7884615 Specificity = 0.7903846 
## Initial KNN Accuracy   = 0.7548077 Sensitivity = 0.7980769 Specificity = 0.7115385 
## Train Correlation:  0.9936798  Blind Correlation : 0.9640647 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   367  155
##   TRUE    152  366
## Loop : 14 Input Cases = 1000 Input Control = 1000 
## Loop : 14 Train Cases = 960 Train Control = 960 
## Loop : 14 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6154092 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6148617 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5907483 : Label  ~ 1 + V443 + V65 
## 3 : 14 : 0.5964803 : Label  ~ 1 + V337 + V473 
## 
## Num. Models: 4  To Test: 8  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V432 + V324 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 14  TopFreq: 23  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 14 Blind Cases = 40 Blind Control = 40 Total = 1120 Size Cases = 560 Size Control = 560 
## Accumulated Models CV Accuracy        = 0.6071429 Sensitivity = 0.6107143 Specificity = 0.6035714 Forw. Ensemble Accuracy= 0.5839286 
## Initial Model Accumulated CV Accuracy = 0.6142857 Sensitivity = 0.6071429 Specificity = 0.6214286 
## Initial Model Bootstrapped Accuracy   = 0.6142996 Sensitivity = 0.6035148 Specificity = 0.6250844 
## Current Model Bootstrapped Accuracy   = 0.6154092 Sensitivity = 0.6089945 Specificity = 0.621824 
## Current KNN Accuracy   = 0.7839286 Sensitivity = 0.7821429 Specificity = 0.7839286 
## Initial KNN Accuracy   = 0.7508929 Sensitivity = 0.7910714 Specificity = 0.7107143 
## Train Correlation:  0.9991969  Blind Correlation : 0.9683779 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   395  167
##   TRUE    161  397
## Loop : 15 Input Cases = 1000 Input Control = 1000 
## Loop : 15 Train Cases = 960 Train Control = 960 
## Loop : 15 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6108441 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6155699 : Label  ~ 1 + V242 + V379 + V425 
## 2 : 15 : 0.5925936 : Label  ~ 1 + V443 + V337 
## 3 : 13 : 0.5931166 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 4  To Test: 9  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V425 + V476 + V206 + V205 + V283 + V324 + V330 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 13  TopFreq: 25  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 12  To Test: 13  TopFreq: 11  Thrf: 0  Removed: 0 
## .Loop : 15 Blind Cases = 40 Blind Control = 40 Total = 1200 Size Cases = 600 Size Control = 600 
## Accumulated Models CV Accuracy        = 0.6083333 Sensitivity = 0.6116667 Specificity = 0.605 Forw. Ensemble Accuracy= 0.5866667 
## Initial Model Accumulated CV Accuracy = 0.6183333 Sensitivity = 0.61 Specificity = 0.6266667 
## Initial Model Bootstrapped Accuracy   = 0.6089101 Sensitivity = 0.6016853 Specificity = 0.6161348 
## Current Model Bootstrapped Accuracy   = 0.6108441 Sensitivity = 0.6045188 Specificity = 0.6171694 
## Current KNN Accuracy   = 0.785 Sensitivity = 0.7833333 Specificity = 0.785 
## Initial KNN Accuracy   = 0.7541667 Sensitivity = 0.7916667 Specificity = 0.7166667 
## Train Correlation:  0.9999843  Blind Correlation : 0.9521097 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   423  179
##   TRUE    173  425
## Loop : 16 Input Cases = 1000 Input Control = 1000 
## Loop : 16 Train Cases = 960 Train Control = 960 
## Loop : 16 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6092111 : Label  ~ 1 + V476 + V49 
## 1 : 18 : 0.6092545 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5914745 : Label  ~ 1 + V337 + V443 
## 
## Num. Models: 3  To Test: 6  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V324 + V476 + V49 + V425 + V497 + V482 
## At Accuracy: Label  ~ 1 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V476 + V49 
## 
## Num. Models: 32  To Test: 13  TopFreq: 26  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 16 Blind Cases = 40 Blind Control = 40 Total = 1280 Size Cases = 640 Size Control = 640 
## Accumulated Models CV Accuracy        = 0.6117187 Sensitivity = 0.621875 Specificity = 0.6015625 Forw. Ensemble Accuracy= 0.59375 
## Initial Model Accumulated CV Accuracy = 0.621875 Sensitivity = 0.6203125 Specificity = 0.6234375 
## Initial Model Bootstrapped Accuracy   = 0.6089825 Sensitivity = 0.5980235 Specificity = 0.6199415 
## Current Model Bootstrapped Accuracy   = 0.6092111 Sensitivity = 0.5952692 Specificity = 0.6231529 
## Current KNN Accuracy   = 0.784375 Sensitivity = 0.784375 Specificity = 0.7828125 
## Initial KNN Accuracy   = 0.7554688 Sensitivity = 0.7953125 Specificity = 0.715625 
## Train Correlation:  0.9999516  Blind Correlation : 0.9983826 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   445  195
##   TRUE    182  458
## Loop : 17 Input Cases = 1000 Input Control = 1000 
## Loop : 17 Train Cases = 960 Train Control = 960 
## Loop : 17 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.608756 : Label  ~ 1 + V49 + V242 
## 1 : 18 : 0.6082211 : Label  ~ 1 + V476 + V379 
## 2 : 16 : 0.592325 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.5889612 : Label  ~ 1 + V65 + V473 
## 4 : 12 : 0.5767398 : Label  ~ 1 + V129 + V454 
## 5 : 10 : 0.5845806 : Label  ~ 1 + V494 + V106 + V324 
## 6 : 7 : 0.5747904 : Label  ~ 1 + V339 
## 
## Num. Models: 7  To Test: 14  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V49 + V324 + V242 + V432 + V206 + V297 + V385 + V56 
## At Accuracy: Label  ~ 1 + V49 + V242 
## B:SWiMS    : Label  ~ 1 + V49 + V242 
## 
## Num. Models: 32  To Test: 11  TopFreq: 28  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 17 Blind Cases = 40 Blind Control = 40 Total = 1360 Size Cases = 680 Size Control = 680 
## Accumulated Models CV Accuracy        = 0.6125 Sensitivity = 0.6176471 Specificity = 0.6073529 Forw. Ensemble Accuracy= 0.5955882 
## Initial Model Accumulated CV Accuracy = 0.6227941 Sensitivity = 0.6147059 Specificity = 0.6308824 
## Initial Model Bootstrapped Accuracy   = 0.6102483 Sensitivity = 0.6058416 Specificity = 0.614655 
## Current Model Bootstrapped Accuracy   = 0.608756 Sensitivity = 0.6034672 Specificity = 0.6140447 
## Current KNN Accuracy   = 0.7904412 Sensitivity = 0.7882353 Specificity = 0.7911765 
## Initial KNN Accuracy   = 0.7566176 Sensitivity = 0.7941176 Specificity = 0.7191176 
## Train Correlation:  0.9936663  Blind Correlation : 0.8776606 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   475  208
##   TRUE    198  479
## Loop : 18 Input Cases = 1000 Input Control = 1000 
## Loop : 18 Train Cases = 960 Train Control = 960 
## Loop : 18 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6105048 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6111051 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5782059 : Label  ~ 1 + V454 + V129 
## 3 : 14 : 0.5805143 : Label  ~ 1 + V494 + V106 
## 4 : 12 : 0.5922961 : Label  ~ 1 + V443 + V337 
## 5 : 10 : 0.5976449 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 6  To Test: 12  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V205 + V476 + V206 + V378 + V283 + V324 + V137 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 12  TopFreq: 27  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 18 Blind Cases = 40 Blind Control = 40 Total = 1440 Size Cases = 720 Size Control = 720 
## Accumulated Models CV Accuracy        = 0.6097222 Sensitivity = 0.6138889 Specificity = 0.6055556 Forw. Ensemble Accuracy= 0.5916667 
## Initial Model Accumulated CV Accuracy = 0.6215278 Sensitivity = 0.6138889 Specificity = 0.6291667 
## Initial Model Bootstrapped Accuracy   = 0.6142971 Sensitivity = 0.6041084 Specificity = 0.6244858 
## Current Model Bootstrapped Accuracy   = 0.6105048 Sensitivity = 0.6028031 Specificity = 0.6182066 
## Current KNN Accuracy   = 0.79375 Sensitivity = 0.7888889 Specificity = 0.7972222 
## Initial KNN Accuracy   = 0.7548611 Sensitivity = 0.7888889 Specificity = 0.7208333 
## Train Correlation:  0.999707  Blind Correlation : 0.9491092 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   503  224
##   TRUE    211  502
## Loop : 19 Input Cases = 1000 Input Control = 1000 
## Loop : 19 Train Cases = 960 Train Control = 960 
## Loop : 19 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6161077 : Label  ~ 1 + V425 + V476 + V49 
## 1 : 17 : 0.6151337 : Label  ~ 1 + V242 + V379 
## 2 : 15 : 0.5983732 : Label  ~ 1 + V337 + V443 
## 3 : 13 : 0.5974692 : Label  ~ 1 + V65 + V473 
## 
## Num. Models: 4  To Test: 9  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V476 + V324 + V49 + V385 + V287 + V431 + V283 
## At Accuracy: Label  ~ 1 + V425 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V425 + V476 + V49 
## 
## Num. Models: 32  To Test: 11  TopFreq: 27  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 3  To Test: 5  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 19 Blind Cases = 40 Blind Control = 40 Total = 1520 Size Cases = 760 Size Control = 760 
## Accumulated Models CV Accuracy        = 0.6039474 Sensitivity = 0.6144737 Specificity = 0.5934211 Forw. Ensemble Accuracy= 0.5868421 
## Initial Model Accumulated CV Accuracy = 0.6151316 Sensitivity = 0.6118421 Specificity = 0.6184211 
## Initial Model Bootstrapped Accuracy   = 0.6153275 Sensitivity = 0.6075786 Specificity = 0.6230765 
## Current Model Bootstrapped Accuracy   = 0.6161077 Sensitivity = 0.6132397 Specificity = 0.6189757 
## Current KNN Accuracy   = 0.7888158 Sensitivity = 0.7855263 Specificity = 0.7907895 
## Initial KNN Accuracy   = 0.7513158 Sensitivity = 0.7855263 Specificity = 0.7171053 
## Train Correlation:  0.9652834  Blind Correlation : 0.9431959 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   527  238
##   TRUE    217  538
## Loop : 20 Input Cases = 1000 Input Control = 1000 
## Loop : 20 Train Cases = 960 Train Control = 960 
## Loop : 20 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6089954 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6116476 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5957663 : Label  ~ 1 + V337 + V443 
## 3 : 14 : 0.5954004 : Label  ~ 1 + V65 + V473 
## 5 : 12 : 0.5774549 : Label  ~ 1 + V494 + V106 
## 
## Num. Models: 5  To Test: 10  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V324 + V49 + V476 + V425 + V432 + V385 + V297 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 12  TopFreq: 24  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 20 Blind Cases = 40 Blind Control = 40 Total = 1600 Size Cases = 800 Size Control = 800 
## Accumulated Models CV Accuracy        = 0.605625 Sensitivity = 0.6075 Specificity = 0.60375 Forw. Ensemble Accuracy= 0.58625 
## Initial Model Accumulated CV Accuracy = 0.618125 Sensitivity = 0.61125 Specificity = 0.625 
## Initial Model Bootstrapped Accuracy   = 0.6150967 Sensitivity = 0.6084923 Specificity = 0.6217012 
## Current Model Bootstrapped Accuracy   = 0.6089954 Sensitivity = 0.5988117 Specificity = 0.6191792 
## Current KNN Accuracy   = 0.790625 Sensitivity = 0.78375 Specificity = 0.79625 
## Initial KNN Accuracy   = 0.749375 Sensitivity = 0.7775 Specificity = 0.72125 
## Train Correlation:  0.9997226  Blind Correlation : 0.9703 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   562  249
##   TRUE    235  554
## Loop : 21 Input Cases = 1000 Input Control = 1000 
## Loop : 21 Train Cases = 960 Train Control = 960 
## Loop : 21 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6115272 : Label  ~ 1 + V476 + V49 
## 1 : 18 : 0.6156934 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5791918 : Label  ~ 1 + V454 + V129 
## 3 : 14 : 0.595594 : Label  ~ 1 + V337 + V443 
## 4 : 12 : 0.5969059 : Label  ~ 1 + V65 + V473 
## 5 : 10 : 0.5801503 : Label  ~ 1 + V494 + V106 
## 
## Num. Models: 6  To Test: 12  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V205 + V476 + V49 + V432 + V425 + V324 + V385 + V299 + V56 
## At Accuracy: Label  ~ 1 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V476 + V49 
## 
## Num. Models: 32  To Test: 11  TopFreq: 26  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 21 Blind Cases = 40 Blind Control = 40 Total = 1680 Size Cases = 840 Size Control = 840 
## Accumulated Models CV Accuracy        = 0.6029762 Sensitivity = 0.6083333 Specificity = 0.597619 Forw. Ensemble Accuracy= 0.5821429 
## Initial Model Accumulated CV Accuracy = 0.6136905 Sensitivity = 0.6107143 Specificity = 0.6166667 
## Initial Model Bootstrapped Accuracy   = 0.6165478 Sensitivity = 0.6068901 Specificity = 0.6262055 
## Current Model Bootstrapped Accuracy   = 0.6115272 Sensitivity = 0.5989701 Specificity = 0.6240844 
## Current KNN Accuracy   = 0.7886905 Sensitivity = 0.7821429 Specificity = 0.7940476 
## Initial KNN Accuracy   = 0.7464286 Sensitivity = 0.7738095 Specificity = 0.7190476 
## Train Correlation:  0.9997393  Blind Correlation : 0.9594233 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   586  265
##   TRUE    245  584
## Loop : 22 Input Cases = 1000 Input Control = 1000 
## Loop : 22 Train Cases = 960 Train Control = 960 
## Loop : 22 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6131963 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6133731 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5946304 : Label  ~ 1 + V443 + V337 
## 3 : 14 : 0.5951587 : Label  ~ 1 + V65 + V473 
## 5 : 12 : 0.5768861 : Label  ~ 1 + V454 + V129 
## 
## Num. Models: 5  To Test: 10  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V206 + V205 + V412 + V330 + V324 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 12  TopFreq: 23  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 3  To Test: 4  TopFreq: 2  Thrf: 0  Removed: 0 
## Loop : 22 Blind Cases = 40 Blind Control = 40 Total = 1760 Size Cases = 880 Size Control = 880 
## Accumulated Models CV Accuracy        = 0.6017045 Sensitivity = 0.6034091 Specificity = 0.6 Forw. Ensemble Accuracy= 0.5829545 
## Initial Model Accumulated CV Accuracy = 0.6125 Sensitivity = 0.6068182 Specificity = 0.6181818 
## Initial Model Bootstrapped Accuracy   = 0.6117569 Sensitivity = 0.6035522 Specificity = 0.6199616 
## Current Model Bootstrapped Accuracy   = 0.6131963 Sensitivity = 0.6075844 Specificity = 0.6188082 
## Current KNN Accuracy   = 0.7903409 Sensitivity = 0.7852273 Specificity = 0.7943182 
## Initial KNN Accuracy   = 0.7454545 Sensitivity = 0.7704545 Specificity = 0.7204545 
## Train Correlation:  0.9999968  Blind Correlation : 0.9620956 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   616  273
##   TRUE    261  610
## Loop : 23 Input Cases = 1000 Input Control = 1000 
## Loop : 23 Train Cases = 960 Train Control = 960 
## Loop : 23 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6136433 : Label  ~ 1 + V49 + V476 
## 1 : 18 : 0.6137721 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.593343 : Label  ~ 1 + V337 + V443 
## 3 : 14 : 0.5936384 : Label  ~ 1 + V65 + V473 
## 5 : 12 : 0.5800789 : Label  ~ 1 + V454 + V106 
## 
## Num. Models: 5  To Test: 10  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V49 + V476 + V206 + V120 + V425 + V11 + V324 + V297 + V56 
## At Accuracy: Label  ~ 1 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V49 + V476 
## 
## Num. Models: 32  To Test: 12  TopFreq: 23  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 23 Blind Cases = 40 Blind Control = 40 Total = 1840 Size Cases = 920 Size Control = 920 
## Accumulated Models CV Accuracy        = 0.6027174 Sensitivity = 0.6021739 Specificity = 0.6032609 Forw. Ensemble Accuracy= 0.5831522 
## Initial Model Accumulated CV Accuracy = 0.6130435 Sensitivity = 0.6065217 Specificity = 0.6195652 
## Initial Model Bootstrapped Accuracy   = 0.612239 Sensitivity = 0.603402 Specificity = 0.6210759 
## Current Model Bootstrapped Accuracy   = 0.6136433 Sensitivity = 0.6032125 Specificity = 0.6240741 
## Current KNN Accuracy   = 0.788587 Sensitivity = 0.7782609 Specificity = 0.7978261 
## Initial KNN Accuracy   = 0.7434783 Sensitivity = 0.7630435 Specificity = 0.723913 
## Train Correlation:  0.9999446  Blind Correlation : 0.9536099 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   653  286
##   TRUE    268  633
## Loop : 24 Input Cases = 1000 Input Control = 1000 
## Loop : 24 Train Cases = 960 Train Control = 960 
## Loop : 24 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6136259 : Label  ~ 1 + V476 + V49 
## 1 : 18 : 0.6135603 : Label  ~ 1 + V242 + V379 
## 2 : 16 : 0.5944843 : Label  ~ 1 + V337 + V443 
## 3 : 14 : 0.5924912 : Label  ~ 1 + V65 + V473 
## 4 : 12 : 0.5808706 : Label  ~ 1 + V324 + V129 + V454 
## 6 : 9 : 0.575727 : Label  ~ 1 + V494 + V106 
## 
## Num. Models: 6  To Test: 13  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V324 + V476 + V49 + V425 + V431 + V120 + V212 + V283 + V412 
## At Accuracy: Label  ~ 1 + V476 + V49 
## B:SWiMS    : Label  ~ 1 + V476 + V49 
## 
## Num. Models: 32  To Test: 12  TopFreq: 27  Thrf: 0  Removed: 0 
## ...::
## Num. Models: 10  To Test: 11  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 24 Blind Cases = 40 Blind Control = 40 Total = 1920 Size Cases = 960 Size Control = 960 
## Accumulated Models CV Accuracy        = 0.6026042 Sensitivity = 0.6020833 Specificity = 0.603125 Forw. Ensemble Accuracy= 0.5807292 
## Initial Model Accumulated CV Accuracy = 0.6114583 Sensitivity = 0.6052083 Specificity = 0.6177083 
## Initial Model Bootstrapped Accuracy   = 0.6124185 Sensitivity = 0.6024749 Specificity = 0.6223622 
## Current Model Bootstrapped Accuracy   = 0.6136259 Sensitivity = 0.6044368 Specificity = 0.6228149 
## Current KNN Accuracy   = 0.790625 Sensitivity = 0.7791667 Specificity = 0.8010417 
## Initial KNN Accuracy   = 0.7416667 Sensitivity = 0.7625 Specificity = 0.7208333 
## Train Correlation:  1  Blind Correlation : 0.9122363 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   679  303
##   TRUE    282  656
## Loop : 25 Input Cases = 1000 Input Control = 1000 
## Loop : 25 Train Cases = 960 Train Control = 960 
## Loop : 25 Blind Cases = 40 Blind Control = 40 
## K   : 43 KNN T Cases = 960 KNN T Control = 960 
## 222 : Number of variables to test: 20 
## 0 : 20 : 0.6146862 : Label  ~ 1 + V425 + V49 + V476 
## 1 : 17 : 0.6129814 : Label  ~ 1 + V242 + V379 
## 
## Num. Models: 2  To Test: 5  TopFreq: 1  Thrf: 0  Removed: 0 
## Update     : Label ~ 1 + V425 + V431 + V49 + V324 + V476 + V205 + V206 + V495 
## At Accuracy: Label  ~ 1 + V425 + V49 + V476 
## B:SWiMS    : Label  ~ 1 + V425 + V49 + V476 
## 
## Num. Models: 32  To Test: 14  TopFreq: 23  Thrf: 0  Removed: 0 
## ...:::
## Num. Models: 10  To Test: 12  TopFreq: 9  Thrf: 0  Removed: 0 
## .Loop : 25 Blind Cases = 40 Blind Control = 40 Total = 2000 Size Cases = 1000 Size Control = 1000 
## Accumulated Models CV Accuracy        = 0.605 Sensitivity = 0.604 Specificity = 0.606 Forw. Ensemble Accuracy= 0.583 
## Initial Model Accumulated CV Accuracy = 0.614 Sensitivity = 0.606 Specificity = 0.622 
## Initial Model Bootstrapped Accuracy   = 0.609959 Sensitivity = 0.6023756 Specificity = 0.6175423 
## Current Model Bootstrapped Accuracy   = 0.6146862 Sensitivity = 0.6099549 Specificity = 0.6194175 
## Current KNN Accuracy   = 0.7845 Sensitivity = 0.773 Specificity = 0.795 
## Initial KNN Accuracy   = 0.746 Sensitivity = 0.765 Specificity = 0.727 
## Train Correlation:  0.963157  Blind Correlation : 0.980497 
##  KNN to Model Confusion Matrix: 
##        
##         FALSE TRUE
##   FALSE   716  307
##   TRUE    286  691

## 
## Num. Models: 128  To Test: 20  TopFreq: 22  Thrf: 0  Removed: 0 
## ............::
## Num. Models: 3  To Test: 4  TopFreq: 2  Thrf: 0  Removed: 0
pm <- plotModels.ROC(madelonCV$cvObject$LASSO.testPredictions,theCVfolds=25,main="CV LASSO",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$KNN.testPrediction,theCVfolds=25,main="KNN",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="Prediction",main="BB:SWiMS",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="Median",main="Forward Median",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="Bagged",main="Forward Bagged",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="Forward",main="Forward Model",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="first.B.SWiMS",main="first.B.SWiMS",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="eB.SWiMS",main="eB.SWiMS",cex=0.90)

pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,predictor="Ensemble.B.SWiMS",main="Ensemble.B.SWiMS",cex=0.90)

madelonCV$cvObject$Models.testPrediction$usrFitFunction <- madelonCV$cvObject$Models.testPrediction$usrFitFunction-0.5
pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,
                     predictor="usrFitFunction",main="Support Vector Machine",cex=0.90)

madelonCV$cvObject$Models.testPrediction$usrFitFunction_Sel <- madelonCV$cvObject$Models.testPrediction$usrFitFunction_Sel-0.5
pm <- plotModels.ROC(madelonCV$cvObject$Models.testPrediction,theCVfolds=25,
                     predictor="usrFitFunction_Sel",main="Support Vector Machine with FS",cex=0.90)