Loan Data

This is the Loan data set where our model will try to predict if a person will have good or bad credit. 1=Good Credit

library(car)
## Warning: package 'car' was built under R version 3.4.2
Loan <- read.csv("~/Business Analytics/LoanData.csv")
Loan$Status=recode(Loan$Status,"'Current'=1; else=0")
Loan$Status=as.numeric(levels(Loan$Status)[Loan$Status])

Next I will split the data into a training set and test set.

n = length(Loan$Status)
n1 = floor(n*(.7))
n1
## [1] 3927
n2 = n-n1
train = sample(1:n,n1)

Then I will find the model of the data.

XLoan <- model.matrix(Status~., data = Loan)[,-1]
XLoan[1:3,]
##   Credit.GradeAA Credit.GradeB Credit.GradeC Credit.GradeD Credit.GradeE
## 1              0             0             1             0             0
## 2              0             0             0             0             0
## 3              0             0             0             0             0
##   Credit.GradeHR Credit.GradeNC Amount Age Borrower.Rate
## 1              0              0   5000   4         0.150
## 2              1              0   1900   6         0.265
## 3              1              0   1000   3         0.150
##   Debt.To.Income.Ratio
## 1                 0.04
## 2                 0.02
## 3                 0.02
xtrain <- XLoan[train,]
xnew <- XLoan[-train,]
ytrain <- Loan$Status[train]
ynew <- Loan$Status[-train]
m1=glm(Status~.,family=binomial,data=data.frame(Status=ytrain,xtrain))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(m1)
## 
## Call:
## glm(formula = Status ~ ., family = binomial, data = data.frame(Status = ytrain, 
##     xtrain))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.3562   0.1366   0.2411   0.4043   2.1476  
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           7.708e+00  4.913e-01  15.690   <2e-16 ***
## Credit.GradeAA        7.844e-01  6.095e-01   1.287   0.1981    
## Credit.GradeB        -2.225e-01  4.139e-01  -0.537   0.5910    
## Credit.GradeC         3.356e-01  4.164e-01   0.806   0.4202    
## Credit.GradeD         3.292e-01  4.202e-01   0.784   0.4333    
## Credit.GradeE        -4.205e-02  4.350e-01  -0.097   0.9230    
## Credit.GradeHR       -5.768e-01  4.455e-01  -1.295   0.1954    
## Credit.GradeNC       -1.180e+00  5.772e-01  -2.044   0.0410 *  
## Amount               -4.251e-05  1.806e-05  -2.354   0.0186 *  
## Age                  -3.760e-01  2.688e-02 -13.990   <2e-16 ***
## Borrower.Rate        -1.347e+01  1.615e+00  -8.342   <2e-16 ***
## Debt.To.Income.Ratio  1.573e-01  3.180e-01   0.495   0.6208    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2164.2  on 3926  degrees of freedom
## Residual deviance: 1699.8  on 3915  degrees of freedom
## AIC: 1723.8
## 
## Number of Fisher Scoring iterations: 16

Then I will predict for the test set.

ptest <- predict(m1,newdata=data.frame(xnew),type="response")
data.frame(ynew,ptest)[1:10,]
##    ynew     ptest
## 1     1 0.9867793
## 2     1 0.7734458
## 3     1 0.9809819
## 6     1 0.9015963
## 9     1 0.9989262
## 17    0 0.7074237
## 21    1 0.9957397
## 23    1 0.8585450
## 24    1 0.9858988
## 26    1 0.9956696
gg1=floor(ptest+0.5)    
ttt=table(ynew,gg1)
ttt
##     gg1
## ynew    0    1
##    0   15  101
##    1   12 1556
error=(ttt[1,2]+ttt[2,1])/n2
error  
## [1] 0.06710214

Our error is very low so this model is a good predictor.

bb=cbind(ptest,ynew)
bb1=bb[order(ptest,decreasing=TRUE),]
bb1
##           ptest ynew
## 5592 1.00000000    1
## 5593 1.00000000    1
## 5595 1.00000000    1
## 5606 1.00000000    1
## 5609 1.00000000    1
## 5610 1.00000000    1
## 5587 0.99980407    1
## 96   0.99922422    1
## 436  0.99920556    1
## 1053 0.99917499    1
## 88   0.99914624    1
## 448  0.99909199    1
## 474  0.99908306    1
## 1784 0.99908081    1
## 264  0.99907493    1
## 1961 0.99906254    1
## 4005 0.99905784    1
## 865  0.99904628    1
## 2372 0.99902729    1
## 1779 0.99902137    1
## 4006 0.99900324    1
## 864  0.99899249    1
## 2382 0.99898159    1
## 853  0.99894768    1
## 9    0.99892620    1
## 5541 0.99885560    1
## 369  0.99884333    1
## 3186 0.99883193    1
## 2963 0.99862755    1
## 451  0.99862433    1
## 256  0.99858233    1
## 2966 0.99844623    1
## 681  0.99834431    1
## 4789 0.99833204    1
## 5294 0.99813118    1
## 153  0.99812553    1
## 1606 0.99807268    1
## 305  0.99807088    1
## 3361 0.99805535    1
## 2147 0.99796619    1
## 850  0.99796399    1
## 254  0.99795790    1
## 127  0.99794090    1
## 5260 0.99793977    1
## 2752 0.99793960    1
## 1423 0.99790202    1
## 185  0.99787333    1
## 112  0.99787240    1
## 69   0.99785675    1
## 4725 0.99784458    1
## 2373 0.99780260    1
## 1075 0.99770547    1
## 2592 0.99767181    1
## 3371 0.99752798    1
## 3375 0.99745278    1
## 5034 0.99733773    1
## 3019 0.99730614    1
## 277  0.99728381    1
## 4734 0.99724961    1
## 620  0.99718615    0
## 1599 0.99715307    1
## 390  0.99715026    1
## 851  0.99711417    1
## 4786 0.99710098    1
## 1062 0.99698693    1
## 1814 0.99694674    1
## 454  0.99694439    1
## 594  0.99690816    1
## 3382 0.99690088    1
## 3180 0.99689666    1
## 4146 0.99679676    1
## 54   0.99679489    1
## 114  0.99678209    1
## 1229 0.99672906    1
## 3310 0.99668701    1
## 1247 0.99666588    1
## 1231 0.99661033    1
## 382  0.99654520    1
## 861  0.99654502    1
## 2779 0.99652292    1
## 2231 0.99638319    1
## 3308 0.99637634    1
## 1442 0.99635855    1
## 2957 0.99635392    1
## 3046 0.99633024    1
## 3369 0.99632799    1
## 4029 0.99631446    1
## 1251 0.99629810    1
## 1037 0.99625735    1
## 2606 0.99624578    1
## 4323 0.99611353    1
## 722  0.99609735    1
## 1809 0.99607625    1
## 4792 0.99607378    1
## 1627 0.99603145    1
## 4096 0.99599082    1
## 793  0.99596250    1
## 4011 0.99591528    1
## 5155 0.99590956    1
## 4892 0.99588071    1
## 4356 0.99584301    1
## 433  0.99580234    1
## 21   0.99573970    1
## 3595 0.99570853    1
## 1238 0.99570204    1
## 4216 0.99570111    1
## 2454 0.99567799    1
## 26   0.99566956    1
## 4674 0.99562625    1
## 5451 0.99558757    1
## 4721 0.99554000    1
## 5543 0.99552835    1
## 1799 0.99548870    1
## 402  0.99547688    1
## 2847 0.99544363    1
## 4161 0.99541669    1
## 350  0.99541589    1
## 4315 0.99536389    1
## 4401 0.99534267    1
## 2580 0.99533608    1
## 5429 0.99532328    1
## 3472 0.99529696    1
## 1950 0.99526347    1
## 1970 0.99525088    1
## 5542 0.99523315    1
## 3198 0.99517746    1
## 235  0.99517103    1
## 2094 0.99516996    1
## 2369 0.99513692    1
## 5432 0.99509858    1
## 3604 0.99506929    1
## 4995 0.99506751    1
## 4932 0.99505860    1
## 407  0.99505734    1
## 2166 0.99503182    1
## 4586 0.99497348    1
## 1607 0.99496834    1
## 4578 0.99496031    1
## 1632 0.99493633    1
## 5493 0.99492507    1
## 179  0.99491693    1
## 688  0.99487977    1
## 2845 0.99479009    1
## 161  0.99478087    1
## 2744 0.99474977    1
## 1359 0.99474559    1
## 5005 0.99473223    1
## 5208 0.99469996    1
## 2160 0.99460166    1
## 2567 0.99460106    1
## 1989 0.99459109    1
## 4047 0.99456881    1
## 446  0.99453522    1
## 3597 0.99450916    1
## 4241 0.99448032    1
## 2046 0.99442489    1
## 1420 0.99438100    1
## 2747 0.99437451    1
## 2959 0.99434536    1
## 4948 0.99431410    1
## 3452 0.99428239    1
## 1663 0.99427695    1
## 3655 0.99426115    1
## 5578 0.99423125    1
## 2193 0.99418954    1
## 1781 0.99416032    1
## 1625 0.99412155    1
## 3209 0.99411388    1
## 4735 0.99409209    1
## 3588 0.99401528    1
## 1689 0.99397773    1
## 3702 0.99395807    1
## 3607 0.99393784    1
## 1043 0.99393162    1
## 3363 0.99389559    1
## 3429 0.99386944    1
## 4654 0.99384307    1
## 1470 0.99383546    1
## 4785 0.99376494    1
## 967  0.99373371    1
## 386  0.99372395    1
## 4952 0.99371520    1
## 4089 0.99370038    1
## 396  0.99368499    1
## 4733 0.99364819    1
## 1473 0.99364134    1
## 2389 0.99362084    1
## 3628 0.99361884    1
## 4841 0.99359399    1
## 1469 0.99359190    1
## 5292 0.99358611    1
## 3474 0.99355531    1
## 4512 0.99354781    1
## 1054 0.99347619    1
## 2392 0.99346581    1
## 3806 0.99341755    1
## 3045 0.99341674    1
## 2983 0.99333207    1
## 1783 0.99331289    1
## 4895 0.99331249    1
## 1415 0.99329912    1
## 5002 0.99317339    1
## 1474 0.99317042    1
## 3926 0.99312382    1
## 4845 0.99311003    1
## 4807 0.99310628    1
## 4263 0.99306326    1
## 4243 0.99305710    1
## 4492 0.99303295    1
## 858  0.99295046    1
## 5489 0.99290550    1
## 3409 0.99289956    1
## 496  0.99285575    1
## 4781 0.99283899    1
## 4522 0.99282363    1
## 3862 0.99280174    1
## 2179 0.99278484    1
## 4729 0.99272929    1
## 516  0.99269517    1
## 4032 0.99268326    1
## 1089 0.99257157    1
## 3857 0.99254792    1
## 4413 0.99253956    1
## 2232 0.99251479    1
## 3165 0.99247395    1
## 1048 0.99246464    1
## 3836 0.99243757    1
## 5119 0.99234105    1
## 936  0.99231072    1
## 705  0.99230953    1
## 1290 0.99229859    1
## 5452 0.99228598    1
## 5029 0.99226500    1
## 684  0.99225379    1
## 2230 0.99214572    1
## 28   0.99207510    1
## 4353 0.99197199    1
## 843  0.99188581    1
## 4890 0.99188576    1
## 3048 0.99181372    1
## 3842 0.99180103    1
## 4637 0.99175723    1
## 1041 0.99175522    1
## 4903 0.99167690    1
## 1857 0.99164302    1
## 4931 0.99163331    1
## 1948 0.99158340    1
## 5237 0.99151935    1
## 1483 0.99149270    1
## 174  0.99148987    1
## 4889 0.99143876    1
## 1636 0.99141598    1
## 2805 0.99138291    1
## 4337 0.99137295    1
## 3695 0.99136717    1
## 4357 0.99124154    1
## 5212 0.99104239    1
## 5134 0.99103376    1
## 4566 0.99103369    1
## 859  0.99102481    1
## 5309 0.99102083    1
## 2152 0.99100730    1
## 5410 0.99100476    1
## 5094 0.99095258    1
## 2821 0.99093972    1
## 5329 0.99093047    1
## 1250 0.99090693    1
## 5010 0.99086063    1
## 4880 0.99083456    1
## 2977 0.99082129    1
## 2200 0.99080735    1
## 94   0.99078533    1
## 3465 0.99072100    1
## 3016 0.99071680    1
## 381  0.99068425    1
## 4799 0.99064225    1
## 4320 0.99060602    1
## 4066 0.99056261    1
## 3824 0.99056219    1
## 3853 0.99055655    1
## 699  0.99053804    1
## 5566 0.99053623    1
## 3225 0.99050038    1
## 162  0.99041065    1
## 5502 0.99031325    1
## 1975 0.99029841    1
## 2826 0.99022535    1
## 3623 0.99016481    1
## 2225 0.99012471    1
## 1254 0.99008310    1
## 4743 0.99001349    1
## 1973 0.98997293    1
## 1801 0.98995143    1
## 2178 0.98990351    1
## 2971 0.98986623    1
## 3010 0.98986549    1
## 4844 0.98985501    1
## 2815 0.98985493    1
## 2972 0.98983716    1
## 1805 0.98978345    1
## 4443 0.98974650    1
## 2214 0.98974243    1
## 1758 0.98974127    1
## 2156 0.98967622    1
## 2978 0.98966961    1
## 360  0.98966262    1
## 2742 0.98965882    1
## 3424 0.98965321    1
## 3840 0.98959739    1
## 218  0.98953559    1
## 5319 0.98952102    1
## 4097 0.98943604    1
## 3834 0.98943227    1
## 527  0.98942234    1
## 5182 0.98939838    1
## 4938 0.98934985    1
## 2459 0.98934229    1
## 3260 0.98934116    1
## 2600 0.98931770    1
## 4434 0.98926249    1
## 3871 0.98925612    1
## 4957 0.98921958    1
## 4673 0.98919849    1
## 4946 0.98914966    1
## 4753 0.98898617    1
## 3266 0.98894062    1
## 1677 0.98890909    1
## 420  0.98889903    1
## 2199 0.98889424    1
## 5189 0.98885678    1
## 5044 0.98884321    1
## 5371 0.98882233    1
## 877  0.98878582    1
## 696  0.98872913    1
## 2418 0.98869205    1
## 4675 0.98864559    1
## 4918 0.98863280    1
## 246  0.98862946    1
## 2590 0.98862239    1
## 4037 0.98862009    1
## 3718 0.98861156    1
## 1476 0.98858739    1
## 2031 0.98858348    1
## 4102 0.98855704    1
## 2415 0.98855247    1
## 3592 0.98854990    1
## 3984 0.98853923    1
## 4527 0.98851781    1
## 5181 0.98851633    1
## 3256 0.98850757    1
## 3305 0.98846770    1
## 2395 0.98843432    1
## 5220 0.98840703    1
## 3644 0.98838886    1
## 3722 0.98836977    1
## 4593 0.98836166    1
## 2984 0.98835097    1
## 3365 0.98829144    1
## 4576 0.98825495    1
## 1426 0.98825313    1
## 575  0.98821388    1
## 4666 0.98820960    1
## 5275 0.98813559    1
## 2897 0.98806150    1
## 2765 0.98804870    1
## 4840 0.98800679    1
## 3253 0.98800084    1
## 3464 0.98799459    1
## 2394 0.98798939    1
## 1055 0.98797852    1
## 2404 0.98797091    1
## 2026 0.98796491    1
## 1034 0.98787344    1
## 1971 0.98786735    1
## 3923 0.98785450    1
## 2173 0.98780378    1
## 1432 0.98770520    1
## 1458 0.98762810    1
## 2219 0.98759774    1
## 2640 0.98758503    1
## 5068 0.98757853    1
## 4893 0.98756468    1
## 1273 0.98755507    1
## 2226 0.98746997    1
## 709  0.98742689    1
## 4647 0.98738521    1
## 2955 0.98736632    1
## 4739 0.98733159    1
## 603  0.98728859    1
## 3188 0.98726351    1
## 5403 0.98724680    1
## 1363 0.98723848    1
## 3517 0.98720641    1
## 3410 0.98717480    1
## 4896 0.98716858    1
## 150  0.98715957    1
## 1200 0.98715505    1
## 3248 0.98712017    1
## 2511 0.98710667    1
## 3214 0.98706842    1
## 562  0.98706809    1
## 2451 0.98704522    1
## 1999 0.98702906    1
## 3710 0.98702208    1
## 2712 0.98701819    0
## 3480 0.98698788    1
## 5156 0.98689996    1
## 186  0.98686414    1
## 1    0.98677935    1
## 1103 0.98676881    1
## 3428 0.98672120    1
## 3024 0.98668433    1
## 4061 0.98663930    1
## 4324 0.98662943    1
## 3584 0.98660823    1
## 2228 0.98653675    1
## 2211 0.98646012    1
## 901  0.98636473    1
## 1431 0.98635964    1
## 1102 0.98631014    1
## 2303 0.98624812    1
## 1792 0.98619535    1
## 2757 0.98617777    1
## 3367 0.98613447    1
## 171  0.98612558    1
## 3686 0.98602069    1
## 3937 0.98595408    1
## 4405 0.98594768    1
## 2736 0.98590993    1
## 24   0.98589879    1
## 2956 0.98583669    1
## 866  0.98581665    1
## 4354 0.98572842    1
## 4447 0.98572244    1
## 3659 0.98565618    1
## 3171 0.98564946    1
## 5259 0.98556697    1
## 3259 0.98545151    1
## 341  0.98542431    1
## 5038 0.98539612    1
## 4481 0.98534152    1
## 3674 0.98528470    1
## 1826 0.98522852    1
## 1295 0.98522589    1
## 4857 0.98515568    1
## 1105 0.98514849    1
## 2638 0.98514036    1
## 2241 0.98513127    1
## 2431 0.98511358    1
## 1111 0.98505506    1
## 4812 0.98494925    1
## 2187 0.98489181    1
## 3699 0.98475783    1
## 1986 0.98472856    1
## 1069 0.98468236    1
## 182  0.98466728    1
## 4816 0.98458841    1
## 4250 0.98457392    1
## 5362 0.98451766    1
## 3050 0.98446096    1
## 2806 0.98443234    1
## 4133 0.98431111    1
## 437  0.98426870    1
## 4644 0.98421746    1
## 4757 0.98417930    1
## 1640 0.98417865    1
## 3098 0.98416392    1
## 4583 0.98416198    1
## 2044 0.98414737    1
## 2689 0.98409818    1
## 1992 0.98394417    1
## 3378 0.98392506    1
## 2447 0.98385053    1
## 3417 0.98384151    1
## 2982 0.98372333    1
## 4800 0.98359668    1
## 271  0.98347994    1
## 286  0.98347959    1
## 3025 0.98346515    1
## 5431 0.98341836    1
## 5464 0.98340888    1
## 2450 0.98340283    1
## 4224 0.98339205    1
## 1678 0.98337333    1
## 792  0.98331060    1
## 1082 0.98325619    1
## 3590 0.98325035    1
## 3714 0.98315439    1
## 3192 0.98312246    1
## 739  0.98311746    1
## 2797 0.98307889    1
## 4003 0.98303561    1
## 3211 0.98296920    1
## 3012 0.98293442    1
## 4218 0.98293252    1
## 694  0.98286064    1
## 1834 0.98284056    1
## 2986 0.98279401    1
## 733  0.98278329    1
## 1889 0.98275183    1
## 2698 0.98274435    1
## 1802 0.98274294    1
## 5359 0.98273578    1
## 1707 0.98272514    1
## 1437 0.98267902    1
## 2388 0.98257907    1
## 1461 0.98255603    1
## 2413 0.98251700    1
## 778  0.98247550    1
## 607  0.98244839    1
## 4374 0.98242943    1
## 1453 0.98240768    1
## 392  0.98239404    1
## 2513 0.98235295    1
## 4419 0.98230863    1
## 1459 0.98230646    1
## 2471 0.98225973    1
## 1248 0.98225463    1
## 883  0.98181340    1
## 5026 0.98178095    1
## 982  0.98175661    1
## 4445 0.98172290    1
## 3671 0.98170425    1
## 4293 0.98164538    1
## 3582 0.98163670    1
## 2896 0.98161918    1
## 2788 0.98160568    1
## 2828 0.98158465    1
## 2186 0.98157841    1
## 1759 0.98155343    1
## 299  0.98153573    1
## 5514 0.98151223    1
## 2409 0.98146389    1
## 3196 0.98144198    1
## 3163 0.98134106    1
## 2436 0.98129464    1
## 1106 0.98128794    1
## 903  0.98114016    1
## 3864 0.98107337    1
## 5498 0.98106475    1
## 2027 0.98102730    1
## 3058 0.98098913    1
## 3    0.98098186    1
## 359  0.98098186    1
## 3285 0.98085950    1
## 3858 0.98081817    1
## 5085 0.98080910    1
## 4790 0.98079713    1
## 3368 0.98060929    1
## 5271 0.98058363    1
## 4616 0.98056367    1
## 90   0.98052525    1
## 1464 0.98051557    1
## 4222 0.98049985    1
## 2633 0.98040529    1
## 4491 0.98040233    1
## 3645 0.98039439    1
## 812  0.98037033    1
## 2008 0.98024342    1
## 504  0.98007901    1
## 2764 0.98004833    1
## 4234 0.97982716    1
## 4810 0.97982608    1
## 4671 0.97968270    1
## 1995 0.97962283    1
## 2973 0.97957596    1
## 3458 0.97951168    1
## 2734 0.97947829    1
## 3051 0.97943054    1
## 5501 0.97939942    1
## 2019 0.97933254    1
## 5315 0.97930091    1
## 1263 0.97922087    1
## 361  0.97919785    1
## 5571 0.97918513    1
## 2022 0.97912510    1
## 5194 0.97907087    1
## 4002 0.97901466    1
## 5443 0.97896451    1
## 3825 0.97893589    1
## 4555 0.97893290    0
## 2208 0.97893042    1
## 3690 0.97869753    1
## 3399 0.97867267    1
## 1646 0.97866517    1
## 5263 0.97864185    1
## 4994 0.97861258    1
## 411  0.97859113    1
## 3366 0.97853412    1
## 5418 0.97844457    1
## 2010 0.97842767    1
## 146  0.97839321    1
## 3069 0.97826334    1
## 2560 0.97821045    1
## 4913 0.97817689    1
## 813  0.97813288    1
## 2650 0.97801426    1
## 4310 0.97793738    1
## 4362 0.97781918    1
## 1582 0.97780030    1
## 4043 0.97777949    1
## 3111 0.97775497    1
## 734  0.97771875    1
## 3213 0.97771857    1
## 635  0.97760516    0
## 4955 0.97759667    1
## 2005 0.97755810    1
## 5440 0.97755809    1
## 1286 0.97754261    1
## 3703 0.97749866    1
## 2566 0.97748642    1
## 2175 0.97743914    1
## 4343 0.97743421    1
## 5385 0.97728845    1
## 4606 0.97728822    1
## 3657 0.97728251    1
## 1548 0.97724956    0
## 3625 0.97722052    1
## 5523 0.97719729    1
## 3242 0.97709777    1
## 2393 0.97708143    1
## 4333 0.97703244    1
## 2811 0.97696271    1
## 4338 0.97695811    1
## 900  0.97685592    1
## 1818 0.97683465    1
## 4449 0.97681771    1
## 3900 0.97670543    1
## 3290 0.97669875    1
## 5016 0.97667616    1
## 3249 0.97664775    1
## 935  0.97662519    1
## 2819 0.97660125    1
## 4255 0.97653147    1
## 234  0.97647389    1
## 83   0.97646622    1
## 4300 0.97636747    1
## 4975 0.97630401    1
## 5288 0.97625919    1
## 4520 0.97617036    1
## 2457 0.97611211    1
## 3043 0.97602470    1
## 3167 0.97595595    1
## 2184 0.97595095    1
## 1980 0.97587487    1
## 3112 0.97585674    1
## 5090 0.97575554    1
## 3018 0.97569139    1
## 3967 0.97561958    1
## 3431 0.97548598    1
## 3616 0.97539336    1
## 4976 0.97536758    1
## 4178 0.97534388    1
## 2438 0.97531567    1
## 2735 0.97530891    1
## 3766 0.97525439    1
## 5540 0.97522624    1
## 4605 0.97515857    1
## 2891 0.97510205    1
## 875  0.97507023    1
## 4633 0.97503696    1
## 1411 0.97493048    1
## 2696 0.97481329    1
## 2305 0.97477903    1
## 5280 0.97463600    1
## 4517 0.97456854    1
## 337  0.97454989    1
## 3952 0.97454631    1
## 2943 0.97439428    1
## 703  0.97436769    1
## 4724 0.97423427    1
## 4053 0.97422955    1
## 1530 0.97411280    1
## 5487 0.97408694    1
## 3475 0.97406619    1
## 2639 0.97398735    1
## 5323 0.97383942    1
## 1096 0.97383067    1
## 893  0.97382357    1
## 3034 0.97367898    1
## 5256 0.97367848    1
## 4022 0.97363608    1
## 917  0.97354444    1
## 5012 0.97343322    1
## 2445 0.97333306    1
## 2893 0.97333043    1
## 2745 0.97326206    1
## 1510 0.97326009    1
## 2465 0.97322053    1
## 4486 0.97304670    1
## 3852 0.97299673    1
## 2015 0.97298052    1
## 3329 0.97292906    0
## 4431 0.97290137    1
## 5442 0.97287522    1
## 992  0.97286317    0
## 2564 0.97274299    1
## 168  0.97240898    1
## 5240 0.97239295    1
## 192  0.97233504    1
## 5335 0.97233279    1
## 4808 0.97226698    1
## 5089 0.97226118    1
## 3322 0.97220182    0
## 691  0.97209662    1
## 2243 0.97208236    1
## 651  0.97207527    1
## 2439 0.97205949    1
## 1429 0.97202389    1
## 1293 0.97192793    1
## 2218 0.97182391    1
## 4582 0.97180701    1
## 3389 0.97171759    1
## 2831 0.97151284    1
## 4560 0.97149659    1
## 2612 0.97148085    1
## 776  0.97133306    1
## 1593 0.97106784    1
## 2170 0.97106378    1
## 1847 0.97096754    1
## 5154 0.97093352    1
## 52   0.97088727    1
## 1009 0.97077065    1
## 4000 0.97073789    1
## 4604 0.97073118    1
## 2773 0.97047200    1
## 5216 0.97037363    1
## 4863 0.97009738    1
## 2195 0.96973471    1
## 3809 0.96966959    1
## 5184 0.96964708    1
## 3953 0.96934628    1
## 824  0.96930185    1
## 3222 0.96919223    1
## 4031 0.96914100    1
## 731  0.96909799    1
## 5517 0.96908920    1
## 2423 0.96902259    1
## 4518 0.96901288    1
## 2583 0.96897840    1
## 1362 0.96897423    1
## 1095 0.96888122    1
## 2158 0.96884524    1
## 1006 0.96883789    1
## 2446 0.96879972    1
## 2586 0.96873313    1
## 4603 0.96872035    1
## 5284 0.96866933    1
## 730  0.96858009    1
## 1305 0.96846548    1
## 4258 0.96835239    1
## 4073 0.96830266    1
## 4579 0.96825406    1
## 5450 0.96813245    1
## 4949 0.96809526    1
## 2681 0.96808704    1
## 4476 0.96800051    1
## 5039 0.96797029    1
## 3986 0.96795942    1
## 66   0.96789052    1
## 4581 0.96787971    1
## 1512 0.96773416    1
## 707  0.96772226    1
## 3620 0.96771149    1
## 3240 0.96766109    1
## 5243 0.96744679    1
## 4411 0.96741986    1
## 1450 0.96740742    1
## 2472 0.96737421    1
## 2185 0.96735076    1
## 1330 0.96724164    1
## 450  0.96719601    0
## 4744 0.96706737    1
## 595  0.96705745    1
## 5350 0.96703694    1
## 324  0.96702259    1
## 4516 0.96684252    1
## 1623 0.96682055    1
## 4868 0.96680691    1
## 3220 0.96675694    1
## 4444 0.96671446    1
## 4439 0.96666878    1
## 5328 0.96662144    1
## 5282 0.96658907    1
## 3528 0.96655628    1
## 2660 0.96655525    1
## 2135 0.96640725    1
## 2557 0.96635287    1
## 1311 0.96633593    1
## 4745 0.96633355    1
## 4782 0.96623707    1
## 1406 0.96620532    1
## 5516 0.96615905    1
## 1270 0.96604159    1
## 5349 0.96586761    1
## 1790 0.96579210    1
## 4954 0.96552444    1
## 3047 0.96548435    1
## 3317 0.96544089    1
## 5176 0.96536744    1
## 5178 0.96530633    1
## 1477 0.96510635    1
## 4742 0.96503139    1
## 3664 0.96498733    1
## 3441 0.96496015    1
## 4859 0.96471715    1
## 5347 0.96464421    1
## 2256 0.96459902    1
## 623  0.96445960    0
## 3042 0.96430867    1
## 3306 0.96419376    1
## 1218 0.96416919    1
## 5456 0.96402570    1
## 4203 0.96399555    0
## 1278 0.96379014    1
## 3391 0.96365708    1
## 4385 0.96364148    1
## 3454 0.96359357    1
## 1534 0.96353489    1
## 3983 0.96349515    1
## 71   0.96333717    1
## 3413 0.96318888    1
## 97   0.96303775    1
## 876  0.96291482    1
## 1117 0.96272151    1
## 3489 0.96243826    1
## 318  0.96238496    1
## 1819 0.96227057    1
## 5169 0.96209077    1
## 4848 0.96207102    1
## 1655 0.96195123    1
## 248  0.96185230    1
## 469  0.96184493    1
## 2385 0.96173614    1
## 4751 0.96165986    1
## 5206 0.96162240    1
## 4122 0.96162069    1
## 1425 0.96161224    1
## 5551 0.96159416    1
## 260  0.96139929    1
## 790  0.96136238    1
## 222  0.96135502    1
## 1214 0.96131163    1
## 3733 0.96117047    1
## 5393 0.96093804    1
## 2622 0.96087644    1
## 2694 0.96077201    1
## 5287 0.96075781    1
## 406  0.96063105    1
## 1364 0.96037246    1
## 3728 0.96036941    1
## 2552 0.96018895    1
## 1407 0.96005385    1
## 4886 0.95992846    1
## 4942 0.95982469    1
## 3961 0.95974049    1
## 581  0.95955705    1
## 4624 0.95944593    1
## 1719 0.95931288    1
## 4287 0.95902797    1
## 1334 0.95897247    1
## 3987 0.95873158    1
## 122  0.95855006    1
## 1301 0.95849270    1
## 3849 0.95847824    1
## 4515 0.95818580    1
## 4556 0.95811147    0
## 333  0.95806582    1
## 3505 0.95799085    1
## 5549 0.95793440    1
## 2301 0.95778758    1
## 1192 0.95776057    1
## 1844 0.95770579    1
## 3226 0.95770342    1
## 2877 0.95764389    1
## 2770 0.95757967    1
## 2049 0.95753768    1
## 1156 0.95750033    1
## 618  0.95731156    1
## 533  0.95724674    1
## 4847 0.95712824    1
## 4301 0.95690202    1
## 4959 0.95680522    1
## 4825 0.95664051    1
## 819  0.95643704    1
## 599  0.95643069    1
## 4280 0.95623824    1
## 3963 0.95622152    1
## 5045 0.95619609    1
## 3233 0.95575746    1
## 4817 0.95575047    1
## 3257 0.95571774    1
## 57   0.95561060    1
## 1149 0.95542697    1
## 963  0.95530831    1
## 4221 0.95526123    1
## 1866 0.95521736    1
## 3685 0.95500148    1
## 5180 0.95492114    1
## 5151 0.95465321    1
## 346  0.95449001    1
## 3414 0.95434116    1
## 5322 0.95424938    1
## 523  0.95380014    1
## 4103 0.95377644    1
## 997  0.95369059    0
## 4124 0.95363086    1
## 503  0.95344439    1
## 1397 0.95337343    1
## 3437 0.95325068    1
## 3239 0.95322736    1
## 1550 0.95317688    0
## 2377 0.95308947    1
## 4197 0.95288425    1
## 1246 0.95283445    1
## 5254 0.95283088    1
## 1651 0.95281582    1
## 1428 0.95278819    1
## 2129 0.95277005    1
## 4723 0.95266861    1
## 3190 0.95265523    1
## 3959 0.95252130    1
## 4436 0.95242259    1
## 3951 0.95240255    1
## 2250 0.95238944    1
## 2338 0.95208369    1
## 715  0.95207352    1
## 2255 0.95164917    1
## 3970 0.95156603    1
## 2426 0.95136000    1
## 549  0.95105694    1
## 3746 0.95096201    1
## 5225 0.95090670    1
## 5351 0.95074675    1
## 2018 0.95061383    1
## 3742 0.95045442    1
## 4001 0.95044584    1
## 2651 0.95041559    1
## 5532 0.95040849    1
## 2030 0.95036498    1
## 1452 0.95031638    1
## 2384 0.95030574    1
## 1091 0.95013094    1
## 4681 0.95009315    1
## 322  0.95007650    1
## 3331 0.95006097    1
## 2790 0.95004250    1
## 1141 0.94989826    1
## 3421 0.94987315    1
## 3462 0.94983016    1
## 5058 0.94978005    1
## 3234 0.94973490    1
## 2306 0.94962479    1
## 2119 0.94957725    1
## 3962 0.94941316    1
## 4312 0.94939425    1
## 4714 0.94917830    0
## 4684 0.94917625    1
## 317  0.94910360    1
## 4040 0.94909401    1
## 4414 0.94907200    1
## 4528 0.94902629    1
## 3157 0.94896974    1
## 2923 0.94868534    1
## 2714 0.94864793    1
## 3020 0.94853572    1
## 1571 0.94851945    0
## 589  0.94841755    1
## 1148 0.94831806    1
## 3704 0.94815724    1
## 4079 0.94815111    1
## 1340 0.94799820    1
## 4991 0.94799040    1
## 979  0.94794769    1
## 4269 0.94775502    1
## 1490 0.94756055    1
## 1108 0.94746892    1
## 1109 0.94740396    1
## 4475 0.94733092    1
## 1643 0.94715468    1
## 2794 0.94703154    1
## 3450 0.94702616    1
## 4526 0.94693025    1
## 2056 0.94673288    1
## 3580 0.94665156    1
## 2296 0.94662918    1
## 1083 0.94653763    1
## 3355 0.94649945    1
## 3509 0.94642352    1
## 2463 0.94614048    1
## 5389 0.94575085    1
## 2461 0.94571227    1
## 4501 0.94564140    1
## 1860 0.94538824    1
## 5232 0.94521438    1
## 2180 0.94511551    1
## 2626 0.94485667    1
## 3913 0.94480150    1
## 3063 0.94455640    1
## 4159 0.94451201    1
## 5561 0.94420023    1
## 1533 0.94413228    1
## 2307 0.94410902    1
## 3989 0.94407116    1
## 1817 0.94383555    1
## 1197 0.94375634    1
## 3005 0.94360127    1
## 1881 0.94357631    1
## 4707 0.94346285    0
## 4659 0.94323248    1
## 4984 0.94313133    1
## 4548 0.94310294    1
## 203  0.94298796    1
## 3621 0.94297228    1
## 1556 0.94296892    1
## 2620 0.94286293    1
## 5520 0.94239615    1
## 5494 0.94220243    1
## 1631 0.94214922    1
## 445  0.94212489    1
## 3425 0.94211187    1
## 561  0.94209479    1
## 4487 0.94204414    1
## 2713 0.94201396    1
## 4257 0.94197724    1
## 2009 0.94170083    1
## 3841 0.94154210    1
## 2843 0.94149730    1
## 4052 0.94146057    1
## 1517 0.94124273    1
## 4125 0.94107462    1
## 3519 0.94105471    1
## 548  0.94104241    1
## 588  0.94104241    1
## 415  0.94095505    1
## 467  0.94095505    1
## 4623 0.94078689    1
## 3978 0.94061010    1
## 1387 0.94046594    1
## 4570 0.94040032    1
## 441  0.94019216    1
## 5274 0.94018092    1
## 3754 0.94007094    1
## 986  0.94002973    1
## 3032 0.93997765    1
## 3320 0.93989581    1
## 3430 0.93980125    1
## 1240 0.93975532    1
## 585  0.93973183    1
## 592  0.93973183    1
## 207  0.93964266    1
## 178  0.93955336    1
## 2499 0.93953929    1
## 267  0.93952442    1
## 3444 0.93943826    1
## 2802 0.93921466    1
## 2597 0.93919029    1
## 1176 0.93899392    0
## 5015 0.93895087    1
## 2278 0.93894431    1
## 2209 0.93894170    1
## 4098 0.93887026    1
## 3626 0.93881668    1
## 1892 0.93846550    1
## 2990 0.93838037    1
## 4229 0.93831175    1
## 3144 0.93821970    1
## 4908 0.93802760    1
## 505  0.93793620    1
## 2400 0.93779776    1
## 1239 0.93759959    1
## 2916 0.93745247    1
## 91   0.93737827    1
## 4174 0.93729439    1
## 5067 0.93717771    1
## 2434 0.93712094    1
## 3654 0.93679292    1
## 3155 0.93634670    1
## 2183 0.93597738    1
## 2455 0.93589779    1
## 4237 0.93579439    1
## 1196 0.93556405    1
## 2762 0.93542446    1
## 559  0.93525248    1
## 3350 0.93502406    0
## 3985 0.93501118    1
## 3740 0.93498750    1
## 4232 0.93487471    1
## 2867 0.93486321    1
## 5233 0.93476677    1
## 3911 0.93474485    1
## 3241 0.93432029    1
## 4036 0.93425994    1
## 1353 0.93420734    1
## 5305 0.93400409    1
## 2792 0.93360002    1
## 4360 0.93342163    1
## 5538 0.93316470    0
## 2658 0.93297411    1
## 5415 0.93235641    1
## 2207 0.93207678    1
## 1788 0.93180526    1
## 3534 0.93164889    0
## 3237 0.93161557    1
## 3153 0.93158171    1
## 5042 0.93156377    1
## 3611 0.93141164    1
## 2795 0.93100348    1
## 2873 0.93094322    1
## 759  0.93077599    1
## 4608 0.93065861    1
## 5544 0.93050675    1
## 610  0.93038954    1
## 2349 0.93023751    1
## 1123 0.92993002    1
## 3302 0.92973103    1
## 2070 0.92957961    1
## 4116 0.92887562    1
## 4775 0.92883284    1
## 5055 0.92849743    1
## 1191 0.92843191    1
## 5441 0.92808265    1
## 532  0.92776450    1
## 3086 0.92756822    1
## 5416 0.92749334    1
## 5301 0.92734034    1
## 3759 0.92730240    1
## 5269 0.92671075    1
## 2016 0.92660931    1
## 1115 0.92650398    1
## 2673 0.92605731    1
## 4211 0.92579954    1
## 5518 0.92575545    1
## 5439 0.92575156    1
## 3347 0.92571758    1
## 2940 0.92565063    1
## 1688 0.92551680    1
## 1321 0.92544947    1
## 1489 0.92540827    1
## 4507 0.92534293    1
## 1308 0.92529958    1
## 933  0.92523208    1
## 4308 0.92509414    1
## 3420 0.92497834    1
## 2756 0.92480900    1
## 2251 0.92436899    1
## 55   0.92392282    1
## 1294 0.92379212    1
## 625  0.92359046    0
## 2320 0.92357880    0
## 2997 0.92355221    1
## 4731 0.92346176    1
## 3558 0.92308149    1
## 2542 0.92304409    1
## 920  0.92301772    1
## 1540 0.92301645    1
## 3739 0.92286289    1
## 4950 0.92282765    1
## 93   0.92279080    1
## 5252 0.92272120    1
## 2252 0.92213981    1
## 2523 0.92172181    0
## 5030 0.92161481    1
## 2798 0.92158326    1
## 4550 0.92156992    1
## 3889 0.92153583    1
## 3757 0.92146165    1
## 3762 0.92125564    1
## 4650 0.92110019    1
## 3635 0.92091122    1
## 3140 0.92082565    1
## 1475 0.92078637    1
## 4877 0.92063071    0
## 2097 0.92050577    1
## 2669 0.92049203    1
## 3110 0.92045933    1
## 5251 0.92036554    1
## 1934 0.92014621    1
## 1132 0.92003555    1
## 1365 0.91997253    1
## 5559 0.91986465    1
## 2191 0.91981979    1
## 972  0.91981222    1
## 1813 0.91959182    1
## 4693 0.91946145    1
## 2894 0.91940414    1
## 1303 0.91920661    1
## 1161 0.91834858    1
## 3510 0.91817046    1
## 4118 0.91783206    1
## 2807 0.91757167    1
## 2863 0.91717761    1
## 3613 0.91703967    1
## 3562 0.91674661    1
## 4016 0.91632361    1
## 1154 0.91626564    1
## 749  0.91604300    1
## 2113 0.91532923    1
## 1717 0.91530530    1
## 1650 0.91480715    1
## 2285 0.91445509    1
## 3279 0.91440943    1
## 3076 0.91426103    1
## 2302 0.91418163    1
## 5564 0.91393591    0
## 3892 0.91349925    1
## 4087 0.91343864    1
## 4764 0.91306208    1
## 3102 0.91300064    1
## 3267 0.91284161    1
## 2503 0.91262498    1
## 550  0.91204653    1
## 4732 0.91195420    1
## 2718 0.91157748    1
## 1547 0.91142603    1
## 3870 0.91134922    1
## 1394 0.91109670    1
## 1499 0.91076100    1
## 1333 0.91066994    1
## 5460 0.91028617    1
## 2708 0.91025812    0
## 4023 0.91022558    1
## 1620 0.90981889    1
## 2311 0.90976076    1
## 602  0.90963016    1
## 3801 0.90961735    1
## 1026 0.90934102    1
## 109  0.90915166    1
## 5130 0.90903201    1
## 1730 0.90894842    0
## 962  0.90813060    1
## 3125 0.90791127    0
## 3126 0.90778111    1
## 5529 0.90672859    1
## 3040 0.90656211    1
## 2227 0.90645814    1
## 4212 0.90435731    1
## 1935 0.90410580    1
## 3147 0.90392119    1
## 767  0.90361992    1
## 4686 0.90351821    1
## 5121 0.90345405    1
## 5128 0.90287838    1
## 5340 0.90273088    0
## 1121 0.90231163    1
## 4470 0.90226469    1
## 4620 0.90204292    1
## 6    0.90159633    1
## 2727 0.90158174    1
## 4156 0.90146317    1
## 4689 0.90066510    1
## 2343 0.90047247    0
## 1673 0.90021190    1
## 2676 0.90004379    1
## 4366 0.89917176    1
## 1876 0.89914009    1
## 4051 0.89911178    1
## 3070 0.89869562    1
## 221  0.89857841    1
## 1511 0.89850165    1
## 425  0.89837370    1
## 4795 0.89836227    1
## 5231 0.89807299    1
## 1947 0.89721890    1
## 3737 0.89714598    1
## 930  0.89710900    1
## 3344 0.89697505    1
## 4915 0.89686456    0
## 3552 0.89683519    1
## 2333 0.89676719    1
## 1743 0.89673665    1
## 1927 0.89669945    1
## 3876 0.89669383    1
## 2675 0.89661077    1
## 543  0.89659459    1
## 2477 0.89630070    1
## 4759 0.89618534    1
## 742  0.89613638    1
## 2107 0.89612887    0
## 871  0.89555783    1
## 2071 0.89537867    1
## 3572 0.89534995    1
## 1576 0.89502056    1
## 5135 0.89494934    1
## 1012 0.89488765    1
## 160  0.89459255    1
## 463  0.89419182    1
## 1332 0.89416991    1
## 5124 0.89311978    1
## 5318 0.89238745    1
## 926  0.89231314    1
## 242  0.89206424    1
## 1654 0.89181253    1
## 4873 0.89150957    1
## 1930 0.89147216    1
## 3732 0.89142271    1
## 638  0.89105963    1
## 2486 0.89060258    1
## 2851 0.88987166    1
## 2206 0.88961051    1
## 2279 0.88953115    1
## 2029 0.88945590    1
## 3119 0.88912122    0
## 2205 0.88891229    1
## 212  0.88889108    0
## 662  0.88836415    1
## 3998 0.88828396    1
## 1546 0.88796556    1
## 1304 0.88785927    1
## 5258 0.88776726    1
## 4590 0.88721869    1
## 397  0.88685907    1
## 89   0.88670110    1
## 111  0.88670110    1
## 619  0.88616203    0
## 4509 0.88596788    1
## 1514 0.88566827    1
## 4709 0.88547009    0
## 3324 0.88525368    0
## 2870 0.88462725    1
## 4186 0.88457361    1
## 2927 0.88289159    1
## 4282 0.88273362    1
## 560  0.88268619    1
## 2476 0.88259029    1
## 3747 0.88163553    1
## 1388 0.88135617    1
## 3748 0.88087934    1
## 3299 0.88054428    1
## 556  0.88046734    1
## 572  0.88046734    1
## 2925 0.88033944    1
## 3059 0.87996736    1
## 611  0.87976008    1
## 1343 0.87934939    1
## 786  0.87906482    1
## 1378 0.87892929    1
## 582  0.87821232    1
## 4390 0.87812246    0
## 3085 0.87756045    1
## 2900 0.87739129    0
## 2210 0.87637037    1
## 955  0.87626236    1
## 3231 0.87602562    1
## 3575 0.87569797    1
## 4754 0.87542420    1
## 4749 0.87480733    1
## 4494 0.87470566    1
## 4611 0.87460653    1
## 1519 0.87445847    1
## 4609 0.87429500    1
## 799  0.87350018    1
## 1153 0.87313717    1
## 2854 0.87099863    1
## 803  0.87059762    0
## 1016 0.87052470    1
## 3494 0.87008898    1
## 5139 0.86985707    1
## 1641 0.86871220    1
## 4823 0.86845391    1
## 4768 0.86784820    1
## 2263 0.86711877    1
## 3783 0.86706696    0
## 889  0.86632978    1
## 5331 0.86617342    1
## 2253 0.86583568    1
## 126  0.86569218    1
## 3498 0.86561155    1
## 2121 0.86495010    1
## 2833 0.86415840    1
## 3910 0.86411094    1
## 1868 0.86347385    1
## 5478 0.86233881    1
## 2555 0.86113805    0
## 275  0.86110660    0
## 5257 0.86050430    1
## 2440 0.86027017    1
## 4538 0.85973018    1
## 1879 0.85958019    1
## 1669 0.85918375    1
## 1553 0.85908007    0
## 3805 0.85897034    1
## 1189 0.85893378    1
## 5021 0.85875336    1
## 3877 0.85865485    1
## 23   0.85854501    1
## 1756 0.85831840    1
## 4529 0.85766712    1
## 4532 0.85765189    1
## 4451 0.85747494    1
## 3484 0.85723520    1
## 3332 0.85684429    1
## 2859 0.85534664    1
## 2862 0.85534138    1
## 2268 0.85476163    1
## 4205 0.85379720    1
## 4210 0.85349672    1
## 4460 0.85215361    1
## 1368 0.85164681    0
## 1162 0.85151525    1
## 4341 0.85109847    1
## 1922 0.85094112    1
## 2341 0.85074052    1
## 1744 0.85068090    1
## 1645 0.85029099    1
## 2899 0.85007143    0
## 1916 0.84932735    0
## 991  0.84908288    0
## 1853 0.84900155    1
## 1686 0.84879973    1
## 4910 0.84800629    1
## 1932 0.84743247    0
## 2909 0.84598868    0
## 3756 0.84514528    1
## 1693 0.84475465    1
## 3804 0.84451827    1
## 3793 0.84441495    1
## 995  0.84392748    0
## 3543 0.84373644    1
## 3301 0.84361466    1
## 1516 0.84358842    1
## 1946 0.84355858    0
## 567  0.84351255    1
## 4572 0.84291683    1
## 209  0.84256009    1
## 3749 0.84121090    1
## 3774 0.84121090    1
## 4901 0.84113288    1
## 136  0.84064102    1
## 4078 0.84004343    1
## 4288 0.83902193    1
## 1701 0.83886729    1
## 5285 0.83839427    1
## 2813 0.83829325    1
## 768  0.83803293    1
## 3785 0.83786635    0
## 571  0.83781925    1
## 1684 0.83723375    1
## 3784 0.83545020    0
## 2581 0.83506780    1
## 3678 0.83500080    1
## 1173 0.83497521    0
## 5437 0.83486293    1
## 3097 0.83480026    1
## 1555 0.83399982    0
## 2294 0.83393049    1
## 584  0.83344053    1
## 5108 0.83331646    1
## 1681 0.83273219    1
## 2926 0.83243166    1
## 3730 0.83175304    1
## 38   0.83100721    0
## 4473 0.83074310    1
## 4095 0.82984877    1
## 5065 0.82978843    1
## 4368 0.82939160    1
## 5534 0.82879955    1
## 3513 0.82856758    1
## 5143 0.82839017    0
## 2474 0.82645857    1
## 2355 0.82631173    1
## 754  0.82615930    1
## 3159 0.82584574    1
## 5202 0.82506231    1
## 5388 0.82337747    1
## 2554 0.82261662    1
## 1116 0.82194058    1
## 910  0.82031300    1
## 2930 0.82030027    1
## 1136 0.81901760    1
## 189  0.81808283    1
## 3349 0.81741670    1
## 2290 0.81725990    1
## 5173 0.81617653    1
## 4162 0.81535255    1
## 5164 0.81529280    1
## 608  0.81517900    1
## 4761 0.81420117    1
## 1023 0.81306784    1
## 3781 0.81303638    0
## 5114 0.81248260    0
## 5070 0.81224925    0
## 3796 0.81214412    1
## 384  0.81167092    1
## 2733 0.81107911    0
## 2938 0.81093270    1
## 4960 0.80997924    1
## 3725 0.80862599    1
## 1554 0.80842397    0
## 2308 0.80841007    1
## 1451 0.80743450    1
## 2671 0.80740560    1
## 1396 0.80737106    1
## 969  0.80693890    1
## 4696 0.80612031    1
## 1656 0.80541197    1
## 5172 0.80511994    1
## 5469 0.80441217    0
## 1507 0.80360290    1
## 4207 0.80334988    1
## 1940 0.80306305    1
## 1751 0.80266674    1
## 1885 0.80175675    1
## 2917 0.80031380    1
## 3337 0.80022254    0
## 4206 0.79960501    1
## 484  0.79871813    0
## 2351 0.79797668    1
## 5326 0.79717182    1
## 3731 0.79616767    1
## 1215 0.79615680    1
## 3354 0.79582862    1
## 3736 0.79547696    1
## 2559 0.79486234    1
## 2358 0.79457998    1
## 1727 0.79440514    0
## 1315 0.79425321    1
## 3872 0.79399268    1
## 1138 0.79390070    1
## 3282 0.79313879    1
## 3554 0.79236883    1
## 393  0.79189281    1
## 2936 0.79127977    1
## 2939 0.79048337    1
## 2876 0.79041912    1
## 2325 0.78894392    0
## 311  0.78890796    0
## 3313 0.78882345    1
## 313  0.78793821    0
## 3512 0.78766703    1
## 67   0.78674673    0
## 1032 0.78634894    1
## 106  0.78603267    1
## 641  0.78506825    0
## 250  0.78505150    1
## 141  0.78342616    1
## 756  0.78150056    1
## 1360 0.77912035    1
## 1573 0.77654032    1
## 569  0.77640026    1
## 753  0.77630442    1
## 3121 0.77626140    0
## 3743 0.77620380    1
## 2686 0.77548504    1
## 4292 0.77475256    1
## 2906 0.77369106    0
## 4429 0.77354727    1
## 2    0.77344577    1
## 2114 0.77309125    1
## 761  0.77295761    1
## 952  0.77281756    1
## 348  0.77241236    1
## 2685 0.77199492    1
## 1129 0.77168052    1
## 1732 0.76840298    0
## 118  0.76688545    0
## 1515 0.76654706    1
## 2547 0.76622510    1
## 1926 0.76563458    1
## 1925 0.76516753    0
## 1038 0.76406585    1
## 758  0.76274519    1
## 3502 0.75924106    1
## 2282 0.75805715    1
## 1862 0.75728503    1
## 5492 0.75583238    1
## 1143 0.75258102    1
## 285  0.75250129    1
## 4867 0.75152997    1
## 2518 0.75077307    0
## 4393 0.74888618    1
## 4372 0.74848030    1
## 653  0.74625662    1
## 4929 0.74304717    1
## 3339 0.73865262    1
## 977  0.73610782    1
## 628  0.73307304    0
## 4110 0.73029387    0
## 915  0.72781930    1
## 3287 0.72777023    1
## 2488 0.72749563    1
## 287  0.72615674    1
## 840  0.72540356    1
## 4377 0.72455334    1
## 4458 0.72082755    1
## 1570 0.72056836    1
## 4701 0.71977905    1
## 39   0.71956508    1
## 2287 0.71931828    1
## 4112 0.71781252    1
## 1166 0.71502781    1
## 2684 0.71499416    1
## 480  0.71487157    1
## 4093 0.71468049    1
## 4711 0.71428214    0
## 2878 0.71424407    1
## 2879 0.71373387    1
## 5352 0.71056651    1
## 547  0.70839971    1
## 1374 0.70837333    0
## 2115 0.70825299    0
## 283  0.70794448    0
## 17   0.70742370    0
## 243  0.70742370    1
## 2532 0.70736371    1
## 566  0.70707149    1
## 130  0.70674549    1
## 232  0.70546432    0
## 2329 0.70460312    1
## 4188 0.70368587    1
## 1401 0.70287228    1
## 1551 0.70119263    0
## 2725 0.70091974    0
## 4094 0.70090935    1
## 236  0.69938762    0
## 1699 0.69705286    1
## 104  0.69627925    1
## 4831 0.69538351    0
## 2363 0.69475319    1
## 269  0.69403725    1
## 2127 0.69338286    0
## 765  0.69085923    1
## 808  0.69085923    0
## 3156 0.69063026    1
## 3878 0.68474047    1
## 2122 0.68307563    0
## 764  0.67560033    1
## 5117 0.67493382    1
## 4770 0.67374933    0
## 3280 0.66388508    1
## 1990 0.66070819    1
## 1180 0.65105236    0
## 2517 0.65065729    0
## 3525 0.64880580    1
## 1152 0.64814968    1
## 303  0.64678679    0
## 5581 0.64659629    1
## 984  0.64413108    1
## 5177 0.64011879    1
## 1211 0.63328677    1
## 1520 0.62998968    1
## 785  0.62404436    1
## 2875 0.61811376    1
## 4092 0.61445036    1
## 1170 0.61363126    1
## 2913 0.60725812    0
## 970  0.60655925    1
## 4916 0.60327118    1
## 4392 0.60324485    1
## 1405 0.58850229    1
## 2929 0.58597873    1
## 996  0.58031045    0
## 253  0.55871812    1
## 181  0.55389221    1
## 831  0.54015774    0
## 4776 0.52999173    1
## 2716 0.51998585    1
## 3571 0.49756059    0
## 3899 0.46802094    1
## 3565 0.39921468    1
## 3803 0.39137566    1
## 3496 0.35724644    1
## 2717 0.34943577    0
## 3352 0.34107184    0
## 1027 0.32744738    0
## 208  0.32020076    0
## 3346 0.26730153    1
## 193  0.25481192    0
## 1217 0.24885290    0
## 2342 0.23904480    1
## 449  0.23700307    1
## 237  0.23623731    0
## 1399 0.23459911    0
## 3341 0.23413779    1
## 828  0.23373203    1
## 3136 0.22947139    1
## 1943 0.22676000    0
## 3269 0.20920691    1
## 4469 0.20006782    0
## 3550 0.19442300    0
## 832  0.17207737    0
## 4967 0.15009901    0
## 4969 0.06234154    1
## 1725 0.03893029    0
xbar=mean(ynew)
xbar
## [1] 0.9311164
axis=dim(n2)
ax=dim(n2)
ay=dim(n2)
axis[1]=1
ax[1]=xbar
ay[1]=bb1[1,2]
for (i in 2:n2) {
  axis[i]=i
  ax[i]=xbar*i
  ay[i]=ay[i-1]+bb1[i,2]
}
aaa=cbind(bb1[,1],bb1[,2],ay,ax)
aaa[1:100,]
##                  ay         ax
## 5592 1.0000000 1  1  0.9311164
## 5593 1.0000000 1  2  1.8622328
## 5595 1.0000000 1  3  2.7933492
## 5606 1.0000000 1  4  3.7244656
## 5609 1.0000000 1  5  4.6555819
## 5610 1.0000000 1  6  5.5866983
## 5587 0.9998041 1  7  6.5178147
## 96   0.9992242 1  8  7.4489311
## 436  0.9992056 1  9  8.3800475
## 1053 0.9991750 1 10  9.3111639
## 88   0.9991462 1 11 10.2422803
## 448  0.9990920 1 12 11.1733967
## 474  0.9990831 1 13 12.1045131
## 1784 0.9990808 1 14 13.0356295
## 264  0.9990749 1 15 13.9667458
## 1961 0.9990625 1 16 14.8978622
## 4005 0.9990578 1 17 15.8289786
## 865  0.9990463 1 18 16.7600950
## 2372 0.9990273 1 19 17.6912114
## 1779 0.9990214 1 20 18.6223278
## 4006 0.9990032 1 21 19.5534442
## 864  0.9989925 1 22 20.4845606
## 2382 0.9989816 1 23 21.4156770
## 853  0.9989477 1 24 22.3467933
## 9    0.9989262 1 25 23.2779097
## 5541 0.9988556 1 26 24.2090261
## 369  0.9988433 1 27 25.1401425
## 3186 0.9988319 1 28 26.0712589
## 2963 0.9986276 1 29 27.0023753
## 451  0.9986243 1 30 27.9334917
## 256  0.9985823 1 31 28.8646081
## 2966 0.9984462 1 32 29.7957245
## 681  0.9983443 1 33 30.7268409
## 4789 0.9983320 1 34 31.6579572
## 5294 0.9981312 1 35 32.5890736
## 153  0.9981255 1 36 33.5201900
## 1606 0.9980727 1 37 34.4513064
## 305  0.9980709 1 38 35.3824228
## 3361 0.9980554 1 39 36.3135392
## 2147 0.9979662 1 40 37.2446556
## 850  0.9979640 1 41 38.1757720
## 254  0.9979579 1 42 39.1068884
## 127  0.9979409 1 43 40.0380048
## 5260 0.9979398 1 44 40.9691211
## 2752 0.9979396 1 45 41.9002375
## 1423 0.9979020 1 46 42.8313539
## 185  0.9978733 1 47 43.7624703
## 112  0.9978724 1 48 44.6935867
## 69   0.9978567 1 49 45.6247031
## 4725 0.9978446 1 50 46.5558195
## 2373 0.9978026 1 51 47.4869359
## 1075 0.9977055 1 52 48.4180523
## 2592 0.9976718 1 53 49.3491686
## 3371 0.9975280 1 54 50.2802850
## 3375 0.9974528 1 55 51.2114014
## 5034 0.9973377 1 56 52.1425178
## 3019 0.9973061 1 57 53.0736342
## 277  0.9972838 1 58 54.0047506
## 4734 0.9972496 1 59 54.9358670
## 620  0.9971861 0 59 55.8669834
## 1599 0.9971531 1 60 56.7980998
## 390  0.9971503 1 61 57.7292162
## 851  0.9971142 1 62 58.6603325
## 4786 0.9971010 1 63 59.5914489
## 1062 0.9969869 1 64 60.5225653
## 1814 0.9969467 1 65 61.4536817
## 454  0.9969444 1 66 62.3847981
## 594  0.9969082 1 67 63.3159145
## 3382 0.9969009 1 68 64.2470309
## 3180 0.9968967 1 69 65.1781473
## 4146 0.9967968 1 70 66.1092637
## 54   0.9967949 1 71 67.0403800
## 114  0.9967821 1 72 67.9714964
## 1229 0.9967291 1 73 68.9026128
## 3310 0.9966870 1 74 69.8337292
## 1247 0.9966659 1 75 70.7648456
## 1231 0.9966103 1 76 71.6959620
## 382  0.9965452 1 77 72.6270784
## 861  0.9965450 1 78 73.5581948
## 2779 0.9965229 1 79 74.4893112
## 2231 0.9963832 1 80 75.4204276
## 3308 0.9963763 1 81 76.3515439
## 1442 0.9963586 1 82 77.2826603
## 2957 0.9963539 1 83 78.2137767
## 3046 0.9963302 1 84 79.1448931
## 3369 0.9963280 1 85 80.0760095
## 4029 0.9963145 1 86 81.0071259
## 1251 0.9962981 1 87 81.9382423
## 1037 0.9962574 1 88 82.8693587
## 2606 0.9962458 1 89 83.8004751
## 4323 0.9961135 1 90 84.7315914
## 722  0.9960974 1 91 85.6627078
## 1809 0.9960762 1 92 86.5938242
## 4792 0.9960738 1 93 87.5249406
## 1627 0.9960314 1 94 88.4560570
## 4096 0.9959908 1 95 89.3871734
## 793  0.9959625 1 96 90.3182898
## 4011 0.9959153 1 97 91.2494062
## 5155 0.9959096 1 98 92.1805226
## 4892 0.9958807 1 99 93.1116390

Finally we calculated the lift and the following plot shows it.

plot(axis,ay,xlab="number of cases",ylab="number of successes",main="Lift: CUM successes sorted by pred val/success prob")
points(axis,ax,type="l")

Titanic Data

The following model will try to predict if a passenger will survive the sinking of the Titanic. Survival is coded as a 1.

library(car)

T <- read.csv("~/Business Analytics/Titanic.csv")
T = T[-9:-11]
T$Gender=recode(T$Gender, "'male'=1; else=0")
T$Gender=as.numeric(levels(T$Gender)[T$Gender])

Next I will split the data into a training set and test set.

n = length(T$Survived)
n1 = floor(n*(.7))
n1
## [1] 730
n2 = n-n1
train = sample(1:n,n1)

Then I will find the model of the data.

XT <- model.matrix(Survived~., data = T)[,-1]
XT[1:3,]
##   Class Gender     Age NumbSibOrSpsAbd NumbParOrChildAbd     Fare
## 1     1      0 29.0000               0                 0 211.3375
## 2     1      1  0.9167               1                 2 151.5500
## 3     1      0  2.0000               1                 2 151.5500
##   EmbarkedAtQ EmbarkedAtS
## 1           0           1
## 2           0           1
## 3           0           1
xtrain <- XT[train,]
xnew <- XT[-train,]
ytrain <- T$Survived[train]
ynew <- T$Survived[-train]
m2=glm(Survived~.,family=binomial,data=data.frame(Survived=ytrain,xtrain))
summary(m2)
## 
## Call:
## glm(formula = Survived ~ ., family = binomial, data = data.frame(Survived = ytrain, 
##     xtrain))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1989  -0.6982  -0.4138   0.6316   2.5035  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        5.3039565  0.6185117   8.575  < 2e-16 ***
## Class             -0.9260208  0.1607787  -5.760 8.43e-09 ***
## Gender            -2.6607217  0.2160287 -12.317  < 2e-16 ***
## Age               -0.0415196  0.0080586  -5.152 2.57e-07 ***
## NumbSibOrSpsAbd   -0.3100787  0.1279962  -2.423  0.01541 *  
## NumbParOrChildAbd -0.0178921  0.1270975  -0.141  0.88805    
## Fare               0.0007795  0.0024092   0.324  0.74627    
## EmbarkedAtQ       -1.7564827  0.5112079  -3.436  0.00059 ***
## EmbarkedAtS       -0.7914461  0.2576162  -3.072  0.00212 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 992.18  on 729  degrees of freedom
## Residual deviance: 669.09  on 721  degrees of freedom
## AIC: 687.09
## 
## Number of Fisher Scoring iterations: 5

Then I will predict for the test set.

ptest <- predict(m2,newdata=data.frame(xnew),type="response")
data.frame(ynew,ptest)[1:10,]
##    ynew      ptest
## 2     1 0.65925645
## 3     0 0.96358662
## 4     0 0.36643433
## 6     1 0.25990236
## 12    1 0.97062705
## 15    1 0.08530062
## 17    1 0.92251469
## 22    1 0.65950531
## 25    0 0.66807512
## 27    1 0.96610432
gg1=floor(ptest+0.5)
ttt=table(ynew,gg1)
ttt
##     gg1
## ynew   0   1
##    0 163  30
##    1  39  81
error=(ttt[1,2]+ttt[2,1])/n2
error
## [1] 0.2204473

Our error is high enough to say this model is not a good predictor with getting errors over 20% of the time.

bb=cbind(ptest,ynew)
bb1=bb[order(ptest,decreasing=TRUE),]
bb1
##           ptest ynew
## 12   0.97062705    1
## 109  0.96974311    1
## 27   0.96610432    1
## 264  0.96524735    1
## 3    0.96358662    0
## 106  0.95994898    1
## 66   0.95668486    1
## 115  0.95646261    1
## 212  0.95388471    1
## 172  0.95210234    1
## 95   0.95154976    1
## 97   0.94823682    0
## 122  0.94380030    1
## 191  0.94171302    1
## 167  0.94132912    1
## 435  0.94021963    1
## 35   0.93785263    1
## 17   0.92251469    1
## 32   0.92197013    1
## 386  0.91827851    1
## 63   0.91746042    1
## 815  0.91312340    1
## 80   0.91169280    1
## 215  0.90752415    1
## 28   0.90370048    1
## 451  0.89264260    1
## 74   0.89200115    1
## 310  0.88414610    1
## 597  0.87993076    1
## 414  0.87683789    1
## 876  0.87087665    1
## 359  0.87068752    1
## 300  0.86838370    1
## 304  0.86780975    1
## 217  0.86670145    1
## 113  0.86583435    1
## 594  0.86192028    0
## 500  0.85775192    1
## 551  0.85621184    1
## 609  0.85469587    0
## 339  0.85261033    1
## 71   0.85191776    1
## 255  0.84571026    1
## 309  0.84212600    1
## 301  0.82557511    1
## 822  0.82487828    1
## 345  0.81877263    1
## 519  0.81873214    1
## 604  0.81619230    1
## 165  0.81484608    1
## 321  0.80871365    1
## 699  0.80181907    1
## 524  0.80054937    1
## 798  0.79796702    1
## 949  0.79235741    0
## 429  0.78129967    0
## 436  0.77850710    1
## 962  0.77789079    1
## 522  0.77656004    0
## 143  0.77200771    1
## 332  0.76996424    1
## 33   0.76835568    1
## 1024 0.76120480    0
## 367  0.74891953    0
## 416  0.74019772    1
## 182  0.73329127    1
## 539  0.72433972    1
## 357  0.72034359    1
## 318  0.71642149    1
## 105  0.71477399    1
## 958  0.70443344    1
## 945  0.70097700    0
## 895  0.69573666    1
## 86   0.68734084    1
## 773  0.68690191    0
## 118  0.68621497    0
## 275  0.67376696    0
## 974  0.66976835    0
## 841  0.66874600    0
## 25   0.66807512    0
## 161  0.66002525    1
## 22   0.65950531    1
## 2    0.65925645    1
## 135  0.65836082    1
## 924  0.65246504    0
## 441  0.65177145    1
## 75   0.65066449    1
## 871  0.64685682    1
## 806  0.64603056    0
## 498  0.64397846    1
## 517  0.64397846    1
## 477  0.64264545    1
## 930  0.64061957    0
## 807  0.63647953    0
## 40   0.63571318    1
## 883  0.63101122    0
## 492  0.62269785    1
## 637  0.62142775    0
## 911  0.61552380    0
## 761  0.60831968    1
## 128  0.60165462    1
## 568  0.59861312    0
## 65   0.59693981    0
## 396  0.59202309    1
## 848  0.58841338    0
## 179  0.57655366    0
## 687  0.56344460    0
## 51   0.55397230    1
## 827  0.55316218    0
## 738  0.52775298    1
## 261  0.51949997    0
## 547  0.49226983    1
## 663  0.46556002    1
## 494  0.46206582    0
## 76   0.46093948    0
## 590  0.44562384    1
## 747  0.44266199    0
## 38   0.44118273    0
## 238  0.42149206    1
## 486  0.42113472    0
## 355  0.41511514    1
## 611  0.41447999    0
## 108  0.41178335    1
## 241  0.40750454    1
## 767  0.39340669    1
## 496  0.39217799    1
## 485  0.39067746    1
## 121  0.38672304    1
## 229  0.37591442    1
## 948  0.37384691    0
## 1032 0.37247934    1
## 130  0.37145213    1
## 516  0.37031690    0
## 4    0.36643433    0
## 178  0.36622512    1
## 257  0.36382989    0
## 433  0.36349026    0
## 769  0.35964673    0
## 735  0.35538509    0
## 372  0.34427548    0
## 347  0.34326219    0
## 351  0.33396414    0
## 621  0.33180526    0
## 348  0.33151421    0
## 365  0.32313085    0
## 1003 0.32266507    1
## 499  0.31411729    0
## 34   0.31059084    0
## 44   0.31054703    1
## 53   0.30549706    1
## 243  0.30042738    0
## 361  0.29691528    0
## 881  0.28203731    1
## 197  0.28066669    0
## 305  0.27987742    0
## 616  0.27645959    0
## 151  0.27610490    0
## 205  0.27187758    0
## 377  0.27166339    0
## 263  0.26911197    0
## 502  0.26345089    0
## 512  0.26345089    0
## 967  0.26064412    0
## 1022 0.26064349    1
## 155  0.25995824    0
## 6    0.25990236    1
## 679  0.25666283    0
## 144  0.25207086    0
## 570  0.24724972    0
## 334  0.24000215    0
## 723  0.23812329    0
## 828  0.23736469    1
## 557  0.23153007    1
## 1041 0.22627510    0
## 446  0.22518414    0
## 389  0.22484430    0
## 58   0.22330240    0
## 526  0.22147399    0
## 268  0.21858454    0
## 698  0.21456628    1
## 896  0.21158954    1
## 140  0.21101249    0
## 185  0.20849286    0
## 413  0.20410530    0
## 672  0.20320068    1
## 595  0.20184811    0
## 320  0.20018689    1
## 531  0.19606175    0
## 368  0.19260510    0
## 510  0.19073310    0
## 545  0.18451877    0
## 714  0.18260168    0
## 654  0.18047268    0
## 262  0.17068036    0
## 858  0.17053243    0
## 418  0.16905700    0
## 337  0.16870004    0
## 459  0.16808656    0
## 472  0.16667426    0
## 296  0.16538550    1
## 640  0.16446778    0
## 729  0.15875117    0
## 719  0.15874901    0
## 422  0.15423945    0
## 920  0.15396403    0
## 682  0.15352495    0
## 675  0.15332118    0
## 613  0.15331022    0
## 669  0.15329462    0
## 192  0.15300576    0
## 1009 0.15181750    0
## 788  0.14797871    0
## 1023 0.14797871    0
## 625  0.14360874    0
## 982  0.14283870    0
## 969  0.14282677    0
## 766  0.14282001    0
## 812  0.14281444    1
## 618  0.14281246    0
## 865  0.14281246    1
## 1034 0.14276236    0
## 615  0.13795068    0
## 612  0.13783021    0
## 875  0.13781592    0
## 793  0.13780666    0
## 834  0.13780473    0
## 814  0.13778119    0
## 703  0.13775612    0
## 927  0.13775612    0
## 855  0.13774454    0
## 369  0.13334444    0
## 894  0.13307572    0
## 596  0.13295249    0
## 104  0.12919270    0
## 840  0.12838228    0
## 929  0.12825585    0
## 646  0.12823879    0
## 716  0.12821228    1
## 560  0.12816872    0
## 965  0.12595263    0
## 689  0.12367188    0
## 702  0.12367188    0
## 995  0.12366343    1
## 549  0.12365111    1
## 869  0.12365111    0
## 768  0.12361733    0
## 1002 0.12300635    1
## 1030 0.12146373    0
## 578  0.11924196    0
## 558  0.11924128    0
## 1035 0.11501072    0
## 805  0.11494660    0
## 574  0.11494197    1
## 770  0.11487689    1
## 846  0.11458069    0
## 780  0.11192139    0
## 1016 0.11091616    0
## 775  0.11079290    0
## 909  0.10840954    0
## 832  0.10688618    0
## 326  0.10444825    0
## 696  0.10298806    1
## 552  0.10282614    0
## 795  0.09909504    0
## 915  0.09651318    0
## 564  0.09644694    0
## 693  0.09569600    0
## 979  0.09546808    0
## 999  0.09545967    0
## 972  0.09231079    0
## 813  0.09192968    0
## 733  0.09089368    0
## 395  0.08867624    0
## 996  0.08853423    0
## 15   0.08530062    1
## 692  0.08320954    0
## 425  0.08250046    0
## 1036 0.08214347    0
## 838  0.08158685    0
## 628  0.08054772    0
## 847  0.07803212    0
## 937  0.07600810    0
## 690  0.07418753    0
## 584  0.07232032    0
## 599  0.07225041    0
## 388  0.07134018    1
## 968  0.07037766    0
## 821  0.06791368    0
## 741  0.06770698    0
## 1010 0.06708846    0
## 707  0.06517130    0
## 782  0.06512323    0
## 898  0.06407761    0
## 1012 0.06121902    0
## 819  0.06026419    0
## 311  0.05792163    0
## 721  0.05790958    0
## 1017 0.05362218    0
## 573  0.05113986    0
## 736  0.05101538    0
## 746  0.05056503    0
## 799  0.04923164    0
## 588  0.04916637    0
## 750  0.04889596    0
## 952  0.04760789    0
## 752  0.04576030    0
## 1029 0.04575009    0
## 755  0.04408799    0
## 427  0.03481474    0
## 674  0.03323736    0
## 893  0.03064662    0
## 728  0.02746983    0
## 715  0.01011026    0
xbar=mean(ynew)
xbar
## [1] 0.3833866
##calculating the lift
axis=dim(n2)
ax=dim(n2)
ay=dim(n2)
axis[1]=1
ax[1]=xbar
ay[1]=bb1[1,2]
for (i in 2:n2) {
  axis[i]=i
  ax[i]=xbar*i
  ay[i]=ay[i-1]+bb1[i,2]
}
aaa=cbind(bb1[,1],bb1[,2],ay,ax)
aaa[1:100,]
##                  ay         ax
## 12   0.9706270 1  1  0.3833866
## 109  0.9697431 1  2  0.7667732
## 27   0.9661043 1  3  1.1501597
## 264  0.9652473 1  4  1.5335463
## 3    0.9635866 0  4  1.9169329
## 106  0.9599490 1  5  2.3003195
## 66   0.9566849 1  6  2.6837061
## 115  0.9564626 1  7  3.0670927
## 212  0.9538847 1  8  3.4504792
## 172  0.9521023 1  9  3.8338658
## 95   0.9515498 1 10  4.2172524
## 97   0.9482368 0 10  4.6006390
## 122  0.9438003 1 11  4.9840256
## 191  0.9417130 1 12  5.3674121
## 167  0.9413291 1 13  5.7507987
## 435  0.9402196 1 14  6.1341853
## 35   0.9378526 1 15  6.5175719
## 17   0.9225147 1 16  6.9009585
## 32   0.9219701 1 17  7.2843450
## 386  0.9182785 1 18  7.6677316
## 63   0.9174604 1 19  8.0511182
## 815  0.9131234 1 20  8.4345048
## 80   0.9116928 1 21  8.8178914
## 215  0.9075242 1 22  9.2012780
## 28   0.9037005 1 23  9.5846645
## 451  0.8926426 1 24  9.9680511
## 74   0.8920012 1 25 10.3514377
## 310  0.8841461 1 26 10.7348243
## 597  0.8799308 1 27 11.1182109
## 414  0.8768379 1 28 11.5015974
## 876  0.8708766 1 29 11.8849840
## 359  0.8706875 1 30 12.2683706
## 300  0.8683837 1 31 12.6517572
## 304  0.8678098 1 32 13.0351438
## 217  0.8667015 1 33 13.4185304
## 113  0.8658343 1 34 13.8019169
## 594  0.8619203 0 34 14.1853035
## 500  0.8577519 1 35 14.5686901
## 551  0.8562118 1 36 14.9520767
## 609  0.8546959 0 36 15.3354633
## 339  0.8526103 1 37 15.7188498
## 71   0.8519178 1 38 16.1022364
## 255  0.8457103 1 39 16.4856230
## 309  0.8421260 1 40 16.8690096
## 301  0.8255751 1 41 17.2523962
## 822  0.8248783 1 42 17.6357827
## 345  0.8187726 1 43 18.0191693
## 519  0.8187321 1 44 18.4025559
## 604  0.8161923 1 45 18.7859425
## 165  0.8148461 1 46 19.1693291
## 321  0.8087136 1 47 19.5527157
## 699  0.8018191 1 48 19.9361022
## 524  0.8005494 1 49 20.3194888
## 798  0.7979670 1 50 20.7028754
## 949  0.7923574 0 50 21.0862620
## 429  0.7812997 0 50 21.4696486
## 436  0.7785071 1 51 21.8530351
## 962  0.7778908 1 52 22.2364217
## 522  0.7765600 0 52 22.6198083
## 143  0.7720077 1 53 23.0031949
## 332  0.7699642 1 54 23.3865815
## 33   0.7683557 1 55 23.7699681
## 1024 0.7612048 0 55 24.1533546
## 367  0.7489195 0 55 24.5367412
## 416  0.7401977 1 56 24.9201278
## 182  0.7332913 1 57 25.3035144
## 539  0.7243397 1 58 25.6869010
## 357  0.7203436 1 59 26.0702875
## 318  0.7164215 1 60 26.4536741
## 105  0.7147740 1 61 26.8370607
## 958  0.7044334 1 62 27.2204473
## 945  0.7009770 0 62 27.6038339
## 895  0.6957367 1 63 27.9872204
## 86   0.6873408 1 64 28.3706070
## 773  0.6869019 0 64 28.7539936
## 118  0.6862150 0 64 29.1373802
## 275  0.6737670 0 64 29.5207668
## 974  0.6697683 0 64 29.9041534
## 841  0.6687460 0 64 30.2875399
## 25   0.6680751 0 64 30.6709265
## 161  0.6600252 1 65 31.0543131
## 22   0.6595053 1 66 31.4376997
## 2    0.6592565 1 67 31.8210863
## 135  0.6583608 1 68 32.2044728
## 924  0.6524650 0 68 32.5878594
## 441  0.6517715 1 69 32.9712460
## 75   0.6506645 1 70 33.3546326
## 871  0.6468568 1 71 33.7380192
## 806  0.6460306 0 71 34.1214058
## 498  0.6439785 1 72 34.5047923
## 517  0.6439785 1 73 34.8881789
## 477  0.6426455 1 74 35.2715655
## 930  0.6406196 0 74 35.6549521
## 807  0.6364795 0 74 36.0383387
## 40   0.6357132 1 75 36.4217252
## 883  0.6310112 0 75 36.8051118
## 492  0.6226979 1 76 37.1884984
## 637  0.6214278 0 76 37.5718850
## 911  0.6155238 0 76 37.9552716
## 761  0.6083197 1 77 38.3386581

Finally we calculated the lift and the following plot shows it.

plot(axis,ay,xlab="number of cases",ylab="number of successes",main="Lift: CUM successes sorted by pred val/success prob")
points(axis,ax,type="l")