This is the Loan data set where our model will try to predict if a person will have good or bad credit. 1=Good Credit
library(car)
## Warning: package 'car' was built under R version 3.4.2
Loan <- read.csv("~/Business Analytics/LoanData.csv")
Loan$Status=recode(Loan$Status,"'Current'=1; else=0")
Loan$Status=as.numeric(levels(Loan$Status)[Loan$Status])
Next I will split the data into a training set and test set.
n = length(Loan$Status)
n1 = floor(n*(.7))
n1
## [1] 3927
n2 = n-n1
train = sample(1:n,n1)
Then I will find the model of the data.
XLoan <- model.matrix(Status~., data = Loan)[,-1]
XLoan[1:3,]
## Credit.GradeAA Credit.GradeB Credit.GradeC Credit.GradeD Credit.GradeE
## 1 0 0 1 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## Credit.GradeHR Credit.GradeNC Amount Age Borrower.Rate
## 1 0 0 5000 4 0.150
## 2 1 0 1900 6 0.265
## 3 1 0 1000 3 0.150
## Debt.To.Income.Ratio
## 1 0.04
## 2 0.02
## 3 0.02
xtrain <- XLoan[train,]
xnew <- XLoan[-train,]
ytrain <- Loan$Status[train]
ynew <- Loan$Status[-train]
m1=glm(Status~.,family=binomial,data=data.frame(Status=ytrain,xtrain))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(m1)
##
## Call:
## glm(formula = Status ~ ., family = binomial, data = data.frame(Status = ytrain,
## xtrain))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3562 0.1366 0.2411 0.4043 2.1476
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.708e+00 4.913e-01 15.690 <2e-16 ***
## Credit.GradeAA 7.844e-01 6.095e-01 1.287 0.1981
## Credit.GradeB -2.225e-01 4.139e-01 -0.537 0.5910
## Credit.GradeC 3.356e-01 4.164e-01 0.806 0.4202
## Credit.GradeD 3.292e-01 4.202e-01 0.784 0.4333
## Credit.GradeE -4.205e-02 4.350e-01 -0.097 0.9230
## Credit.GradeHR -5.768e-01 4.455e-01 -1.295 0.1954
## Credit.GradeNC -1.180e+00 5.772e-01 -2.044 0.0410 *
## Amount -4.251e-05 1.806e-05 -2.354 0.0186 *
## Age -3.760e-01 2.688e-02 -13.990 <2e-16 ***
## Borrower.Rate -1.347e+01 1.615e+00 -8.342 <2e-16 ***
## Debt.To.Income.Ratio 1.573e-01 3.180e-01 0.495 0.6208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2164.2 on 3926 degrees of freedom
## Residual deviance: 1699.8 on 3915 degrees of freedom
## AIC: 1723.8
##
## Number of Fisher Scoring iterations: 16
Then I will predict for the test set.
ptest <- predict(m1,newdata=data.frame(xnew),type="response")
data.frame(ynew,ptest)[1:10,]
## ynew ptest
## 1 1 0.9867793
## 2 1 0.7734458
## 3 1 0.9809819
## 6 1 0.9015963
## 9 1 0.9989262
## 17 0 0.7074237
## 21 1 0.9957397
## 23 1 0.8585450
## 24 1 0.9858988
## 26 1 0.9956696
gg1=floor(ptest+0.5)
ttt=table(ynew,gg1)
ttt
## gg1
## ynew 0 1
## 0 15 101
## 1 12 1556
error=(ttt[1,2]+ttt[2,1])/n2
error
## [1] 0.06710214
Our error is very low so this model is a good predictor.
bb=cbind(ptest,ynew)
bb1=bb[order(ptest,decreasing=TRUE),]
bb1
## ptest ynew
## 5592 1.00000000 1
## 5593 1.00000000 1
## 5595 1.00000000 1
## 5606 1.00000000 1
## 5609 1.00000000 1
## 5610 1.00000000 1
## 5587 0.99980407 1
## 96 0.99922422 1
## 436 0.99920556 1
## 1053 0.99917499 1
## 88 0.99914624 1
## 448 0.99909199 1
## 474 0.99908306 1
## 1784 0.99908081 1
## 264 0.99907493 1
## 1961 0.99906254 1
## 4005 0.99905784 1
## 865 0.99904628 1
## 2372 0.99902729 1
## 1779 0.99902137 1
## 4006 0.99900324 1
## 864 0.99899249 1
## 2382 0.99898159 1
## 853 0.99894768 1
## 9 0.99892620 1
## 5541 0.99885560 1
## 369 0.99884333 1
## 3186 0.99883193 1
## 2963 0.99862755 1
## 451 0.99862433 1
## 256 0.99858233 1
## 2966 0.99844623 1
## 681 0.99834431 1
## 4789 0.99833204 1
## 5294 0.99813118 1
## 153 0.99812553 1
## 1606 0.99807268 1
## 305 0.99807088 1
## 3361 0.99805535 1
## 2147 0.99796619 1
## 850 0.99796399 1
## 254 0.99795790 1
## 127 0.99794090 1
## 5260 0.99793977 1
## 2752 0.99793960 1
## 1423 0.99790202 1
## 185 0.99787333 1
## 112 0.99787240 1
## 69 0.99785675 1
## 4725 0.99784458 1
## 2373 0.99780260 1
## 1075 0.99770547 1
## 2592 0.99767181 1
## 3371 0.99752798 1
## 3375 0.99745278 1
## 5034 0.99733773 1
## 3019 0.99730614 1
## 277 0.99728381 1
## 4734 0.99724961 1
## 620 0.99718615 0
## 1599 0.99715307 1
## 390 0.99715026 1
## 851 0.99711417 1
## 4786 0.99710098 1
## 1062 0.99698693 1
## 1814 0.99694674 1
## 454 0.99694439 1
## 594 0.99690816 1
## 3382 0.99690088 1
## 3180 0.99689666 1
## 4146 0.99679676 1
## 54 0.99679489 1
## 114 0.99678209 1
## 1229 0.99672906 1
## 3310 0.99668701 1
## 1247 0.99666588 1
## 1231 0.99661033 1
## 382 0.99654520 1
## 861 0.99654502 1
## 2779 0.99652292 1
## 2231 0.99638319 1
## 3308 0.99637634 1
## 1442 0.99635855 1
## 2957 0.99635392 1
## 3046 0.99633024 1
## 3369 0.99632799 1
## 4029 0.99631446 1
## 1251 0.99629810 1
## 1037 0.99625735 1
## 2606 0.99624578 1
## 4323 0.99611353 1
## 722 0.99609735 1
## 1809 0.99607625 1
## 4792 0.99607378 1
## 1627 0.99603145 1
## 4096 0.99599082 1
## 793 0.99596250 1
## 4011 0.99591528 1
## 5155 0.99590956 1
## 4892 0.99588071 1
## 4356 0.99584301 1
## 433 0.99580234 1
## 21 0.99573970 1
## 3595 0.99570853 1
## 1238 0.99570204 1
## 4216 0.99570111 1
## 2454 0.99567799 1
## 26 0.99566956 1
## 4674 0.99562625 1
## 5451 0.99558757 1
## 4721 0.99554000 1
## 5543 0.99552835 1
## 1799 0.99548870 1
## 402 0.99547688 1
## 2847 0.99544363 1
## 4161 0.99541669 1
## 350 0.99541589 1
## 4315 0.99536389 1
## 4401 0.99534267 1
## 2580 0.99533608 1
## 5429 0.99532328 1
## 3472 0.99529696 1
## 1950 0.99526347 1
## 1970 0.99525088 1
## 5542 0.99523315 1
## 3198 0.99517746 1
## 235 0.99517103 1
## 2094 0.99516996 1
## 2369 0.99513692 1
## 5432 0.99509858 1
## 3604 0.99506929 1
## 4995 0.99506751 1
## 4932 0.99505860 1
## 407 0.99505734 1
## 2166 0.99503182 1
## 4586 0.99497348 1
## 1607 0.99496834 1
## 4578 0.99496031 1
## 1632 0.99493633 1
## 5493 0.99492507 1
## 179 0.99491693 1
## 688 0.99487977 1
## 2845 0.99479009 1
## 161 0.99478087 1
## 2744 0.99474977 1
## 1359 0.99474559 1
## 5005 0.99473223 1
## 5208 0.99469996 1
## 2160 0.99460166 1
## 2567 0.99460106 1
## 1989 0.99459109 1
## 4047 0.99456881 1
## 446 0.99453522 1
## 3597 0.99450916 1
## 4241 0.99448032 1
## 2046 0.99442489 1
## 1420 0.99438100 1
## 2747 0.99437451 1
## 2959 0.99434536 1
## 4948 0.99431410 1
## 3452 0.99428239 1
## 1663 0.99427695 1
## 3655 0.99426115 1
## 5578 0.99423125 1
## 2193 0.99418954 1
## 1781 0.99416032 1
## 1625 0.99412155 1
## 3209 0.99411388 1
## 4735 0.99409209 1
## 3588 0.99401528 1
## 1689 0.99397773 1
## 3702 0.99395807 1
## 3607 0.99393784 1
## 1043 0.99393162 1
## 3363 0.99389559 1
## 3429 0.99386944 1
## 4654 0.99384307 1
## 1470 0.99383546 1
## 4785 0.99376494 1
## 967 0.99373371 1
## 386 0.99372395 1
## 4952 0.99371520 1
## 4089 0.99370038 1
## 396 0.99368499 1
## 4733 0.99364819 1
## 1473 0.99364134 1
## 2389 0.99362084 1
## 3628 0.99361884 1
## 4841 0.99359399 1
## 1469 0.99359190 1
## 5292 0.99358611 1
## 3474 0.99355531 1
## 4512 0.99354781 1
## 1054 0.99347619 1
## 2392 0.99346581 1
## 3806 0.99341755 1
## 3045 0.99341674 1
## 2983 0.99333207 1
## 1783 0.99331289 1
## 4895 0.99331249 1
## 1415 0.99329912 1
## 5002 0.99317339 1
## 1474 0.99317042 1
## 3926 0.99312382 1
## 4845 0.99311003 1
## 4807 0.99310628 1
## 4263 0.99306326 1
## 4243 0.99305710 1
## 4492 0.99303295 1
## 858 0.99295046 1
## 5489 0.99290550 1
## 3409 0.99289956 1
## 496 0.99285575 1
## 4781 0.99283899 1
## 4522 0.99282363 1
## 3862 0.99280174 1
## 2179 0.99278484 1
## 4729 0.99272929 1
## 516 0.99269517 1
## 4032 0.99268326 1
## 1089 0.99257157 1
## 3857 0.99254792 1
## 4413 0.99253956 1
## 2232 0.99251479 1
## 3165 0.99247395 1
## 1048 0.99246464 1
## 3836 0.99243757 1
## 5119 0.99234105 1
## 936 0.99231072 1
## 705 0.99230953 1
## 1290 0.99229859 1
## 5452 0.99228598 1
## 5029 0.99226500 1
## 684 0.99225379 1
## 2230 0.99214572 1
## 28 0.99207510 1
## 4353 0.99197199 1
## 843 0.99188581 1
## 4890 0.99188576 1
## 3048 0.99181372 1
## 3842 0.99180103 1
## 4637 0.99175723 1
## 1041 0.99175522 1
## 4903 0.99167690 1
## 1857 0.99164302 1
## 4931 0.99163331 1
## 1948 0.99158340 1
## 5237 0.99151935 1
## 1483 0.99149270 1
## 174 0.99148987 1
## 4889 0.99143876 1
## 1636 0.99141598 1
## 2805 0.99138291 1
## 4337 0.99137295 1
## 3695 0.99136717 1
## 4357 0.99124154 1
## 5212 0.99104239 1
## 5134 0.99103376 1
## 4566 0.99103369 1
## 859 0.99102481 1
## 5309 0.99102083 1
## 2152 0.99100730 1
## 5410 0.99100476 1
## 5094 0.99095258 1
## 2821 0.99093972 1
## 5329 0.99093047 1
## 1250 0.99090693 1
## 5010 0.99086063 1
## 4880 0.99083456 1
## 2977 0.99082129 1
## 2200 0.99080735 1
## 94 0.99078533 1
## 3465 0.99072100 1
## 3016 0.99071680 1
## 381 0.99068425 1
## 4799 0.99064225 1
## 4320 0.99060602 1
## 4066 0.99056261 1
## 3824 0.99056219 1
## 3853 0.99055655 1
## 699 0.99053804 1
## 5566 0.99053623 1
## 3225 0.99050038 1
## 162 0.99041065 1
## 5502 0.99031325 1
## 1975 0.99029841 1
## 2826 0.99022535 1
## 3623 0.99016481 1
## 2225 0.99012471 1
## 1254 0.99008310 1
## 4743 0.99001349 1
## 1973 0.98997293 1
## 1801 0.98995143 1
## 2178 0.98990351 1
## 2971 0.98986623 1
## 3010 0.98986549 1
## 4844 0.98985501 1
## 2815 0.98985493 1
## 2972 0.98983716 1
## 1805 0.98978345 1
## 4443 0.98974650 1
## 2214 0.98974243 1
## 1758 0.98974127 1
## 2156 0.98967622 1
## 2978 0.98966961 1
## 360 0.98966262 1
## 2742 0.98965882 1
## 3424 0.98965321 1
## 3840 0.98959739 1
## 218 0.98953559 1
## 5319 0.98952102 1
## 4097 0.98943604 1
## 3834 0.98943227 1
## 527 0.98942234 1
## 5182 0.98939838 1
## 4938 0.98934985 1
## 2459 0.98934229 1
## 3260 0.98934116 1
## 2600 0.98931770 1
## 4434 0.98926249 1
## 3871 0.98925612 1
## 4957 0.98921958 1
## 4673 0.98919849 1
## 4946 0.98914966 1
## 4753 0.98898617 1
## 3266 0.98894062 1
## 1677 0.98890909 1
## 420 0.98889903 1
## 2199 0.98889424 1
## 5189 0.98885678 1
## 5044 0.98884321 1
## 5371 0.98882233 1
## 877 0.98878582 1
## 696 0.98872913 1
## 2418 0.98869205 1
## 4675 0.98864559 1
## 4918 0.98863280 1
## 246 0.98862946 1
## 2590 0.98862239 1
## 4037 0.98862009 1
## 3718 0.98861156 1
## 1476 0.98858739 1
## 2031 0.98858348 1
## 4102 0.98855704 1
## 2415 0.98855247 1
## 3592 0.98854990 1
## 3984 0.98853923 1
## 4527 0.98851781 1
## 5181 0.98851633 1
## 3256 0.98850757 1
## 3305 0.98846770 1
## 2395 0.98843432 1
## 5220 0.98840703 1
## 3644 0.98838886 1
## 3722 0.98836977 1
## 4593 0.98836166 1
## 2984 0.98835097 1
## 3365 0.98829144 1
## 4576 0.98825495 1
## 1426 0.98825313 1
## 575 0.98821388 1
## 4666 0.98820960 1
## 5275 0.98813559 1
## 2897 0.98806150 1
## 2765 0.98804870 1
## 4840 0.98800679 1
## 3253 0.98800084 1
## 3464 0.98799459 1
## 2394 0.98798939 1
## 1055 0.98797852 1
## 2404 0.98797091 1
## 2026 0.98796491 1
## 1034 0.98787344 1
## 1971 0.98786735 1
## 3923 0.98785450 1
## 2173 0.98780378 1
## 1432 0.98770520 1
## 1458 0.98762810 1
## 2219 0.98759774 1
## 2640 0.98758503 1
## 5068 0.98757853 1
## 4893 0.98756468 1
## 1273 0.98755507 1
## 2226 0.98746997 1
## 709 0.98742689 1
## 4647 0.98738521 1
## 2955 0.98736632 1
## 4739 0.98733159 1
## 603 0.98728859 1
## 3188 0.98726351 1
## 5403 0.98724680 1
## 1363 0.98723848 1
## 3517 0.98720641 1
## 3410 0.98717480 1
## 4896 0.98716858 1
## 150 0.98715957 1
## 1200 0.98715505 1
## 3248 0.98712017 1
## 2511 0.98710667 1
## 3214 0.98706842 1
## 562 0.98706809 1
## 2451 0.98704522 1
## 1999 0.98702906 1
## 3710 0.98702208 1
## 2712 0.98701819 0
## 3480 0.98698788 1
## 5156 0.98689996 1
## 186 0.98686414 1
## 1 0.98677935 1
## 1103 0.98676881 1
## 3428 0.98672120 1
## 3024 0.98668433 1
## 4061 0.98663930 1
## 4324 0.98662943 1
## 3584 0.98660823 1
## 2228 0.98653675 1
## 2211 0.98646012 1
## 901 0.98636473 1
## 1431 0.98635964 1
## 1102 0.98631014 1
## 2303 0.98624812 1
## 1792 0.98619535 1
## 2757 0.98617777 1
## 3367 0.98613447 1
## 171 0.98612558 1
## 3686 0.98602069 1
## 3937 0.98595408 1
## 4405 0.98594768 1
## 2736 0.98590993 1
## 24 0.98589879 1
## 2956 0.98583669 1
## 866 0.98581665 1
## 4354 0.98572842 1
## 4447 0.98572244 1
## 3659 0.98565618 1
## 3171 0.98564946 1
## 5259 0.98556697 1
## 3259 0.98545151 1
## 341 0.98542431 1
## 5038 0.98539612 1
## 4481 0.98534152 1
## 3674 0.98528470 1
## 1826 0.98522852 1
## 1295 0.98522589 1
## 4857 0.98515568 1
## 1105 0.98514849 1
## 2638 0.98514036 1
## 2241 0.98513127 1
## 2431 0.98511358 1
## 1111 0.98505506 1
## 4812 0.98494925 1
## 2187 0.98489181 1
## 3699 0.98475783 1
## 1986 0.98472856 1
## 1069 0.98468236 1
## 182 0.98466728 1
## 4816 0.98458841 1
## 4250 0.98457392 1
## 5362 0.98451766 1
## 3050 0.98446096 1
## 2806 0.98443234 1
## 4133 0.98431111 1
## 437 0.98426870 1
## 4644 0.98421746 1
## 4757 0.98417930 1
## 1640 0.98417865 1
## 3098 0.98416392 1
## 4583 0.98416198 1
## 2044 0.98414737 1
## 2689 0.98409818 1
## 1992 0.98394417 1
## 3378 0.98392506 1
## 2447 0.98385053 1
## 3417 0.98384151 1
## 2982 0.98372333 1
## 4800 0.98359668 1
## 271 0.98347994 1
## 286 0.98347959 1
## 3025 0.98346515 1
## 5431 0.98341836 1
## 5464 0.98340888 1
## 2450 0.98340283 1
## 4224 0.98339205 1
## 1678 0.98337333 1
## 792 0.98331060 1
## 1082 0.98325619 1
## 3590 0.98325035 1
## 3714 0.98315439 1
## 3192 0.98312246 1
## 739 0.98311746 1
## 2797 0.98307889 1
## 4003 0.98303561 1
## 3211 0.98296920 1
## 3012 0.98293442 1
## 4218 0.98293252 1
## 694 0.98286064 1
## 1834 0.98284056 1
## 2986 0.98279401 1
## 733 0.98278329 1
## 1889 0.98275183 1
## 2698 0.98274435 1
## 1802 0.98274294 1
## 5359 0.98273578 1
## 1707 0.98272514 1
## 1437 0.98267902 1
## 2388 0.98257907 1
## 1461 0.98255603 1
## 2413 0.98251700 1
## 778 0.98247550 1
## 607 0.98244839 1
## 4374 0.98242943 1
## 1453 0.98240768 1
## 392 0.98239404 1
## 2513 0.98235295 1
## 4419 0.98230863 1
## 1459 0.98230646 1
## 2471 0.98225973 1
## 1248 0.98225463 1
## 883 0.98181340 1
## 5026 0.98178095 1
## 982 0.98175661 1
## 4445 0.98172290 1
## 3671 0.98170425 1
## 4293 0.98164538 1
## 3582 0.98163670 1
## 2896 0.98161918 1
## 2788 0.98160568 1
## 2828 0.98158465 1
## 2186 0.98157841 1
## 1759 0.98155343 1
## 299 0.98153573 1
## 5514 0.98151223 1
## 2409 0.98146389 1
## 3196 0.98144198 1
## 3163 0.98134106 1
## 2436 0.98129464 1
## 1106 0.98128794 1
## 903 0.98114016 1
## 3864 0.98107337 1
## 5498 0.98106475 1
## 2027 0.98102730 1
## 3058 0.98098913 1
## 3 0.98098186 1
## 359 0.98098186 1
## 3285 0.98085950 1
## 3858 0.98081817 1
## 5085 0.98080910 1
## 4790 0.98079713 1
## 3368 0.98060929 1
## 5271 0.98058363 1
## 4616 0.98056367 1
## 90 0.98052525 1
## 1464 0.98051557 1
## 4222 0.98049985 1
## 2633 0.98040529 1
## 4491 0.98040233 1
## 3645 0.98039439 1
## 812 0.98037033 1
## 2008 0.98024342 1
## 504 0.98007901 1
## 2764 0.98004833 1
## 4234 0.97982716 1
## 4810 0.97982608 1
## 4671 0.97968270 1
## 1995 0.97962283 1
## 2973 0.97957596 1
## 3458 0.97951168 1
## 2734 0.97947829 1
## 3051 0.97943054 1
## 5501 0.97939942 1
## 2019 0.97933254 1
## 5315 0.97930091 1
## 1263 0.97922087 1
## 361 0.97919785 1
## 5571 0.97918513 1
## 2022 0.97912510 1
## 5194 0.97907087 1
## 4002 0.97901466 1
## 5443 0.97896451 1
## 3825 0.97893589 1
## 4555 0.97893290 0
## 2208 0.97893042 1
## 3690 0.97869753 1
## 3399 0.97867267 1
## 1646 0.97866517 1
## 5263 0.97864185 1
## 4994 0.97861258 1
## 411 0.97859113 1
## 3366 0.97853412 1
## 5418 0.97844457 1
## 2010 0.97842767 1
## 146 0.97839321 1
## 3069 0.97826334 1
## 2560 0.97821045 1
## 4913 0.97817689 1
## 813 0.97813288 1
## 2650 0.97801426 1
## 4310 0.97793738 1
## 4362 0.97781918 1
## 1582 0.97780030 1
## 4043 0.97777949 1
## 3111 0.97775497 1
## 734 0.97771875 1
## 3213 0.97771857 1
## 635 0.97760516 0
## 4955 0.97759667 1
## 2005 0.97755810 1
## 5440 0.97755809 1
## 1286 0.97754261 1
## 3703 0.97749866 1
## 2566 0.97748642 1
## 2175 0.97743914 1
## 4343 0.97743421 1
## 5385 0.97728845 1
## 4606 0.97728822 1
## 3657 0.97728251 1
## 1548 0.97724956 0
## 3625 0.97722052 1
## 5523 0.97719729 1
## 3242 0.97709777 1
## 2393 0.97708143 1
## 4333 0.97703244 1
## 2811 0.97696271 1
## 4338 0.97695811 1
## 900 0.97685592 1
## 1818 0.97683465 1
## 4449 0.97681771 1
## 3900 0.97670543 1
## 3290 0.97669875 1
## 5016 0.97667616 1
## 3249 0.97664775 1
## 935 0.97662519 1
## 2819 0.97660125 1
## 4255 0.97653147 1
## 234 0.97647389 1
## 83 0.97646622 1
## 4300 0.97636747 1
## 4975 0.97630401 1
## 5288 0.97625919 1
## 4520 0.97617036 1
## 2457 0.97611211 1
## 3043 0.97602470 1
## 3167 0.97595595 1
## 2184 0.97595095 1
## 1980 0.97587487 1
## 3112 0.97585674 1
## 5090 0.97575554 1
## 3018 0.97569139 1
## 3967 0.97561958 1
## 3431 0.97548598 1
## 3616 0.97539336 1
## 4976 0.97536758 1
## 4178 0.97534388 1
## 2438 0.97531567 1
## 2735 0.97530891 1
## 3766 0.97525439 1
## 5540 0.97522624 1
## 4605 0.97515857 1
## 2891 0.97510205 1
## 875 0.97507023 1
## 4633 0.97503696 1
## 1411 0.97493048 1
## 2696 0.97481329 1
## 2305 0.97477903 1
## 5280 0.97463600 1
## 4517 0.97456854 1
## 337 0.97454989 1
## 3952 0.97454631 1
## 2943 0.97439428 1
## 703 0.97436769 1
## 4724 0.97423427 1
## 4053 0.97422955 1
## 1530 0.97411280 1
## 5487 0.97408694 1
## 3475 0.97406619 1
## 2639 0.97398735 1
## 5323 0.97383942 1
## 1096 0.97383067 1
## 893 0.97382357 1
## 3034 0.97367898 1
## 5256 0.97367848 1
## 4022 0.97363608 1
## 917 0.97354444 1
## 5012 0.97343322 1
## 2445 0.97333306 1
## 2893 0.97333043 1
## 2745 0.97326206 1
## 1510 0.97326009 1
## 2465 0.97322053 1
## 4486 0.97304670 1
## 3852 0.97299673 1
## 2015 0.97298052 1
## 3329 0.97292906 0
## 4431 0.97290137 1
## 5442 0.97287522 1
## 992 0.97286317 0
## 2564 0.97274299 1
## 168 0.97240898 1
## 5240 0.97239295 1
## 192 0.97233504 1
## 5335 0.97233279 1
## 4808 0.97226698 1
## 5089 0.97226118 1
## 3322 0.97220182 0
## 691 0.97209662 1
## 2243 0.97208236 1
## 651 0.97207527 1
## 2439 0.97205949 1
## 1429 0.97202389 1
## 1293 0.97192793 1
## 2218 0.97182391 1
## 4582 0.97180701 1
## 3389 0.97171759 1
## 2831 0.97151284 1
## 4560 0.97149659 1
## 2612 0.97148085 1
## 776 0.97133306 1
## 1593 0.97106784 1
## 2170 0.97106378 1
## 1847 0.97096754 1
## 5154 0.97093352 1
## 52 0.97088727 1
## 1009 0.97077065 1
## 4000 0.97073789 1
## 4604 0.97073118 1
## 2773 0.97047200 1
## 5216 0.97037363 1
## 4863 0.97009738 1
## 2195 0.96973471 1
## 3809 0.96966959 1
## 5184 0.96964708 1
## 3953 0.96934628 1
## 824 0.96930185 1
## 3222 0.96919223 1
## 4031 0.96914100 1
## 731 0.96909799 1
## 5517 0.96908920 1
## 2423 0.96902259 1
## 4518 0.96901288 1
## 2583 0.96897840 1
## 1362 0.96897423 1
## 1095 0.96888122 1
## 2158 0.96884524 1
## 1006 0.96883789 1
## 2446 0.96879972 1
## 2586 0.96873313 1
## 4603 0.96872035 1
## 5284 0.96866933 1
## 730 0.96858009 1
## 1305 0.96846548 1
## 4258 0.96835239 1
## 4073 0.96830266 1
## 4579 0.96825406 1
## 5450 0.96813245 1
## 4949 0.96809526 1
## 2681 0.96808704 1
## 4476 0.96800051 1
## 5039 0.96797029 1
## 3986 0.96795942 1
## 66 0.96789052 1
## 4581 0.96787971 1
## 1512 0.96773416 1
## 707 0.96772226 1
## 3620 0.96771149 1
## 3240 0.96766109 1
## 5243 0.96744679 1
## 4411 0.96741986 1
## 1450 0.96740742 1
## 2472 0.96737421 1
## 2185 0.96735076 1
## 1330 0.96724164 1
## 450 0.96719601 0
## 4744 0.96706737 1
## 595 0.96705745 1
## 5350 0.96703694 1
## 324 0.96702259 1
## 4516 0.96684252 1
## 1623 0.96682055 1
## 4868 0.96680691 1
## 3220 0.96675694 1
## 4444 0.96671446 1
## 4439 0.96666878 1
## 5328 0.96662144 1
## 5282 0.96658907 1
## 3528 0.96655628 1
## 2660 0.96655525 1
## 2135 0.96640725 1
## 2557 0.96635287 1
## 1311 0.96633593 1
## 4745 0.96633355 1
## 4782 0.96623707 1
## 1406 0.96620532 1
## 5516 0.96615905 1
## 1270 0.96604159 1
## 5349 0.96586761 1
## 1790 0.96579210 1
## 4954 0.96552444 1
## 3047 0.96548435 1
## 3317 0.96544089 1
## 5176 0.96536744 1
## 5178 0.96530633 1
## 1477 0.96510635 1
## 4742 0.96503139 1
## 3664 0.96498733 1
## 3441 0.96496015 1
## 4859 0.96471715 1
## 5347 0.96464421 1
## 2256 0.96459902 1
## 623 0.96445960 0
## 3042 0.96430867 1
## 3306 0.96419376 1
## 1218 0.96416919 1
## 5456 0.96402570 1
## 4203 0.96399555 0
## 1278 0.96379014 1
## 3391 0.96365708 1
## 4385 0.96364148 1
## 3454 0.96359357 1
## 1534 0.96353489 1
## 3983 0.96349515 1
## 71 0.96333717 1
## 3413 0.96318888 1
## 97 0.96303775 1
## 876 0.96291482 1
## 1117 0.96272151 1
## 3489 0.96243826 1
## 318 0.96238496 1
## 1819 0.96227057 1
## 5169 0.96209077 1
## 4848 0.96207102 1
## 1655 0.96195123 1
## 248 0.96185230 1
## 469 0.96184493 1
## 2385 0.96173614 1
## 4751 0.96165986 1
## 5206 0.96162240 1
## 4122 0.96162069 1
## 1425 0.96161224 1
## 5551 0.96159416 1
## 260 0.96139929 1
## 790 0.96136238 1
## 222 0.96135502 1
## 1214 0.96131163 1
## 3733 0.96117047 1
## 5393 0.96093804 1
## 2622 0.96087644 1
## 2694 0.96077201 1
## 5287 0.96075781 1
## 406 0.96063105 1
## 1364 0.96037246 1
## 3728 0.96036941 1
## 2552 0.96018895 1
## 1407 0.96005385 1
## 4886 0.95992846 1
## 4942 0.95982469 1
## 3961 0.95974049 1
## 581 0.95955705 1
## 4624 0.95944593 1
## 1719 0.95931288 1
## 4287 0.95902797 1
## 1334 0.95897247 1
## 3987 0.95873158 1
## 122 0.95855006 1
## 1301 0.95849270 1
## 3849 0.95847824 1
## 4515 0.95818580 1
## 4556 0.95811147 0
## 333 0.95806582 1
## 3505 0.95799085 1
## 5549 0.95793440 1
## 2301 0.95778758 1
## 1192 0.95776057 1
## 1844 0.95770579 1
## 3226 0.95770342 1
## 2877 0.95764389 1
## 2770 0.95757967 1
## 2049 0.95753768 1
## 1156 0.95750033 1
## 618 0.95731156 1
## 533 0.95724674 1
## 4847 0.95712824 1
## 4301 0.95690202 1
## 4959 0.95680522 1
## 4825 0.95664051 1
## 819 0.95643704 1
## 599 0.95643069 1
## 4280 0.95623824 1
## 3963 0.95622152 1
## 5045 0.95619609 1
## 3233 0.95575746 1
## 4817 0.95575047 1
## 3257 0.95571774 1
## 57 0.95561060 1
## 1149 0.95542697 1
## 963 0.95530831 1
## 4221 0.95526123 1
## 1866 0.95521736 1
## 3685 0.95500148 1
## 5180 0.95492114 1
## 5151 0.95465321 1
## 346 0.95449001 1
## 3414 0.95434116 1
## 5322 0.95424938 1
## 523 0.95380014 1
## 4103 0.95377644 1
## 997 0.95369059 0
## 4124 0.95363086 1
## 503 0.95344439 1
## 1397 0.95337343 1
## 3437 0.95325068 1
## 3239 0.95322736 1
## 1550 0.95317688 0
## 2377 0.95308947 1
## 4197 0.95288425 1
## 1246 0.95283445 1
## 5254 0.95283088 1
## 1651 0.95281582 1
## 1428 0.95278819 1
## 2129 0.95277005 1
## 4723 0.95266861 1
## 3190 0.95265523 1
## 3959 0.95252130 1
## 4436 0.95242259 1
## 3951 0.95240255 1
## 2250 0.95238944 1
## 2338 0.95208369 1
## 715 0.95207352 1
## 2255 0.95164917 1
## 3970 0.95156603 1
## 2426 0.95136000 1
## 549 0.95105694 1
## 3746 0.95096201 1
## 5225 0.95090670 1
## 5351 0.95074675 1
## 2018 0.95061383 1
## 3742 0.95045442 1
## 4001 0.95044584 1
## 2651 0.95041559 1
## 5532 0.95040849 1
## 2030 0.95036498 1
## 1452 0.95031638 1
## 2384 0.95030574 1
## 1091 0.95013094 1
## 4681 0.95009315 1
## 322 0.95007650 1
## 3331 0.95006097 1
## 2790 0.95004250 1
## 1141 0.94989826 1
## 3421 0.94987315 1
## 3462 0.94983016 1
## 5058 0.94978005 1
## 3234 0.94973490 1
## 2306 0.94962479 1
## 2119 0.94957725 1
## 3962 0.94941316 1
## 4312 0.94939425 1
## 4714 0.94917830 0
## 4684 0.94917625 1
## 317 0.94910360 1
## 4040 0.94909401 1
## 4414 0.94907200 1
## 4528 0.94902629 1
## 3157 0.94896974 1
## 2923 0.94868534 1
## 2714 0.94864793 1
## 3020 0.94853572 1
## 1571 0.94851945 0
## 589 0.94841755 1
## 1148 0.94831806 1
## 3704 0.94815724 1
## 4079 0.94815111 1
## 1340 0.94799820 1
## 4991 0.94799040 1
## 979 0.94794769 1
## 4269 0.94775502 1
## 1490 0.94756055 1
## 1108 0.94746892 1
## 1109 0.94740396 1
## 4475 0.94733092 1
## 1643 0.94715468 1
## 2794 0.94703154 1
## 3450 0.94702616 1
## 4526 0.94693025 1
## 2056 0.94673288 1
## 3580 0.94665156 1
## 2296 0.94662918 1
## 1083 0.94653763 1
## 3355 0.94649945 1
## 3509 0.94642352 1
## 2463 0.94614048 1
## 5389 0.94575085 1
## 2461 0.94571227 1
## 4501 0.94564140 1
## 1860 0.94538824 1
## 5232 0.94521438 1
## 2180 0.94511551 1
## 2626 0.94485667 1
## 3913 0.94480150 1
## 3063 0.94455640 1
## 4159 0.94451201 1
## 5561 0.94420023 1
## 1533 0.94413228 1
## 2307 0.94410902 1
## 3989 0.94407116 1
## 1817 0.94383555 1
## 1197 0.94375634 1
## 3005 0.94360127 1
## 1881 0.94357631 1
## 4707 0.94346285 0
## 4659 0.94323248 1
## 4984 0.94313133 1
## 4548 0.94310294 1
## 203 0.94298796 1
## 3621 0.94297228 1
## 1556 0.94296892 1
## 2620 0.94286293 1
## 5520 0.94239615 1
## 5494 0.94220243 1
## 1631 0.94214922 1
## 445 0.94212489 1
## 3425 0.94211187 1
## 561 0.94209479 1
## 4487 0.94204414 1
## 2713 0.94201396 1
## 4257 0.94197724 1
## 2009 0.94170083 1
## 3841 0.94154210 1
## 2843 0.94149730 1
## 4052 0.94146057 1
## 1517 0.94124273 1
## 4125 0.94107462 1
## 3519 0.94105471 1
## 548 0.94104241 1
## 588 0.94104241 1
## 415 0.94095505 1
## 467 0.94095505 1
## 4623 0.94078689 1
## 3978 0.94061010 1
## 1387 0.94046594 1
## 4570 0.94040032 1
## 441 0.94019216 1
## 5274 0.94018092 1
## 3754 0.94007094 1
## 986 0.94002973 1
## 3032 0.93997765 1
## 3320 0.93989581 1
## 3430 0.93980125 1
## 1240 0.93975532 1
## 585 0.93973183 1
## 592 0.93973183 1
## 207 0.93964266 1
## 178 0.93955336 1
## 2499 0.93953929 1
## 267 0.93952442 1
## 3444 0.93943826 1
## 2802 0.93921466 1
## 2597 0.93919029 1
## 1176 0.93899392 0
## 5015 0.93895087 1
## 2278 0.93894431 1
## 2209 0.93894170 1
## 4098 0.93887026 1
## 3626 0.93881668 1
## 1892 0.93846550 1
## 2990 0.93838037 1
## 4229 0.93831175 1
## 3144 0.93821970 1
## 4908 0.93802760 1
## 505 0.93793620 1
## 2400 0.93779776 1
## 1239 0.93759959 1
## 2916 0.93745247 1
## 91 0.93737827 1
## 4174 0.93729439 1
## 5067 0.93717771 1
## 2434 0.93712094 1
## 3654 0.93679292 1
## 3155 0.93634670 1
## 2183 0.93597738 1
## 2455 0.93589779 1
## 4237 0.93579439 1
## 1196 0.93556405 1
## 2762 0.93542446 1
## 559 0.93525248 1
## 3350 0.93502406 0
## 3985 0.93501118 1
## 3740 0.93498750 1
## 4232 0.93487471 1
## 2867 0.93486321 1
## 5233 0.93476677 1
## 3911 0.93474485 1
## 3241 0.93432029 1
## 4036 0.93425994 1
## 1353 0.93420734 1
## 5305 0.93400409 1
## 2792 0.93360002 1
## 4360 0.93342163 1
## 5538 0.93316470 0
## 2658 0.93297411 1
## 5415 0.93235641 1
## 2207 0.93207678 1
## 1788 0.93180526 1
## 3534 0.93164889 0
## 3237 0.93161557 1
## 3153 0.93158171 1
## 5042 0.93156377 1
## 3611 0.93141164 1
## 2795 0.93100348 1
## 2873 0.93094322 1
## 759 0.93077599 1
## 4608 0.93065861 1
## 5544 0.93050675 1
## 610 0.93038954 1
## 2349 0.93023751 1
## 1123 0.92993002 1
## 3302 0.92973103 1
## 2070 0.92957961 1
## 4116 0.92887562 1
## 4775 0.92883284 1
## 5055 0.92849743 1
## 1191 0.92843191 1
## 5441 0.92808265 1
## 532 0.92776450 1
## 3086 0.92756822 1
## 5416 0.92749334 1
## 5301 0.92734034 1
## 3759 0.92730240 1
## 5269 0.92671075 1
## 2016 0.92660931 1
## 1115 0.92650398 1
## 2673 0.92605731 1
## 4211 0.92579954 1
## 5518 0.92575545 1
## 5439 0.92575156 1
## 3347 0.92571758 1
## 2940 0.92565063 1
## 1688 0.92551680 1
## 1321 0.92544947 1
## 1489 0.92540827 1
## 4507 0.92534293 1
## 1308 0.92529958 1
## 933 0.92523208 1
## 4308 0.92509414 1
## 3420 0.92497834 1
## 2756 0.92480900 1
## 2251 0.92436899 1
## 55 0.92392282 1
## 1294 0.92379212 1
## 625 0.92359046 0
## 2320 0.92357880 0
## 2997 0.92355221 1
## 4731 0.92346176 1
## 3558 0.92308149 1
## 2542 0.92304409 1
## 920 0.92301772 1
## 1540 0.92301645 1
## 3739 0.92286289 1
## 4950 0.92282765 1
## 93 0.92279080 1
## 5252 0.92272120 1
## 2252 0.92213981 1
## 2523 0.92172181 0
## 5030 0.92161481 1
## 2798 0.92158326 1
## 4550 0.92156992 1
## 3889 0.92153583 1
## 3757 0.92146165 1
## 3762 0.92125564 1
## 4650 0.92110019 1
## 3635 0.92091122 1
## 3140 0.92082565 1
## 1475 0.92078637 1
## 4877 0.92063071 0
## 2097 0.92050577 1
## 2669 0.92049203 1
## 3110 0.92045933 1
## 5251 0.92036554 1
## 1934 0.92014621 1
## 1132 0.92003555 1
## 1365 0.91997253 1
## 5559 0.91986465 1
## 2191 0.91981979 1
## 972 0.91981222 1
## 1813 0.91959182 1
## 4693 0.91946145 1
## 2894 0.91940414 1
## 1303 0.91920661 1
## 1161 0.91834858 1
## 3510 0.91817046 1
## 4118 0.91783206 1
## 2807 0.91757167 1
## 2863 0.91717761 1
## 3613 0.91703967 1
## 3562 0.91674661 1
## 4016 0.91632361 1
## 1154 0.91626564 1
## 749 0.91604300 1
## 2113 0.91532923 1
## 1717 0.91530530 1
## 1650 0.91480715 1
## 2285 0.91445509 1
## 3279 0.91440943 1
## 3076 0.91426103 1
## 2302 0.91418163 1
## 5564 0.91393591 0
## 3892 0.91349925 1
## 4087 0.91343864 1
## 4764 0.91306208 1
## 3102 0.91300064 1
## 3267 0.91284161 1
## 2503 0.91262498 1
## 550 0.91204653 1
## 4732 0.91195420 1
## 2718 0.91157748 1
## 1547 0.91142603 1
## 3870 0.91134922 1
## 1394 0.91109670 1
## 1499 0.91076100 1
## 1333 0.91066994 1
## 5460 0.91028617 1
## 2708 0.91025812 0
## 4023 0.91022558 1
## 1620 0.90981889 1
## 2311 0.90976076 1
## 602 0.90963016 1
## 3801 0.90961735 1
## 1026 0.90934102 1
## 109 0.90915166 1
## 5130 0.90903201 1
## 1730 0.90894842 0
## 962 0.90813060 1
## 3125 0.90791127 0
## 3126 0.90778111 1
## 5529 0.90672859 1
## 3040 0.90656211 1
## 2227 0.90645814 1
## 4212 0.90435731 1
## 1935 0.90410580 1
## 3147 0.90392119 1
## 767 0.90361992 1
## 4686 0.90351821 1
## 5121 0.90345405 1
## 5128 0.90287838 1
## 5340 0.90273088 0
## 1121 0.90231163 1
## 4470 0.90226469 1
## 4620 0.90204292 1
## 6 0.90159633 1
## 2727 0.90158174 1
## 4156 0.90146317 1
## 4689 0.90066510 1
## 2343 0.90047247 0
## 1673 0.90021190 1
## 2676 0.90004379 1
## 4366 0.89917176 1
## 1876 0.89914009 1
## 4051 0.89911178 1
## 3070 0.89869562 1
## 221 0.89857841 1
## 1511 0.89850165 1
## 425 0.89837370 1
## 4795 0.89836227 1
## 5231 0.89807299 1
## 1947 0.89721890 1
## 3737 0.89714598 1
## 930 0.89710900 1
## 3344 0.89697505 1
## 4915 0.89686456 0
## 3552 0.89683519 1
## 2333 0.89676719 1
## 1743 0.89673665 1
## 1927 0.89669945 1
## 3876 0.89669383 1
## 2675 0.89661077 1
## 543 0.89659459 1
## 2477 0.89630070 1
## 4759 0.89618534 1
## 742 0.89613638 1
## 2107 0.89612887 0
## 871 0.89555783 1
## 2071 0.89537867 1
## 3572 0.89534995 1
## 1576 0.89502056 1
## 5135 0.89494934 1
## 1012 0.89488765 1
## 160 0.89459255 1
## 463 0.89419182 1
## 1332 0.89416991 1
## 5124 0.89311978 1
## 5318 0.89238745 1
## 926 0.89231314 1
## 242 0.89206424 1
## 1654 0.89181253 1
## 4873 0.89150957 1
## 1930 0.89147216 1
## 3732 0.89142271 1
## 638 0.89105963 1
## 2486 0.89060258 1
## 2851 0.88987166 1
## 2206 0.88961051 1
## 2279 0.88953115 1
## 2029 0.88945590 1
## 3119 0.88912122 0
## 2205 0.88891229 1
## 212 0.88889108 0
## 662 0.88836415 1
## 3998 0.88828396 1
## 1546 0.88796556 1
## 1304 0.88785927 1
## 5258 0.88776726 1
## 4590 0.88721869 1
## 397 0.88685907 1
## 89 0.88670110 1
## 111 0.88670110 1
## 619 0.88616203 0
## 4509 0.88596788 1
## 1514 0.88566827 1
## 4709 0.88547009 0
## 3324 0.88525368 0
## 2870 0.88462725 1
## 4186 0.88457361 1
## 2927 0.88289159 1
## 4282 0.88273362 1
## 560 0.88268619 1
## 2476 0.88259029 1
## 3747 0.88163553 1
## 1388 0.88135617 1
## 3748 0.88087934 1
## 3299 0.88054428 1
## 556 0.88046734 1
## 572 0.88046734 1
## 2925 0.88033944 1
## 3059 0.87996736 1
## 611 0.87976008 1
## 1343 0.87934939 1
## 786 0.87906482 1
## 1378 0.87892929 1
## 582 0.87821232 1
## 4390 0.87812246 0
## 3085 0.87756045 1
## 2900 0.87739129 0
## 2210 0.87637037 1
## 955 0.87626236 1
## 3231 0.87602562 1
## 3575 0.87569797 1
## 4754 0.87542420 1
## 4749 0.87480733 1
## 4494 0.87470566 1
## 4611 0.87460653 1
## 1519 0.87445847 1
## 4609 0.87429500 1
## 799 0.87350018 1
## 1153 0.87313717 1
## 2854 0.87099863 1
## 803 0.87059762 0
## 1016 0.87052470 1
## 3494 0.87008898 1
## 5139 0.86985707 1
## 1641 0.86871220 1
## 4823 0.86845391 1
## 4768 0.86784820 1
## 2263 0.86711877 1
## 3783 0.86706696 0
## 889 0.86632978 1
## 5331 0.86617342 1
## 2253 0.86583568 1
## 126 0.86569218 1
## 3498 0.86561155 1
## 2121 0.86495010 1
## 2833 0.86415840 1
## 3910 0.86411094 1
## 1868 0.86347385 1
## 5478 0.86233881 1
## 2555 0.86113805 0
## 275 0.86110660 0
## 5257 0.86050430 1
## 2440 0.86027017 1
## 4538 0.85973018 1
## 1879 0.85958019 1
## 1669 0.85918375 1
## 1553 0.85908007 0
## 3805 0.85897034 1
## 1189 0.85893378 1
## 5021 0.85875336 1
## 3877 0.85865485 1
## 23 0.85854501 1
## 1756 0.85831840 1
## 4529 0.85766712 1
## 4532 0.85765189 1
## 4451 0.85747494 1
## 3484 0.85723520 1
## 3332 0.85684429 1
## 2859 0.85534664 1
## 2862 0.85534138 1
## 2268 0.85476163 1
## 4205 0.85379720 1
## 4210 0.85349672 1
## 4460 0.85215361 1
## 1368 0.85164681 0
## 1162 0.85151525 1
## 4341 0.85109847 1
## 1922 0.85094112 1
## 2341 0.85074052 1
## 1744 0.85068090 1
## 1645 0.85029099 1
## 2899 0.85007143 0
## 1916 0.84932735 0
## 991 0.84908288 0
## 1853 0.84900155 1
## 1686 0.84879973 1
## 4910 0.84800629 1
## 1932 0.84743247 0
## 2909 0.84598868 0
## 3756 0.84514528 1
## 1693 0.84475465 1
## 3804 0.84451827 1
## 3793 0.84441495 1
## 995 0.84392748 0
## 3543 0.84373644 1
## 3301 0.84361466 1
## 1516 0.84358842 1
## 1946 0.84355858 0
## 567 0.84351255 1
## 4572 0.84291683 1
## 209 0.84256009 1
## 3749 0.84121090 1
## 3774 0.84121090 1
## 4901 0.84113288 1
## 136 0.84064102 1
## 4078 0.84004343 1
## 4288 0.83902193 1
## 1701 0.83886729 1
## 5285 0.83839427 1
## 2813 0.83829325 1
## 768 0.83803293 1
## 3785 0.83786635 0
## 571 0.83781925 1
## 1684 0.83723375 1
## 3784 0.83545020 0
## 2581 0.83506780 1
## 3678 0.83500080 1
## 1173 0.83497521 0
## 5437 0.83486293 1
## 3097 0.83480026 1
## 1555 0.83399982 0
## 2294 0.83393049 1
## 584 0.83344053 1
## 5108 0.83331646 1
## 1681 0.83273219 1
## 2926 0.83243166 1
## 3730 0.83175304 1
## 38 0.83100721 0
## 4473 0.83074310 1
## 4095 0.82984877 1
## 5065 0.82978843 1
## 4368 0.82939160 1
## 5534 0.82879955 1
## 3513 0.82856758 1
## 5143 0.82839017 0
## 2474 0.82645857 1
## 2355 0.82631173 1
## 754 0.82615930 1
## 3159 0.82584574 1
## 5202 0.82506231 1
## 5388 0.82337747 1
## 2554 0.82261662 1
## 1116 0.82194058 1
## 910 0.82031300 1
## 2930 0.82030027 1
## 1136 0.81901760 1
## 189 0.81808283 1
## 3349 0.81741670 1
## 2290 0.81725990 1
## 5173 0.81617653 1
## 4162 0.81535255 1
## 5164 0.81529280 1
## 608 0.81517900 1
## 4761 0.81420117 1
## 1023 0.81306784 1
## 3781 0.81303638 0
## 5114 0.81248260 0
## 5070 0.81224925 0
## 3796 0.81214412 1
## 384 0.81167092 1
## 2733 0.81107911 0
## 2938 0.81093270 1
## 4960 0.80997924 1
## 3725 0.80862599 1
## 1554 0.80842397 0
## 2308 0.80841007 1
## 1451 0.80743450 1
## 2671 0.80740560 1
## 1396 0.80737106 1
## 969 0.80693890 1
## 4696 0.80612031 1
## 1656 0.80541197 1
## 5172 0.80511994 1
## 5469 0.80441217 0
## 1507 0.80360290 1
## 4207 0.80334988 1
## 1940 0.80306305 1
## 1751 0.80266674 1
## 1885 0.80175675 1
## 2917 0.80031380 1
## 3337 0.80022254 0
## 4206 0.79960501 1
## 484 0.79871813 0
## 2351 0.79797668 1
## 5326 0.79717182 1
## 3731 0.79616767 1
## 1215 0.79615680 1
## 3354 0.79582862 1
## 3736 0.79547696 1
## 2559 0.79486234 1
## 2358 0.79457998 1
## 1727 0.79440514 0
## 1315 0.79425321 1
## 3872 0.79399268 1
## 1138 0.79390070 1
## 3282 0.79313879 1
## 3554 0.79236883 1
## 393 0.79189281 1
## 2936 0.79127977 1
## 2939 0.79048337 1
## 2876 0.79041912 1
## 2325 0.78894392 0
## 311 0.78890796 0
## 3313 0.78882345 1
## 313 0.78793821 0
## 3512 0.78766703 1
## 67 0.78674673 0
## 1032 0.78634894 1
## 106 0.78603267 1
## 641 0.78506825 0
## 250 0.78505150 1
## 141 0.78342616 1
## 756 0.78150056 1
## 1360 0.77912035 1
## 1573 0.77654032 1
## 569 0.77640026 1
## 753 0.77630442 1
## 3121 0.77626140 0
## 3743 0.77620380 1
## 2686 0.77548504 1
## 4292 0.77475256 1
## 2906 0.77369106 0
## 4429 0.77354727 1
## 2 0.77344577 1
## 2114 0.77309125 1
## 761 0.77295761 1
## 952 0.77281756 1
## 348 0.77241236 1
## 2685 0.77199492 1
## 1129 0.77168052 1
## 1732 0.76840298 0
## 118 0.76688545 0
## 1515 0.76654706 1
## 2547 0.76622510 1
## 1926 0.76563458 1
## 1925 0.76516753 0
## 1038 0.76406585 1
## 758 0.76274519 1
## 3502 0.75924106 1
## 2282 0.75805715 1
## 1862 0.75728503 1
## 5492 0.75583238 1
## 1143 0.75258102 1
## 285 0.75250129 1
## 4867 0.75152997 1
## 2518 0.75077307 0
## 4393 0.74888618 1
## 4372 0.74848030 1
## 653 0.74625662 1
## 4929 0.74304717 1
## 3339 0.73865262 1
## 977 0.73610782 1
## 628 0.73307304 0
## 4110 0.73029387 0
## 915 0.72781930 1
## 3287 0.72777023 1
## 2488 0.72749563 1
## 287 0.72615674 1
## 840 0.72540356 1
## 4377 0.72455334 1
## 4458 0.72082755 1
## 1570 0.72056836 1
## 4701 0.71977905 1
## 39 0.71956508 1
## 2287 0.71931828 1
## 4112 0.71781252 1
## 1166 0.71502781 1
## 2684 0.71499416 1
## 480 0.71487157 1
## 4093 0.71468049 1
## 4711 0.71428214 0
## 2878 0.71424407 1
## 2879 0.71373387 1
## 5352 0.71056651 1
## 547 0.70839971 1
## 1374 0.70837333 0
## 2115 0.70825299 0
## 283 0.70794448 0
## 17 0.70742370 0
## 243 0.70742370 1
## 2532 0.70736371 1
## 566 0.70707149 1
## 130 0.70674549 1
## 232 0.70546432 0
## 2329 0.70460312 1
## 4188 0.70368587 1
## 1401 0.70287228 1
## 1551 0.70119263 0
## 2725 0.70091974 0
## 4094 0.70090935 1
## 236 0.69938762 0
## 1699 0.69705286 1
## 104 0.69627925 1
## 4831 0.69538351 0
## 2363 0.69475319 1
## 269 0.69403725 1
## 2127 0.69338286 0
## 765 0.69085923 1
## 808 0.69085923 0
## 3156 0.69063026 1
## 3878 0.68474047 1
## 2122 0.68307563 0
## 764 0.67560033 1
## 5117 0.67493382 1
## 4770 0.67374933 0
## 3280 0.66388508 1
## 1990 0.66070819 1
## 1180 0.65105236 0
## 2517 0.65065729 0
## 3525 0.64880580 1
## 1152 0.64814968 1
## 303 0.64678679 0
## 5581 0.64659629 1
## 984 0.64413108 1
## 5177 0.64011879 1
## 1211 0.63328677 1
## 1520 0.62998968 1
## 785 0.62404436 1
## 2875 0.61811376 1
## 4092 0.61445036 1
## 1170 0.61363126 1
## 2913 0.60725812 0
## 970 0.60655925 1
## 4916 0.60327118 1
## 4392 0.60324485 1
## 1405 0.58850229 1
## 2929 0.58597873 1
## 996 0.58031045 0
## 253 0.55871812 1
## 181 0.55389221 1
## 831 0.54015774 0
## 4776 0.52999173 1
## 2716 0.51998585 1
## 3571 0.49756059 0
## 3899 0.46802094 1
## 3565 0.39921468 1
## 3803 0.39137566 1
## 3496 0.35724644 1
## 2717 0.34943577 0
## 3352 0.34107184 0
## 1027 0.32744738 0
## 208 0.32020076 0
## 3346 0.26730153 1
## 193 0.25481192 0
## 1217 0.24885290 0
## 2342 0.23904480 1
## 449 0.23700307 1
## 237 0.23623731 0
## 1399 0.23459911 0
## 3341 0.23413779 1
## 828 0.23373203 1
## 3136 0.22947139 1
## 1943 0.22676000 0
## 3269 0.20920691 1
## 4469 0.20006782 0
## 3550 0.19442300 0
## 832 0.17207737 0
## 4967 0.15009901 0
## 4969 0.06234154 1
## 1725 0.03893029 0
xbar=mean(ynew)
xbar
## [1] 0.9311164
axis=dim(n2)
ax=dim(n2)
ay=dim(n2)
axis[1]=1
ax[1]=xbar
ay[1]=bb1[1,2]
for (i in 2:n2) {
axis[i]=i
ax[i]=xbar*i
ay[i]=ay[i-1]+bb1[i,2]
}
aaa=cbind(bb1[,1],bb1[,2],ay,ax)
aaa[1:100,]
## ay ax
## 5592 1.0000000 1 1 0.9311164
## 5593 1.0000000 1 2 1.8622328
## 5595 1.0000000 1 3 2.7933492
## 5606 1.0000000 1 4 3.7244656
## 5609 1.0000000 1 5 4.6555819
## 5610 1.0000000 1 6 5.5866983
## 5587 0.9998041 1 7 6.5178147
## 96 0.9992242 1 8 7.4489311
## 436 0.9992056 1 9 8.3800475
## 1053 0.9991750 1 10 9.3111639
## 88 0.9991462 1 11 10.2422803
## 448 0.9990920 1 12 11.1733967
## 474 0.9990831 1 13 12.1045131
## 1784 0.9990808 1 14 13.0356295
## 264 0.9990749 1 15 13.9667458
## 1961 0.9990625 1 16 14.8978622
## 4005 0.9990578 1 17 15.8289786
## 865 0.9990463 1 18 16.7600950
## 2372 0.9990273 1 19 17.6912114
## 1779 0.9990214 1 20 18.6223278
## 4006 0.9990032 1 21 19.5534442
## 864 0.9989925 1 22 20.4845606
## 2382 0.9989816 1 23 21.4156770
## 853 0.9989477 1 24 22.3467933
## 9 0.9989262 1 25 23.2779097
## 5541 0.9988556 1 26 24.2090261
## 369 0.9988433 1 27 25.1401425
## 3186 0.9988319 1 28 26.0712589
## 2963 0.9986276 1 29 27.0023753
## 451 0.9986243 1 30 27.9334917
## 256 0.9985823 1 31 28.8646081
## 2966 0.9984462 1 32 29.7957245
## 681 0.9983443 1 33 30.7268409
## 4789 0.9983320 1 34 31.6579572
## 5294 0.9981312 1 35 32.5890736
## 153 0.9981255 1 36 33.5201900
## 1606 0.9980727 1 37 34.4513064
## 305 0.9980709 1 38 35.3824228
## 3361 0.9980554 1 39 36.3135392
## 2147 0.9979662 1 40 37.2446556
## 850 0.9979640 1 41 38.1757720
## 254 0.9979579 1 42 39.1068884
## 127 0.9979409 1 43 40.0380048
## 5260 0.9979398 1 44 40.9691211
## 2752 0.9979396 1 45 41.9002375
## 1423 0.9979020 1 46 42.8313539
## 185 0.9978733 1 47 43.7624703
## 112 0.9978724 1 48 44.6935867
## 69 0.9978567 1 49 45.6247031
## 4725 0.9978446 1 50 46.5558195
## 2373 0.9978026 1 51 47.4869359
## 1075 0.9977055 1 52 48.4180523
## 2592 0.9976718 1 53 49.3491686
## 3371 0.9975280 1 54 50.2802850
## 3375 0.9974528 1 55 51.2114014
## 5034 0.9973377 1 56 52.1425178
## 3019 0.9973061 1 57 53.0736342
## 277 0.9972838 1 58 54.0047506
## 4734 0.9972496 1 59 54.9358670
## 620 0.9971861 0 59 55.8669834
## 1599 0.9971531 1 60 56.7980998
## 390 0.9971503 1 61 57.7292162
## 851 0.9971142 1 62 58.6603325
## 4786 0.9971010 1 63 59.5914489
## 1062 0.9969869 1 64 60.5225653
## 1814 0.9969467 1 65 61.4536817
## 454 0.9969444 1 66 62.3847981
## 594 0.9969082 1 67 63.3159145
## 3382 0.9969009 1 68 64.2470309
## 3180 0.9968967 1 69 65.1781473
## 4146 0.9967968 1 70 66.1092637
## 54 0.9967949 1 71 67.0403800
## 114 0.9967821 1 72 67.9714964
## 1229 0.9967291 1 73 68.9026128
## 3310 0.9966870 1 74 69.8337292
## 1247 0.9966659 1 75 70.7648456
## 1231 0.9966103 1 76 71.6959620
## 382 0.9965452 1 77 72.6270784
## 861 0.9965450 1 78 73.5581948
## 2779 0.9965229 1 79 74.4893112
## 2231 0.9963832 1 80 75.4204276
## 3308 0.9963763 1 81 76.3515439
## 1442 0.9963586 1 82 77.2826603
## 2957 0.9963539 1 83 78.2137767
## 3046 0.9963302 1 84 79.1448931
## 3369 0.9963280 1 85 80.0760095
## 4029 0.9963145 1 86 81.0071259
## 1251 0.9962981 1 87 81.9382423
## 1037 0.9962574 1 88 82.8693587
## 2606 0.9962458 1 89 83.8004751
## 4323 0.9961135 1 90 84.7315914
## 722 0.9960974 1 91 85.6627078
## 1809 0.9960762 1 92 86.5938242
## 4792 0.9960738 1 93 87.5249406
## 1627 0.9960314 1 94 88.4560570
## 4096 0.9959908 1 95 89.3871734
## 793 0.9959625 1 96 90.3182898
## 4011 0.9959153 1 97 91.2494062
## 5155 0.9959096 1 98 92.1805226
## 4892 0.9958807 1 99 93.1116390
Finally we calculated the lift and the following plot shows it.
plot(axis,ay,xlab="number of cases",ylab="number of successes",main="Lift: CUM successes sorted by pred val/success prob")
points(axis,ax,type="l")
The following model will try to predict if a passenger will survive the sinking of the Titanic. Survival is coded as a 1.
library(car)
T <- read.csv("~/Business Analytics/Titanic.csv")
T = T[-9:-11]
T$Gender=recode(T$Gender, "'male'=1; else=0")
T$Gender=as.numeric(levels(T$Gender)[T$Gender])
Next I will split the data into a training set and test set.
n = length(T$Survived)
n1 = floor(n*(.7))
n1
## [1] 730
n2 = n-n1
train = sample(1:n,n1)
Then I will find the model of the data.
XT <- model.matrix(Survived~., data = T)[,-1]
XT[1:3,]
## Class Gender Age NumbSibOrSpsAbd NumbParOrChildAbd Fare
## 1 1 0 29.0000 0 0 211.3375
## 2 1 1 0.9167 1 2 151.5500
## 3 1 0 2.0000 1 2 151.5500
## EmbarkedAtQ EmbarkedAtS
## 1 0 1
## 2 0 1
## 3 0 1
xtrain <- XT[train,]
xnew <- XT[-train,]
ytrain <- T$Survived[train]
ynew <- T$Survived[-train]
m2=glm(Survived~.,family=binomial,data=data.frame(Survived=ytrain,xtrain))
summary(m2)
##
## Call:
## glm(formula = Survived ~ ., family = binomial, data = data.frame(Survived = ytrain,
## xtrain))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1989 -0.6982 -0.4138 0.6316 2.5035
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.3039565 0.6185117 8.575 < 2e-16 ***
## Class -0.9260208 0.1607787 -5.760 8.43e-09 ***
## Gender -2.6607217 0.2160287 -12.317 < 2e-16 ***
## Age -0.0415196 0.0080586 -5.152 2.57e-07 ***
## NumbSibOrSpsAbd -0.3100787 0.1279962 -2.423 0.01541 *
## NumbParOrChildAbd -0.0178921 0.1270975 -0.141 0.88805
## Fare 0.0007795 0.0024092 0.324 0.74627
## EmbarkedAtQ -1.7564827 0.5112079 -3.436 0.00059 ***
## EmbarkedAtS -0.7914461 0.2576162 -3.072 0.00212 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 992.18 on 729 degrees of freedom
## Residual deviance: 669.09 on 721 degrees of freedom
## AIC: 687.09
##
## Number of Fisher Scoring iterations: 5
Then I will predict for the test set.
ptest <- predict(m2,newdata=data.frame(xnew),type="response")
data.frame(ynew,ptest)[1:10,]
## ynew ptest
## 2 1 0.65925645
## 3 0 0.96358662
## 4 0 0.36643433
## 6 1 0.25990236
## 12 1 0.97062705
## 15 1 0.08530062
## 17 1 0.92251469
## 22 1 0.65950531
## 25 0 0.66807512
## 27 1 0.96610432
gg1=floor(ptest+0.5)
ttt=table(ynew,gg1)
ttt
## gg1
## ynew 0 1
## 0 163 30
## 1 39 81
error=(ttt[1,2]+ttt[2,1])/n2
error
## [1] 0.2204473
Our error is high enough to say this model is not a good predictor with getting errors over 20% of the time.
bb=cbind(ptest,ynew)
bb1=bb[order(ptest,decreasing=TRUE),]
bb1
## ptest ynew
## 12 0.97062705 1
## 109 0.96974311 1
## 27 0.96610432 1
## 264 0.96524735 1
## 3 0.96358662 0
## 106 0.95994898 1
## 66 0.95668486 1
## 115 0.95646261 1
## 212 0.95388471 1
## 172 0.95210234 1
## 95 0.95154976 1
## 97 0.94823682 0
## 122 0.94380030 1
## 191 0.94171302 1
## 167 0.94132912 1
## 435 0.94021963 1
## 35 0.93785263 1
## 17 0.92251469 1
## 32 0.92197013 1
## 386 0.91827851 1
## 63 0.91746042 1
## 815 0.91312340 1
## 80 0.91169280 1
## 215 0.90752415 1
## 28 0.90370048 1
## 451 0.89264260 1
## 74 0.89200115 1
## 310 0.88414610 1
## 597 0.87993076 1
## 414 0.87683789 1
## 876 0.87087665 1
## 359 0.87068752 1
## 300 0.86838370 1
## 304 0.86780975 1
## 217 0.86670145 1
## 113 0.86583435 1
## 594 0.86192028 0
## 500 0.85775192 1
## 551 0.85621184 1
## 609 0.85469587 0
## 339 0.85261033 1
## 71 0.85191776 1
## 255 0.84571026 1
## 309 0.84212600 1
## 301 0.82557511 1
## 822 0.82487828 1
## 345 0.81877263 1
## 519 0.81873214 1
## 604 0.81619230 1
## 165 0.81484608 1
## 321 0.80871365 1
## 699 0.80181907 1
## 524 0.80054937 1
## 798 0.79796702 1
## 949 0.79235741 0
## 429 0.78129967 0
## 436 0.77850710 1
## 962 0.77789079 1
## 522 0.77656004 0
## 143 0.77200771 1
## 332 0.76996424 1
## 33 0.76835568 1
## 1024 0.76120480 0
## 367 0.74891953 0
## 416 0.74019772 1
## 182 0.73329127 1
## 539 0.72433972 1
## 357 0.72034359 1
## 318 0.71642149 1
## 105 0.71477399 1
## 958 0.70443344 1
## 945 0.70097700 0
## 895 0.69573666 1
## 86 0.68734084 1
## 773 0.68690191 0
## 118 0.68621497 0
## 275 0.67376696 0
## 974 0.66976835 0
## 841 0.66874600 0
## 25 0.66807512 0
## 161 0.66002525 1
## 22 0.65950531 1
## 2 0.65925645 1
## 135 0.65836082 1
## 924 0.65246504 0
## 441 0.65177145 1
## 75 0.65066449 1
## 871 0.64685682 1
## 806 0.64603056 0
## 498 0.64397846 1
## 517 0.64397846 1
## 477 0.64264545 1
## 930 0.64061957 0
## 807 0.63647953 0
## 40 0.63571318 1
## 883 0.63101122 0
## 492 0.62269785 1
## 637 0.62142775 0
## 911 0.61552380 0
## 761 0.60831968 1
## 128 0.60165462 1
## 568 0.59861312 0
## 65 0.59693981 0
## 396 0.59202309 1
## 848 0.58841338 0
## 179 0.57655366 0
## 687 0.56344460 0
## 51 0.55397230 1
## 827 0.55316218 0
## 738 0.52775298 1
## 261 0.51949997 0
## 547 0.49226983 1
## 663 0.46556002 1
## 494 0.46206582 0
## 76 0.46093948 0
## 590 0.44562384 1
## 747 0.44266199 0
## 38 0.44118273 0
## 238 0.42149206 1
## 486 0.42113472 0
## 355 0.41511514 1
## 611 0.41447999 0
## 108 0.41178335 1
## 241 0.40750454 1
## 767 0.39340669 1
## 496 0.39217799 1
## 485 0.39067746 1
## 121 0.38672304 1
## 229 0.37591442 1
## 948 0.37384691 0
## 1032 0.37247934 1
## 130 0.37145213 1
## 516 0.37031690 0
## 4 0.36643433 0
## 178 0.36622512 1
## 257 0.36382989 0
## 433 0.36349026 0
## 769 0.35964673 0
## 735 0.35538509 0
## 372 0.34427548 0
## 347 0.34326219 0
## 351 0.33396414 0
## 621 0.33180526 0
## 348 0.33151421 0
## 365 0.32313085 0
## 1003 0.32266507 1
## 499 0.31411729 0
## 34 0.31059084 0
## 44 0.31054703 1
## 53 0.30549706 1
## 243 0.30042738 0
## 361 0.29691528 0
## 881 0.28203731 1
## 197 0.28066669 0
## 305 0.27987742 0
## 616 0.27645959 0
## 151 0.27610490 0
## 205 0.27187758 0
## 377 0.27166339 0
## 263 0.26911197 0
## 502 0.26345089 0
## 512 0.26345089 0
## 967 0.26064412 0
## 1022 0.26064349 1
## 155 0.25995824 0
## 6 0.25990236 1
## 679 0.25666283 0
## 144 0.25207086 0
## 570 0.24724972 0
## 334 0.24000215 0
## 723 0.23812329 0
## 828 0.23736469 1
## 557 0.23153007 1
## 1041 0.22627510 0
## 446 0.22518414 0
## 389 0.22484430 0
## 58 0.22330240 0
## 526 0.22147399 0
## 268 0.21858454 0
## 698 0.21456628 1
## 896 0.21158954 1
## 140 0.21101249 0
## 185 0.20849286 0
## 413 0.20410530 0
## 672 0.20320068 1
## 595 0.20184811 0
## 320 0.20018689 1
## 531 0.19606175 0
## 368 0.19260510 0
## 510 0.19073310 0
## 545 0.18451877 0
## 714 0.18260168 0
## 654 0.18047268 0
## 262 0.17068036 0
## 858 0.17053243 0
## 418 0.16905700 0
## 337 0.16870004 0
## 459 0.16808656 0
## 472 0.16667426 0
## 296 0.16538550 1
## 640 0.16446778 0
## 729 0.15875117 0
## 719 0.15874901 0
## 422 0.15423945 0
## 920 0.15396403 0
## 682 0.15352495 0
## 675 0.15332118 0
## 613 0.15331022 0
## 669 0.15329462 0
## 192 0.15300576 0
## 1009 0.15181750 0
## 788 0.14797871 0
## 1023 0.14797871 0
## 625 0.14360874 0
## 982 0.14283870 0
## 969 0.14282677 0
## 766 0.14282001 0
## 812 0.14281444 1
## 618 0.14281246 0
## 865 0.14281246 1
## 1034 0.14276236 0
## 615 0.13795068 0
## 612 0.13783021 0
## 875 0.13781592 0
## 793 0.13780666 0
## 834 0.13780473 0
## 814 0.13778119 0
## 703 0.13775612 0
## 927 0.13775612 0
## 855 0.13774454 0
## 369 0.13334444 0
## 894 0.13307572 0
## 596 0.13295249 0
## 104 0.12919270 0
## 840 0.12838228 0
## 929 0.12825585 0
## 646 0.12823879 0
## 716 0.12821228 1
## 560 0.12816872 0
## 965 0.12595263 0
## 689 0.12367188 0
## 702 0.12367188 0
## 995 0.12366343 1
## 549 0.12365111 1
## 869 0.12365111 0
## 768 0.12361733 0
## 1002 0.12300635 1
## 1030 0.12146373 0
## 578 0.11924196 0
## 558 0.11924128 0
## 1035 0.11501072 0
## 805 0.11494660 0
## 574 0.11494197 1
## 770 0.11487689 1
## 846 0.11458069 0
## 780 0.11192139 0
## 1016 0.11091616 0
## 775 0.11079290 0
## 909 0.10840954 0
## 832 0.10688618 0
## 326 0.10444825 0
## 696 0.10298806 1
## 552 0.10282614 0
## 795 0.09909504 0
## 915 0.09651318 0
## 564 0.09644694 0
## 693 0.09569600 0
## 979 0.09546808 0
## 999 0.09545967 0
## 972 0.09231079 0
## 813 0.09192968 0
## 733 0.09089368 0
## 395 0.08867624 0
## 996 0.08853423 0
## 15 0.08530062 1
## 692 0.08320954 0
## 425 0.08250046 0
## 1036 0.08214347 0
## 838 0.08158685 0
## 628 0.08054772 0
## 847 0.07803212 0
## 937 0.07600810 0
## 690 0.07418753 0
## 584 0.07232032 0
## 599 0.07225041 0
## 388 0.07134018 1
## 968 0.07037766 0
## 821 0.06791368 0
## 741 0.06770698 0
## 1010 0.06708846 0
## 707 0.06517130 0
## 782 0.06512323 0
## 898 0.06407761 0
## 1012 0.06121902 0
## 819 0.06026419 0
## 311 0.05792163 0
## 721 0.05790958 0
## 1017 0.05362218 0
## 573 0.05113986 0
## 736 0.05101538 0
## 746 0.05056503 0
## 799 0.04923164 0
## 588 0.04916637 0
## 750 0.04889596 0
## 952 0.04760789 0
## 752 0.04576030 0
## 1029 0.04575009 0
## 755 0.04408799 0
## 427 0.03481474 0
## 674 0.03323736 0
## 893 0.03064662 0
## 728 0.02746983 0
## 715 0.01011026 0
xbar=mean(ynew)
xbar
## [1] 0.3833866
##calculating the lift
axis=dim(n2)
ax=dim(n2)
ay=dim(n2)
axis[1]=1
ax[1]=xbar
ay[1]=bb1[1,2]
for (i in 2:n2) {
axis[i]=i
ax[i]=xbar*i
ay[i]=ay[i-1]+bb1[i,2]
}
aaa=cbind(bb1[,1],bb1[,2],ay,ax)
aaa[1:100,]
## ay ax
## 12 0.9706270 1 1 0.3833866
## 109 0.9697431 1 2 0.7667732
## 27 0.9661043 1 3 1.1501597
## 264 0.9652473 1 4 1.5335463
## 3 0.9635866 0 4 1.9169329
## 106 0.9599490 1 5 2.3003195
## 66 0.9566849 1 6 2.6837061
## 115 0.9564626 1 7 3.0670927
## 212 0.9538847 1 8 3.4504792
## 172 0.9521023 1 9 3.8338658
## 95 0.9515498 1 10 4.2172524
## 97 0.9482368 0 10 4.6006390
## 122 0.9438003 1 11 4.9840256
## 191 0.9417130 1 12 5.3674121
## 167 0.9413291 1 13 5.7507987
## 435 0.9402196 1 14 6.1341853
## 35 0.9378526 1 15 6.5175719
## 17 0.9225147 1 16 6.9009585
## 32 0.9219701 1 17 7.2843450
## 386 0.9182785 1 18 7.6677316
## 63 0.9174604 1 19 8.0511182
## 815 0.9131234 1 20 8.4345048
## 80 0.9116928 1 21 8.8178914
## 215 0.9075242 1 22 9.2012780
## 28 0.9037005 1 23 9.5846645
## 451 0.8926426 1 24 9.9680511
## 74 0.8920012 1 25 10.3514377
## 310 0.8841461 1 26 10.7348243
## 597 0.8799308 1 27 11.1182109
## 414 0.8768379 1 28 11.5015974
## 876 0.8708766 1 29 11.8849840
## 359 0.8706875 1 30 12.2683706
## 300 0.8683837 1 31 12.6517572
## 304 0.8678098 1 32 13.0351438
## 217 0.8667015 1 33 13.4185304
## 113 0.8658343 1 34 13.8019169
## 594 0.8619203 0 34 14.1853035
## 500 0.8577519 1 35 14.5686901
## 551 0.8562118 1 36 14.9520767
## 609 0.8546959 0 36 15.3354633
## 339 0.8526103 1 37 15.7188498
## 71 0.8519178 1 38 16.1022364
## 255 0.8457103 1 39 16.4856230
## 309 0.8421260 1 40 16.8690096
## 301 0.8255751 1 41 17.2523962
## 822 0.8248783 1 42 17.6357827
## 345 0.8187726 1 43 18.0191693
## 519 0.8187321 1 44 18.4025559
## 604 0.8161923 1 45 18.7859425
## 165 0.8148461 1 46 19.1693291
## 321 0.8087136 1 47 19.5527157
## 699 0.8018191 1 48 19.9361022
## 524 0.8005494 1 49 20.3194888
## 798 0.7979670 1 50 20.7028754
## 949 0.7923574 0 50 21.0862620
## 429 0.7812997 0 50 21.4696486
## 436 0.7785071 1 51 21.8530351
## 962 0.7778908 1 52 22.2364217
## 522 0.7765600 0 52 22.6198083
## 143 0.7720077 1 53 23.0031949
## 332 0.7699642 1 54 23.3865815
## 33 0.7683557 1 55 23.7699681
## 1024 0.7612048 0 55 24.1533546
## 367 0.7489195 0 55 24.5367412
## 416 0.7401977 1 56 24.9201278
## 182 0.7332913 1 57 25.3035144
## 539 0.7243397 1 58 25.6869010
## 357 0.7203436 1 59 26.0702875
## 318 0.7164215 1 60 26.4536741
## 105 0.7147740 1 61 26.8370607
## 958 0.7044334 1 62 27.2204473
## 945 0.7009770 0 62 27.6038339
## 895 0.6957367 1 63 27.9872204
## 86 0.6873408 1 64 28.3706070
## 773 0.6869019 0 64 28.7539936
## 118 0.6862150 0 64 29.1373802
## 275 0.6737670 0 64 29.5207668
## 974 0.6697683 0 64 29.9041534
## 841 0.6687460 0 64 30.2875399
## 25 0.6680751 0 64 30.6709265
## 161 0.6600252 1 65 31.0543131
## 22 0.6595053 1 66 31.4376997
## 2 0.6592565 1 67 31.8210863
## 135 0.6583608 1 68 32.2044728
## 924 0.6524650 0 68 32.5878594
## 441 0.6517715 1 69 32.9712460
## 75 0.6506645 1 70 33.3546326
## 871 0.6468568 1 71 33.7380192
## 806 0.6460306 0 71 34.1214058
## 498 0.6439785 1 72 34.5047923
## 517 0.6439785 1 73 34.8881789
## 477 0.6426455 1 74 35.2715655
## 930 0.6406196 0 74 35.6549521
## 807 0.6364795 0 74 36.0383387
## 40 0.6357132 1 75 36.4217252
## 883 0.6310112 0 75 36.8051118
## 492 0.6226979 1 76 37.1884984
## 637 0.6214278 0 76 37.5718850
## 911 0.6155238 0 76 37.9552716
## 761 0.6083197 1 77 38.3386581
Finally we calculated the lift and the following plot shows it.
plot(axis,ay,xlab="number of cases",ylab="number of successes",main="Lift: CUM successes sorted by pred val/success prob")
points(axis,ax,type="l")