library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(openxlsx)
library(readr)
library(utils)
library(haven)
webcsv <- read.csv("http://www.personal.psu.edu/dlp/w540/titanic540.csv")
webcsv.titanic <- tbl_df(webcsv)
webcsv.titanic
# A tibble: 1,309 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 female 29 0 0 211.34 S
2 1 1 male 1 1 2 151.55 S
3 1 0 female 2 1 2 151.55 S
4 1 0 male 30 1 2 151.55 S
5 1 0 female 25 1 2 151.55 S
6 1 1 male 48 0 0 26.55 S
7 1 1 female 63 1 0 77.96 S
8 1 0 male 39 0 0 0.00 S
9 1 1 female 53 2 0 51.48 S
10 1 0 male 71 0 0 49.50 C
# ... with 1,299 more rows
webcsv.titanic$survived
[1] 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1
[35] 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1
[69] 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0
[103] 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0
[137] 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0
[171] 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0
[205] 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0
[239] 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1
[273] 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0
[307] 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
[341] 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1
[375] 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1
[409] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1
[443] 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
[477] 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
[511] 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0
[545] 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1
[579] 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1
[613] 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
[647] 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
[681] 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[715] 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0
[749] 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
[783] 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
[817] 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[851] 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0
[885] 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
[919] 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
[953] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1
[987] 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
[1021] 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0
[1055] 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
[1089] 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
[1123] 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
[1157] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
[1191] 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
[1225] 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1
[1259] 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
[1293] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
webcsv.titanic.freq <- table(webcsv.titanic$survived)
webcsv.titanic.freq
0 1
809 500
cbind(webcsv.titanic.freq)
webcsv.titanic.freq
0 809
1 500
nrow(webcsv.titanic.freq)
[1] 2
webcsv.titanic.freq.2 <- webcsv.titanic.freq / nrow(webcsv.titanic.freq)
webcsv.titanic.freq.2
0 1
404.5 250.0
y <- c(webcsv$survived)
y
[1] 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1
[35] 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1
[69] 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0
[103] 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0
[137] 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0
[171] 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0
[205] 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0
[239] 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1
[273] 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0
[307] 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
[341] 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1
[375] 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1
[409] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1
[443] 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
[477] 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
[511] 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0
[545] 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1
[579] 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1
[613] 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
[647] 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
[681] 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[715] 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0
[749] 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
[783] 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
[817] 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[851] 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0
[885] 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
[919] 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
[953] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1
[987] 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
[1021] 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0
[1055] 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
[1089] 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
[1123] 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
[1157] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
[1191] 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
[1225] 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1
[1259] 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
[1293] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
x <- c(webcsv$sex)
x
[1] 1 2 1 2 1 2 1 2 1 2 2 1 1 1 2 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 2 1 1
[35] 2 1 1 2 2 2 2 1 1 1 1 2 2 2 1 2 1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1
[69] 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 1 1 2 2
[103] 1 1 1 1 2 1 1 2 2 1 1 1 2 2 1 1 2 2 2 1 1 2 1 2 2 1 2 1 1 1 2 2 1 2
[137] 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 2 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 1
[171] 2 2 2 2 2 2 1 2 1 2 1 1 1 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 2 2 2
[205] 1 2 2 1 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2
[239] 1 2 2 2 1 2 2 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 2 1 2 2 2 2 2 2 1 2
[273] 1 2 2 1 2 1 2 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 2 1 1 2 2 2 2 1 2 1 2
[307] 2 2 1 1 2 1 2 2 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2
[341] 1 1 1 2 1 2 2 2 2 1 1 2 1 1 2 1 2 2 1 2 2 1 1 2 2 1 2 2 2 1 1 1 2 1
[375] 2 2 2 1 2 1 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 2 2 2 1 1 1 2 2 2 2 1
[409] 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 1 1 2 1 1
[443] 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2 1 2 1 2 2 2 2 1 2 1 1 1 2 1 2 2 2 1
[477] 2 2 1 1 2 1 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2
[511] 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 1 2 1 2 2 2 1 1 1 2
[545] 2 1 1 2 2 2 1 1 2 1 2 2 2 1 1 1 1 2 1 2 1 2 2 2 2 2 1 2 1 1 2 1 2 1
[579] 2 2 1 2 1 1 1 2 1 2 1 1 1 1 2 1 2 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 2
[613] 1 2 2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2
[647] 1 1 2 2 1 2 2 1 2 2 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1
[681] 2 1 1 2 1 2 1 1 2 2 2 2 1 2 2 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 2 2 2
[715] 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2
[749] 2 1 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2
[783] 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2
[817] 2 2 1 1 2 2 2 1 2 2 2 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2
[851] 2 1 1 2 2 2 1 2 2 1 1 1 1 2 1 1 1 1 2 2 1 2 1 2 2 2 2 1 1 2 2 2 2 2
[885] 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 2 1 2
[919] 2 2 2 2 1 1 2 2 2 2 1 2 2 2 1 2 1 2 1 1 2 1 2 2 2 1 2 2 2 1 2 2 2 2
[953] 2 2 2 1 1 1 1 2 2 1 2 2 2 2 1 1 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2
[987] 2 1 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 2 1 2 1 1 1 2 2 1 1 1 1 2 2 2 2 2
[1021] 2 2 2 1 2 2 1 2 1 2 2 2 2 2 2 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 2 2 2
[1055] 1 2 2 1 1 2 1 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1 1 1 1 2 1 2 2 2 2 1 2
[1089] 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2
[1123] 1 1 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 1 2 2
[1157] 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 2 1 2 2 2 2 1 1 1
[1191] 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 1 2 1 2 2 2 2 1 2 2 2 2 2 2 1
[1225] 2 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 1
[1259] 1 2 1 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2
[1293] 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 2
webcsv.prop.surv.sex <- table(x,y)
webcsv.prop.surv.sex
y
x 0 1
1 127 339
2 682 161
ftable(webcsv.prop.surv.sex)
y 0 1
x
1 127 339
2 682 161
titanic.age.surv.fem <- filter(webcsv.titanic, sex =="female", survived =="1")
titanic.age.surv.fem
# A tibble: 339 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 female 29 0 0 211.34 S
2 1 1 female 63 1 0 77.96 S
3 1 1 female 53 2 0 51.48 S
4 1 1 female 18 1 0 227.53 C
5 1 1 female 24 0 0 69.30 C
6 1 1 female 26 0 0 78.85 S
7 1 1 female 50 0 1 247.52 C
8 1 1 female 32 0 0 76.29 C
9 1 1 female 47 1 1 52.55 S
10 1 1 female 42 0 0 227.53 C
# ... with 329 more rows
titanic.age.surv.fem.2 <- select(titanic.age.surv.fem, age, survived, sex)
titanic.age.surv.fem.2
# A tibble: 339 x 3
age survived sex
<int> <int> <fctr>
1 29 1 female
2 63 1 female
3 53 1 female
4 18 1 female
5 24 1 female
6 26 1 female
7 50 1 female
8 32 1 female
9 47 1 female
10 42 1 female
# ... with 329 more rows
mean.titanic.age <- mean(titanic.age.surv.fem.2$age, na.rm = TRUE)
mean.titanic.age
[1] 29.81849
surv.age.10 <- filter(webcsv.titanic, age<= 10, survived=="1")
surv.age.10
# A tibble: 50 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 male 1 1 2 151.55 S
2 1 1 male 4 0 2 81.86 S
3 1 1 male 6 0 2 134.50 C
4 2 1 male 1 2 1 39.00 S
5 2 1 female 4 2 1 39.00 S
6 2 1 male 1 0 2 29.00 S
7 2 1 female 8 0 2 26.25 S
8 2 1 male 8 1 1 36.75 S
9 2 1 male 8 0 2 32.50 S
10 2 1 male 1 1 1 14.50 S
# ... with 40 more rows
surv.age.10.2 <- select(surv.age.10, age, survived)
surv.age.10.2
# A tibble: 50 x 2
age survived
<int> <int>
1 1 1
2 4 1
3 6 1
4 1 1
5 4 1
6 1 1
7 8 1
8 8 1
9 8 1
10 1 1
# ... with 40 more rows
surv.age.10.2 <- tbl_df(surv.age.10.2)
surv.age.10.2
# A tibble: 50 x 2
age survived
<int> <int>
1 1 1
2 4 1
3 6 1
4 1 1
5 4 1
6 1 1
7 8 1
8 8 1
9 8 1
10 1 1
# ... with 40 more rows
nrow(surv.age.10.2)
[1] 50
or older
surv.age.10.older <- filter(webcsv.titanic, age>= 10, survived=="1")
surv.age.10.older
# A tibble: 377 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 female 29 0 0 211.34 S
2 1 1 male 48 0 0 26.55 S
3 1 1 female 63 1 0 77.96 S
4 1 1 female 53 2 0 51.48 S
5 1 1 female 18 1 0 227.53 C
6 1 1 female 24 0 0 69.30 C
7 1 1 female 26 0 0 78.85 S
8 1 1 male 80 0 0 30.00 S
9 1 1 female 50 0 1 247.52 C
10 1 1 female 32 0 0 76.29 C
# ... with 367 more rows
surv.age.10.older.2 <- select(surv.age.10.older, age, survived)
surv.age.10.older.2
# A tibble: 377 x 2
age survived
<int> <int>
1 29 1
2 48 1
3 63 1
4 53 1
5 18 1
6 24 1
7 26 1
8 80 1
9 50 1
10 32 1
# ... with 367 more rows
surv.age.10.older.2 <- tbl_df(surv.age.10.older.2)
surv.age.10.older.2
# A tibble: 377 x 2
age survived
<int> <int>
1 29 1
2 48 1
3 63 1
4 53 1
5 18 1
6 24 1
7 26 1
8 80 1
9 50 1
10 32 1
# ... with 367 more rows
surv.age.10.older.2.sum <- surv.age.10.older.2 %>%
summarise(min.age=min(age, na.rm=TRUE),
max.age=max(age, na.rm=TRUE),
median.age=median(age, na.rm=TRUE))
surv.age.10.older.2.sum
# A tibble: 1 x 3
min.age max.age median.age
<dbl> <dbl> <int>
1 11 80 30
surv.port <- filter(webcsv.titanic, survived=="1")
surv.port
# A tibble: 500 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 female 29 0 0 211.34 S
2 1 1 male 1 1 2 151.55 S
3 1 1 male 48 0 0 26.55 S
4 1 1 female 63 1 0 77.96 S
5 1 1 female 53 2 0 51.48 S
6 1 1 female 18 1 0 227.53 C
7 1 1 female 24 0 0 69.30 C
8 1 1 female 26 0 0 78.85 S
9 1 1 male 80 0 0 30.00 S
10 1 1 female 50 0 1 247.52 C
# ... with 490 more rows
surv.port.2 <- select(surv.port, survived, embarked)
surv.port.2
# A tibble: 500 x 2
survived embarked
<int> <fctr>
1 1 S
2 1 S
3 1 S
4 1 S
5 1 S
6 1 C
7 1 C
8 1 S
9 1 S
10 1 C
# ... with 490 more rows
surv.port.2 <- tbl_df(surv.port.2)
surv.port.2
# A tibble: 500 x 2
survived embarked
<int> <fctr>
1 1 S
2 1 S
3 1 S
4 1 S
5 1 S
6 1 C
7 1 C
8 1 S
9 1 S
10 1 C
# ... with 490 more rows
surv.port.2.arr <- surv.port.2 %>%
arrange(embarked)
surv.port.2.arr
# A tibble: 500 x 2
survived embarked
<int> <fctr>
1 1
2 1
3 1 C
4 1 C
5 1 C
6 1 C
7 1 C
8 1 C
9 1 C
10 1 C
# ... with 490 more rows
surv.port.2.arr <- table(webcsv.titanic$embarked)
surv.port.2.arr
C Q S
2 270 123 914
cbind(surv.port.2.arr)
surv.port.2.arr
2
C 270
Q 123
S 914
nrow(surv.port.2.arr)
[1] 4
surv.port.2.arr.prop <- surv.port.2.arr/ nrow(surv.port.2.arr)
surv.port.2.arr.prop
C Q S
0.50 67.50 30.75 228.50
Age of 40 by Port of Embarkation
titanic.age.surv.fem.port <- filter(webcsv.titanic, sex =="female", survived =="1", age> "40")
titanic.age.surv.fem.port
# A tibble: 74 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 female 63 1 0 77.96 S
2 1 1 female 53 2 0 51.48 S
3 1 1 female 50 0 1 247.52 C
4 1 1 female 47 1 1 52.55 S
5 1 1 female 42 0 0 227.53 C
6 1 1 female 58 0 0 26.55 S
7 1 1 female 45 0 0 262.38 C
8 1 1 female 44 0 0 27.72 C
9 1 1 female 59 2 0 51.48 S
10 1 1 female 60 0 0 76.29 C
# ... with 64 more rows
titanic.age.surv.fem.port.2 <- select(titanic.age.surv.fem.port, age, survived, sex,embarked)
titanic.age.surv.fem.port.2
# A tibble: 74 x 4
age survived sex embarked
<int> <int> <fctr> <fctr>
1 63 1 female S
2 53 1 female S
3 50 1 female C
4 47 1 female S
5 42 1 female C
6 58 1 female S
7 45 1 female C
8 44 1 female C
9 59 1 female S
10 60 1 female C
# ... with 64 more rows
titanic.age.surv.fem.port.2.tbl <- table(titanic.age.surv.fem.port.2$embarked)
titanic.age.surv.fem.port.2.tbl
C Q S
1 30 0 43
titanic.fare.port <- select(webcsv.titanic, fare, embarked)
titanic.fare.port
# A tibble: 1,309 x 2
fare embarked
<dbl> <fctr>
1 211.34 S
2 151.55 S
3 151.55 S
4 151.55 S
5 151.55 S
6 26.55 S
7 77.96 S
8 0.00 S
9 51.48 S
10 49.50 C
# ... with 1,299 more rows
titanic.fare.port.2 <- titanic.fare.port %>%
arrange(embarked)
titanic.fare.port.2
# A tibble: 1,309 x 2
fare embarked
<dbl> <fctr>
1 80.00
2 80.00
3 49.50 C
4 227.53 C
5 227.53 C
6 69.30 C
7 247.52 C
8 247.52 C
9 76.29 C
10 75.24 C
# ... with 1,299 more rows
titanic.fare.port.2.grp <- titanic.fare.port.2 %>%
group_by(embarked) %>%
summarise(mean.fare=mean(fare, na.rm=TRUE))
titanic.fare.port.2.grp
# A tibble: 4 x 2
embarked mean.fare
<fctr> <dbl>
1 80.00000
2 C 62.33719
3 Q 12.40935
4 S 27.41963
Titanic
surv.sib.spo <- filter(webcsv.titanic, survived=="1", sibsp>"0")
surv.sib.spo
# A tibble: 191 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 male 1 1 2 151.55 S
2 1 1 female 63 1 0 77.96 S
3 1 1 female 53 2 0 51.48 S
4 1 1 female 18 1 0 227.53 C
5 1 1 male 37 1 1 52.55 S
6 1 1 female 47 1 1 52.55 S
7 1 1 male 25 1 0 91.08 C
8 1 1 female 19 1 0 91.08 C
9 1 1 female 59 2 0 51.48 S
10 1 1 male 11 1 2 120.00 S
# ... with 181 more rows
surv.sib.spo <- tbl_df(surv.sib.spo)
surv.sib.spo
# A tibble: 191 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 male 1 1 2 151.55 S
2 1 1 female 63 1 0 77.96 S
3 1 1 female 53 2 0 51.48 S
4 1 1 female 18 1 0 227.53 C
5 1 1 male 37 1 1 52.55 S
6 1 1 female 47 1 1 52.55 S
7 1 1 male 25 1 0 91.08 C
8 1 1 female 19 1 0 91.08 C
9 1 1 female 59 2 0 51.48 S
10 1 1 male 11 1 2 120.00 S
# ... with 181 more rows
surv.sib.spo.2 <- select(surv.sib.spo, survived, sibsp)
surv.sib.spo.2
# A tibble: 191 x 2
survived sibsp
<int> <int>
1 1 1
2 1 1
3 1 2
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 2
10 1 1
# ... with 181 more rows
surv.sib.spo.2.tbl <- table(surv.sib.spo.2)
surv.sib.spo.2.tbl
sibsp
survived 1 2 3 4
1 163 19 6 3
Titanic
surv.par.ch <- filter(webcsv.titanic, survived=="1", parch>"0")
surv.par.ch
# A tibble: 164 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 male 1 1 2 151.55 S
2 1 1 female 50 0 1 247.52 C
3 1 1 male 37 1 1 52.55 S
4 1 1 female 47 1 1 52.55 S
5 1 1 female 22 0 1 55.00 S
6 1 1 male 36 0 1 512.33 C
7 1 1 female 58 0 1 512.33 C
8 1 1 male 11 1 2 120.00 S
9 1 1 female 14 1 2 120.00 S
10 1 1 male 36 1 2 120.00 S
# ... with 154 more rows
surv.par.ch <- tbl_df(surv.par.ch)
surv.par.ch
# A tibble: 164 x 8
pclass survived sex age sibsp parch fare embarked
<int> <int> <fctr> <int> <int> <int> <dbl> <fctr>
1 1 1 male 1 1 2 151.55 S
2 1 1 female 50 0 1 247.52 C
3 1 1 male 37 1 1 52.55 S
4 1 1 female 47 1 1 52.55 S
5 1 1 female 22 0 1 55.00 S
6 1 1 male 36 0 1 512.33 C
7 1 1 female 58 0 1 512.33 C
8 1 1 male 11 1 2 120.00 S
9 1 1 female 14 1 2 120.00 S
10 1 1 male 36 1 2 120.00 S
# ... with 154 more rows
surv.par.ch.2 <- select(surv.par.ch, survived, parch)
surv.par.ch.2
# A tibble: 164 x 2
survived parch
<int> <int>
1 1 2
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 2
9 1 2
10 1 2
# ... with 154 more rows
surv.par.ch.2.tbl <- table(surv.par.ch.2)
surv.sib.spo.2.tbl
sibsp
survived 1 2 3 4
1 163 19 6 3
titanic.fare.class <- select(webcsv.titanic, fare, pclass)
titanic.fare.class
# A tibble: 1,309 x 2
fare pclass
<dbl> <int>
1 211.34 1
2 151.55 1
3 151.55 1
4 151.55 1
5 151.55 1
6 26.55 1
7 77.96 1
8 0.00 1
9 51.48 1
10 49.50 1
# ... with 1,299 more rows
titanic.fare.class.2 <- titanic.fare.class %>%
arrange(pclass)
titanic.fare.class.2
# A tibble: 1,309 x 2
fare pclass
<dbl> <int>
1 211.34 1
2 151.55 1
3 151.55 1
4 151.55 1
5 151.55 1
6 26.55 1
7 77.96 1
8 0.00 1
9 51.48 1
10 49.50 1
# ... with 1,299 more rows
titanic.fare.class.2.grp <- titanic.fare.class.2 %>%
group_by(pclass) %>%
summarise(mean.fare=mean(fare, na.rm=TRUE))
titanic.fare.class.2.grp
# A tibble: 3 x 2
pclass mean.fare
<int> <dbl>
1 1 87.50935
2 2 21.17928
3 3 13.30414
aboard the Titanic of Female Passenger
fem.par.ch <- select(webcsv.titanic, sex, parch)
fem.par.ch
# A tibble: 1,309 x 2
sex parch
<fctr> <int>
1 female 0
2 male 2
3 female 2
4 male 2
5 female 2
6 male 0
7 female 0
8 male 0
9 female 0
10 male 0
# ... with 1,299 more rows
fem.par.ch.2 <- filter(fem.par.ch, sex=="female", parch>"0")
fem.par.ch.2
# A tibble: 173 x 2
sex parch
<fctr> <int>
1 female 2
2 female 2
3 female 1
4 female 1
5 female 1
6 female 1
7 female 2
8 female 2
9 female 1
10 female 1
# ... with 163 more rows
fem.par.ch.2 <- table(fem.par.ch.2)
fem.par.ch.2
parch
sex 1 2 3 4 5 6 9
female 88 69 6 4 4 1 1
male 0 0 0 0 0 0 0