library(sjmisc)
library(radiant.data)
library(tidyverse)
library(Zelig)
library(texreg)
library(mvtnorm)
library(radiant.data)
library(sjmisc)
library(lattice)
library(dplyr)
library(readr)
data(titanic)
head(titanic)
titanic <- titanic %>%
mutate(surv = as.integer(survived))
titanic <- titanic %>%
select(pclass, survived, surv, everything())
head(titanic)
titanic <- titanic %>%
mutate(surv = as.integer(survived)) %>%
mutate(survival = sjmisc::rec(surv, rec = "2=0; 1=1")) %>%
select(pclass, survived, survival, everything())
library(Zelig)
z.tit1 <- zlogit$new()
z.tit1$zelig(survival ~ age, data = titanic)
summary(z.tit1)
Model:
Call:
z.tit1$zelig(formula = survival ~ age, data = titanic)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1211 -1.0351 -0.9736 1.3195 1.5247
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.131200 0.145095 -0.904 0.3659
age -0.008202 0.004431 -1.851 0.0642
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1410.0 on 1042 degrees of freedom
Residual deviance: 1406.5 on 1041 degrees of freedom
AIC: 1410.5
Number of Fisher Scoring iterations: 4
Next step: Use 'setx' method
library(Zelig)
z.tit2 <- zlogit$new()
z.tit2$zelig(survival ~ sex, data = titanic)
summary(z.tit2)
Model:
Call:
z.tit2$zelig(formula = survival ~ sex, data = titanic)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6682 -0.6783 -0.6783 0.7562 1.7790
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1055 0.1177 9.389 <0.0000000000000002
sexmale -2.4579 0.1523 -16.141 <0.0000000000000002
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1410.0 on 1042 degrees of freedom
Residual deviance: 1100.4 on 1041 degrees of freedom
AIC: 1104.4
Number of Fisher Scoring iterations: 4
Next step: Use 'setx' method
library(Zelig)
z.tit3 <- zlogit$new()
z.tit3$zelig(survival ~ sex*pclass, data = titanic)
summary(z.tit3)
Model:
Call:
z.tit3$zelig(formula = survival ~ sex * pclass, data = titanic)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5557 -0.6096 -0.5609 0.4753 1.9632
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.22684 0.45584 7.079 0.00000000000145275
sexmale -3.84152 0.48668 -7.893 0.00000000000000294
pclass2nd -1.10295 0.55639 -1.982 0.0474
pclass3rd -3.33220 0.48392 -6.886 0.00000000000574319
sexmale:pclass2nd -0.05215 0.62412 -0.084 0.9334
sexmale:pclass3rd 2.35799 0.53260 4.427 0.00000953965064616
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1409.99 on 1042 degrees of freedom
Residual deviance: 966.38 on 1037 degrees of freedom
AIC: 978.38
Number of Fisher Scoring iterations: 5
Next step: Use 'setx' method
library(Zelig)
z.tit <- zlogit$new()
z.tit$zelig(survival ~ age + sex*pclass + fare, data = titanic)
summary(z.tit)
Model:
Call:
z.tit$zelig(formula = survival ~ age + sex * pclass + fare, data = titanic)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.0634 -0.6641 -0.4943 0.4336 2.4941
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.8978215 0.6131092 7.988 0.00000000000000137
age -0.0387245 0.0068044 -5.691 0.00000001262563680
sexmale -3.8996177 0.5015659 -7.775 0.00000000000000755
pclass2nd -1.5923247 0.6024844 -2.643 0.00822
pclass3rd -4.1382715 0.5601819 -7.387 0.00000000000014976
fare -0.0009058 0.0020509 -0.442 0.65874
sexmale:pclass2nd -0.0600076 0.6372949 -0.094 0.92498
sexmale:pclass3rd 2.5019110 0.5479901 4.566 0.00000498035051247
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1409.99 on 1042 degrees of freedom
Residual deviance: 931.45 on 1035 degrees of freedom
AIC: 947.45
Number of Fisher Scoring iterations: 5
Next step: Use 'setx' method
The Effect of Age
z.tit <- z.tit
z.tit$setrange(age = 0:100)
z.tit$sim()
z.tit$graph()

The Effect of Fare
z.tit$setrange(fare = 0:700)
z.tit$sim()
z.tit$graph()

Sex Effect
z.tit2$setx(sex = "male")
z.tit2$setx1(sex = "female")
z.tit2$sim()
summary(z.tit2)
sim x :
-----
ev
mean sd 50% 2.5% 97.5%
[1,] 0.2065737 0.01527193 0.2062044 0.1772126 0.2371819
pv
0 1
[1,] 0.793 0.207
sim x1 :
-----
ev
mean sd 50% 2.5% 97.5%
[1,] 0.7511008 0.02250548 0.752001 0.7050649 0.7947439
pv
0 1
[1,] 0.245 0.755
fd
mean sd 50% 2.5% 97.5%
[1,] 0.5445271 0.02719262 0.5455427 0.4909122 0.5963622
fd <- z.tit$get_qi(xvalue="x1", qi="fd")
summary(fd)
V1
Min. :0.3245
1st Qu.:0.4831
Median :0.5178
Mean :0.5173
3rd Qu.:0.5506
Max. :0.6634
z.tit$setx(sex = "male", pclass = "1st")
z.tit$setx1(sex = "female", pclass = "1st")
z.tit$sim()
graphics.off()
par("mar")
[1] 5.1 4.1 2.1 2.1
par(mar=c(1,1,1,1))
plot(z.tit)

sd1 <- z.tit$get_qi(xvalue="x1", qi="fd")
summary(sd1)
V1
Min. :0.3781
1st Qu.:0.4845
Median :0.5191
Mean :0.5187
3rd Qu.:0.5520
Max. :0.6738
z.tit3$setx(sex = "male", pclass = "2nd")
z.tit3$setx1(sex = "female", pclass = "2nd")
z.tit3$sim()
graphics.off()
par("mar")
[1] 5.1 4.1 2.1 2.1
par(mar=c(1,1,1,1))
plot(z.tit3)

sd2 <- z.tit$get_qi(xvalue="x1", qi="fd")
summary(sd2)
V1
Min. :0.3781
1st Qu.:0.4845
Median :0.5191
Mean :0.5187
3rd Qu.:0.5520
Max. :0.6738
z.tit3$setx(sex = "male", pclass = "3rd")
z.tit3$setx1(sex = "female", pclass = "3rd")
z.tit3$sim()
graphics.off()
par("mar")
[1] 5.1 4.1 2.1 2.1
par(mar=c(1,1,1,1))
plot(z.tit3)

sd3 <- z.tit$get_qi(xvalue="x1", qi="fd")
summary(sd3)
V1
Min. :0.3781
1st Qu.:0.4845
Median :0.5191
Mean :0.5187
3rd Qu.:0.5520
Max. :0.6738
dfd <- as.data.frame(cbind(sd1, sd2, sd3))
head(dfd)
library(tidyr)
tidd <- dfd %>%
gather(class, simv, 1:3)
head(tidd)
library(dplyr)
tidd %>%
group_by(class) %>%
summarise(mean = mean(simv), sd = sd(simv))
library(ggplot2)
ggplot(tidd, aes(simv)) + geom_histogram() + facet_grid(~class)

LS0tDQp0aXRsZTogIkNydXpfTUE3MTJfSFc2X1plbGlnNV9UaXRhbmljIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCmBgYHtyfQ0KbGlicmFyeShzam1pc2MpDQpsaWJyYXJ5KHJhZGlhbnQuZGF0YSkNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShaZWxpZykNCmxpYnJhcnkodGV4cmVnKQ0KbGlicmFyeShtdnRub3JtKQ0KbGlicmFyeShyYWRpYW50LmRhdGEpDQpsaWJyYXJ5KHNqbWlzYykNCmxpYnJhcnkobGF0dGljZSkNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KHJlYWRyKQ0KDQoNCmRhdGEodGl0YW5pYykNCmhlYWQodGl0YW5pYykNCmBgYA0KDQpgYGB7cn0NCnRpdGFuaWMgPC0gdGl0YW5pYyAlPiUgDQogIG11dGF0ZShzdXJ2ID0gYXMuaW50ZWdlcihzdXJ2aXZlZCkpDQpgYGANCg0KYGBge3J9DQp0aXRhbmljIDwtIHRpdGFuaWMgJT4lIA0KICBzZWxlY3QocGNsYXNzLCBzdXJ2aXZlZCwgc3VydiwgZXZlcnl0aGluZygpKQ0KaGVhZCh0aXRhbmljKQ0KYGBgDQoNCg0KYGBge3J9DQp0aXRhbmljIDwtIHRpdGFuaWMgJT4lDQogIG11dGF0ZShzdXJ2ID0gYXMuaW50ZWdlcihzdXJ2aXZlZCkpICU+JSANCiAgbXV0YXRlKHN1cnZpdmFsID0gc2ptaXNjOjpyZWMoc3VydiwgcmVjID0gIjI9MDsgMT0xIikpICU+JSANCiAgc2VsZWN0KHBjbGFzcywgc3Vydml2ZWQsIHN1cnZpdmFsLCBldmVyeXRoaW5nKCkpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQoNCmxpYnJhcnkoWmVsaWcpDQp6LnRpdDEgPC0gemxvZ2l0JG5ldygpDQp6LnRpdDEkemVsaWcoc3Vydml2YWwgfiBhZ2UsIGRhdGEgPSB0aXRhbmljKQ0Kc3VtbWFyeSh6LnRpdDEpDQoNCg0KbGlicmFyeShaZWxpZykNCnoudGl0MiA8LSB6bG9naXQkbmV3KCkNCnoudGl0MiR6ZWxpZyhzdXJ2aXZhbCB+IHNleCwgZGF0YSA9IHRpdGFuaWMpDQpzdW1tYXJ5KHoudGl0MikNCg0KbGlicmFyeShaZWxpZykNCnoudGl0MyA8LSB6bG9naXQkbmV3KCkNCnoudGl0MyR6ZWxpZyhzdXJ2aXZhbCB+IHNleCpwY2xhc3MsIGRhdGEgPSB0aXRhbmljKQ0Kc3VtbWFyeSh6LnRpdDMpDQoNCmxpYnJhcnkoWmVsaWcpDQp6LnRpdCA8LSB6bG9naXQkbmV3KCkNCnoudGl0JHplbGlnKHN1cnZpdmFsIH4gYWdlICsgc2V4KnBjbGFzcyArIGZhcmUsIGRhdGEgPSB0aXRhbmljKQ0Kc3VtbWFyeSh6LnRpdCkNCg0KDQpgYGANCg0KI1RoZSBFZmZlY3Qgb2YgQWdlDQpgYGB7cn0NCnoudGl0IDwtIHoudGl0DQp6LnRpdCRzZXRyYW5nZShhZ2UgPSAwOjEwMCkNCnoudGl0JHNpbSgpDQp6LnRpdCRncmFwaCgpDQpgYGANCg0KI1RoZSBFZmZlY3Qgb2YgRmFyZQ0KYGBge3J9DQp6LnRpdCRzZXRyYW5nZShmYXJlID0gMDo3MDApDQp6LnRpdCRzaW0oKQ0Kei50aXQkZ3JhcGgoKQ0KYGBgDQojU2V4IEVmZmVjdA0KDQpgYGB7cn0NCnoudGl0MiRzZXR4KHNleCA9ICJtYWxlIikNCnoudGl0MiRzZXR4MShzZXggPSAiZmVtYWxlIikNCnoudGl0MiRzaW0oKQ0Kc3VtbWFyeSh6LnRpdDIpDQpgYGANCg0KYGBge3J9DQpmZCA8LSB6LnRpdCRnZXRfcWkoeHZhbHVlPSJ4MSIsIHFpPSJmZCIpDQpzdW1tYXJ5KGZkKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCnoudGl0JHNldHgoc2V4ID0gIm1hbGUiLCBwY2xhc3MgPSAiMXN0IikgDQp6LnRpdCRzZXR4MShzZXggPSAiZmVtYWxlIiwgcGNsYXNzID0gIjFzdCIpDQp6LnRpdCRzaW0oKQ0KDQpncmFwaGljcy5vZmYoKQ0KIHBhcigibWFyIikNCiBwYXIobWFyPWMoMSwxLDEsMSkpDQpwbG90KHoudGl0KQ0KDQpgYGANCg0KDQpgYGB7cn0NCnNkMSA8LSB6LnRpdCRnZXRfcWkoeHZhbHVlPSJ4MSIsIHFpPSJmZCIpDQpzdW1tYXJ5KHNkMSkNCmBgYA0KDQpgYGB7cn0NCnoudGl0MyRzZXR4KHNleCA9ICJtYWxlIiwgcGNsYXNzID0gIjJuZCIpIA0Kei50aXQzJHNldHgxKHNleCA9ICJmZW1hbGUiLCBwY2xhc3MgPSAiMm5kIikNCnoudGl0MyRzaW0oKQ0KDQpncmFwaGljcy5vZmYoKQ0KIHBhcigibWFyIikNCiBwYXIobWFyPWMoMSwxLDEsMSkpDQpwbG90KHoudGl0MykNCg0KYGBgDQoNCg0KYGBge3J9DQpzZDIgPC0gei50aXQkZ2V0X3FpKHh2YWx1ZT0ieDEiLCBxaT0iZmQiKQ0Kc3VtbWFyeShzZDIpDQpgYGANCmBgYHtyfQ0Kei50aXQzJHNldHgoc2V4ID0gIm1hbGUiLCBwY2xhc3MgPSAiM3JkIikgDQp6LnRpdDMkc2V0eDEoc2V4ID0gImZlbWFsZSIsIHBjbGFzcyA9ICIzcmQiKQ0Kei50aXQzJHNpbSgpDQoNCmdyYXBoaWNzLm9mZigpDQogcGFyKCJtYXIiKQ0KIHBhcihtYXI9YygxLDEsMSwxKSkNCnBsb3Qoei50aXQzKQ0KDQpgYGANCg0KYGBge3J9DQpzZDMgPC0gei50aXQkZ2V0X3FpKHh2YWx1ZT0ieDEiLCBxaT0iZmQiKQ0Kc3VtbWFyeShzZDMpDQpgYGANCmBgYHtyfQ0KDQpkZmQgPC0gYXMuZGF0YS5mcmFtZShjYmluZChzZDEsIHNkMiwgc2QzKSkNCmhlYWQoZGZkKQ0KYGBgDQoNCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHlyKQ0KDQp0aWRkIDwtIGRmZCAlPiUgDQogIGdhdGhlcihjbGFzcywgc2ltdiwgMTozKQ0KaGVhZCh0aWRkKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShkcGx5cikNCg0KdGlkZCAlPiUgDQogIGdyb3VwX2J5KGNsYXNzKSAlPiUgDQogIHN1bW1hcmlzZShtZWFuID0gbWVhbihzaW12KSwgc2QgPSBzZChzaW12KSkNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCg0KZ2dwbG90KHRpZGQsIGFlcyhzaW12KSkgKyBnZW9tX2hpc3RvZ3JhbSgpICsgZmFjZXRfZ3JpZCh+Y2xhc3MpDQoNCg0KYGBgDQoNCg==