Om Joy Halder
16-10-2017
Storedata <- read.csv(paste("StoreData.csv", sep=" "))
mean(Storedata$p1sales)
[1] 133.0486
sd(Storedata$p1sales)
[1] 28.3726
var(Storedata$p1sales)
[1] 805.0044
cor(Storedata$p1sales,Storedata$p2sales)
[1] -0.5583594
cor(Storedata$p1sales,Storedata$p2prom)
[1] -0.01334702
x <- subset(Storedata[c(4,5,6,7)])
y <- subset(Storedata[c(8,9)])
z<- cor(x,y)
round(z,3)
p1prom p2prom
p1sales 0.421 -0.013
p2sales -0.014 0.560
p1price -0.015 0.024
p2price -0.001 -0.012
library(corrgram)
corrgram(Storedata[,c(4:7,8:9)], order=FALSE, lower.panel=panel.conf,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram - Storedata")
cor.test(Storedata$p2sales, Storedata$p2prom)
Pearson's product-moment correlation
data: Storedata$p2sales and Storedata$p2prom
t = 30.804, df = 2078, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5296696 0.5887155
sample estimates:
cor
0.559903
cor.test(Storedata$p2sales, Storedata$p1prom)
Pearson's product-moment correlation
data: Storedata$p2sales and Storedata$p1prom
t = -0.6361, df = 2078, p-value = 0.5248
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.05689831 0.02904415
sample estimates:
cor
-0.01395285
regr<-lm(Storedata$p1sales~Storedata$p2price)
summary(regr)
Call:
lm(formula = Storedata$p1sales ~ Storedata$p2price)
Residuals:
Min 1Q Median 3Q Max
-58.002 -17.884 -2.643 14.177 106.998
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.716 4.317 1.555 0.12
Storedata$p2price 46.798 1.588 29.478 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 23.83 on 2078 degrees of freedom
Multiple R-squared: 0.2949, Adjusted R-squared: 0.2945
F-statistic: 869 on 1 and 2078 DF, p-value: < 2.2e-16
regr2<-lm(Storedata$p2sales~Storedata$p2price)
summary(regr2)
Call:
lm(formula = Storedata$p2sales ~ Storedata$p2price)
Residuals:
Min 1Q Median 3Q Max
-45.657 -15.657 -3.077 11.400 110.184
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 196.788 3.877 50.76 <2e-16 ***
Storedata$p2price -35.796 1.425 -25.11 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.4 on 2078 degrees of freedom
Multiple R-squared: 0.2328, Adjusted R-squared: 0.2324
F-statistic: 630.6 on 1 and 2078 DF, p-value: < 2.2e-16
For Coke, Beta = -52.7 For Pepsi, Beta = -35.8
Thus, the sales of Coke are more responsive to a change in its price. The sales of Coke increase by 52.7 units for unit decrease in its price. Whereas for Pepsi, there is an increase in sales of only 35.8 units for unit decrease in its price.