Apurva (PGP32242)
16 October 2017
setwd("~/Downloads/IIM Lucknow/TERM 5/DAM")
store.df <- read.csv("StoreData.csv")
summary(store.df)
storeNum Year Week p1sales
Min. :101.0 Min. :1.0 Min. : 1.00 Min. : 73
1st Qu.:105.8 1st Qu.:1.0 1st Qu.:13.75 1st Qu.:113
Median :110.5 Median :1.5 Median :26.50 Median :129
Mean :110.5 Mean :1.5 Mean :26.50 Mean :133
3rd Qu.:115.2 3rd Qu.:2.0 3rd Qu.:39.25 3rd Qu.:150
Max. :120.0 Max. :2.0 Max. :52.00 Max. :263
p2sales p1price p2price p1prom
Min. : 51.0 Min. :2.190 Min. :2.29 Min. :0.0
1st Qu.: 84.0 1st Qu.:2.290 1st Qu.:2.49 1st Qu.:0.0
Median : 96.0 Median :2.490 Median :2.59 Median :0.0
Mean :100.2 Mean :2.544 Mean :2.70 Mean :0.1
3rd Qu.:113.0 3rd Qu.:2.790 3rd Qu.:2.99 3rd Qu.:0.0
Max. :225.0 Max. :2.990 Max. :3.19 Max. :1.0
p2prom country
Min. :0.0000 AU:104
1st Qu.:0.0000 BR:208
Median :0.0000 CN:208
Mean :0.1385 DE:520
3rd Qu.:0.0000 GB:312
Max. :1.0000 JP:416
US:312
library(psych)
describe(store.df$p1sales)
vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 2080 133.05 28.37 129 131.08 26.69 73 263 190 0.74 0.66
se
X1 0.62
x<- store.df$p1sales
y<- store.df$p1prom
z<- cor(x,y)
round(z,2)
[1] 0.42
x<- store.df$p1sales
y<-store.df$p2prom
z<- cor(x,y)
round(z,2)
[1] -0.01
x<- store.df[4:7]
y<- store.df[8:9]
z<-cor(x,y)
round(z,2)
p1prom p2prom
p1sales 0.42 -0.01
p2sales -0.01 0.56
p1price -0.01 0.02
p2price 0.00 -0.01
library(corrgram)
corrgram(store.df[,c(4:7,8:9)], order=FALSE, lower.panel=panel.conf,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram - Store")
cor.test(store.df$p2sales,store.df$p2prom)
Pearson's product-moment correlation
data: store.df$p2sales and store.df$p2prom
t = 30.804, df = 2078, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5296696 0.5887155
sample estimates:
cor
0.559903
we can reject the null hypothesis as p value is less than .05
cor.test(store.df$p1sales,store.df$p1prom)
Pearson's product-moment correlation
data: store.df$p1sales and store.df$p1prom
t = 21.168, df = 2078, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3851676 0.4559018
sample estimates:
cor
0.421175
We can reject the null hypothesis as p value is less than .05
lrcoke <- lm(p1sales ~ p1price, data = store.df)
summary(lrcoke)
Call:
lm(formula = p1sales ~ p1price, data = store.df)
Residuals:
Min 1Q Median 3Q Max
-52.724 -17.454 -2.819 14.463 111.276
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 267.138 4.523 59.06 <2e-16 ***
p1price -52.700 1.766 -29.84 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 23.74 on 2078 degrees of freedom
Multiple R-squared: 0.3, Adjusted R-squared: 0.2997
F-statistic: 890.6 on 1 and 2078 DF, p-value: < 2.2e-16
lrpepsi <- lm(p2sales ~ p2price, data = store.df)
summary(lrpepsi)
Call:
lm(formula = p2sales ~ p2price, data = store.df)
Residuals:
Min 1Q Median 3Q Max
-45.657 -15.657 -3.077 11.400 110.184
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 196.788 3.877 50.76 <2e-16 ***
p2price -35.796 1.425 -25.11 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.4 on 2078 degrees of freedom
Multiple R-squared: 0.2328, Adjusted R-squared: 0.2324
F-statistic: 630.6 on 1 and 2078 DF, p-value: < 2.2e-16
## Sale of Coke is more responsive