Introduction

2014 - Arborea - Pinus pinea plantation 4 (50 m * 50 m) plots Each plot is divided in (10 m side) squared subplots identified using the following scheme:

“A5” “B5” “C5” “D5” “E5”
“A4” “B4” “C4” “D4” “E4”
“A3” “B3” “C3” “D3” “E3”
“A2” “B2” “C2” “D2” “E2”
“A1” “B1” “C1” “D1” “E1”

In each subplot, point positions have been registered measuring the distances from the extremes of one side. Let ‘a’ be the side used as reference for the positions measurements. We will define a local cartesian sistem for each subplot using ‘a’ as ‘x axis’ and the left extreme of ‘a’, say ‘A’, as origin (0,0) The coordinates of the point on opposite extreme of ‘a’, say ‘B’, are hence (10, 0) For each registered point, say ‘C’, the distances (AC), say ‘c’, and (BC), say ‘b’, have been measured and registered. To compute local cartesian coordinates of point ‘C’, say (lx, ly), one can exploit Erone’s formula, actually reversing it. (see: https://it.wikipedia.org/wiki/Formula_di_Erone ‘Dimostrazione alternativa’) \[ \begin{eqnarray} x & = & \frac {(a^{2}-b^{2}+c^{2})} {2a} \\ y & = & \frac {\sqrt{(4a^{2}c^{2}-(a^{2}-b^{2}+c^{2})^{2})}} {2a} \end{eqnarray} \]

Access to data

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.3.3
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Warning: package 'ggplot2' was built under R version 3.3.3
## Warning: package 'tibble' was built under R version 3.3.3
## Warning: package 'tidyr' was built under R version 3.3.3
## Warning: package 'readr' was built under R version 3.3.3
## Warning: package 'purrr' was built under R version 3.3.3
## Warning: package 'dplyr' was built under R version 3.3.3
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag():    dplyr, stats
library(magrittr)
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
library(googlesheets)
## Warning: package 'googlesheets' was built under R version 3.3.3
library(spatstat)
## Warning: package 'spatstat' was built under R version 3.3.3
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
## Loading required package: rpart
## 
## spatstat 1.52-1       (nickname: 'Apophenia') 
## For an introduction to spatstat, type 'beginner'
## 
## Note: R version 3.3.2 (2016-10-31) is more than 9 months old; we strongly recommend upgrading to the latest version
suppressMessages(library(dplyr))
gs_ls()
## Warning: package 'bindrcpp' was built under R version 3.3.3
## # A tibble: 251 x 10
##                 sheet_title        author  perm version
##                       <chr>         <chr> <chr>   <chr>
##  1              GO_baseDati        scotti    rw     old
##  2        registro_attivita      sfcampus    rw     old
##  3 bozza programma dettagl…    anto.ganga    rw     old
##  4           Scheda rilievo cristian.ibba    rw     old
##  5         Confronto marche        scotti    rw     old
##  6               DatiConcas dsch93tortoli    rw     old
##  7 BaseDati_AnimatedMovies…        scotti    rw     old
##  8 QUERY type dominance in…       ahbanen    rw     old
##  9                   tempAA        scotti    rw     old
## 10     ValoriMonetariEdAnni        scotti    rw     old
## # ... with 241 more rows, and 6 more variables: updated <dttm>,
## #   sheet_key <chr>, ws_feed <chr>, alternate <chr>, self <chr>,
## #   alt_key <chr>
tpp <- gs_title("DatiConcas")
## Sheet successfully identified: "DatiConcas"
gs_ws_ls(tpp)
## [1] "Anagrafica"        "RaccoltaFogliDati" "Correzioni"
plot_window <- tpp %>% gs_read(ws="Anagrafica")     
## Accessing worksheet titled 'Anagrafica'.
## Parsed with column specification:
## cols(
##   plot = col_integer(),
##   x00 = col_integer(),
##   y00 = col_integer(),
##   x01 = col_integer(),
##   y01 = col_integer(),
##   Rilevatori = col_character(),
##   Data_rilievo = col_character(),
##   `x_gps_(NE)` = col_integer(),
##   `y_gps_(NE)` = col_integer()
## )
ppwm <- tpp %>% gs_read(ws="RaccoltaFogliDati")
## Accessing worksheet titled 'RaccoltaFogliDati'.
## Parsed with column specification:
## cols(
##   plot = col_integer(),
##   subplot = col_character(),
##   id_sogetto = col_character(),
##   species = col_character(),
##   c = col_integer(),
##   b = col_integer(),
##   dbhNS = col_double(),
##   dbhEO = col_integer(),
##   h_tot = col_integer(),
##   h_crown_ins = col_integer(),
##   crown_rN = col_integer(),
##   crown_rE = col_integer(),
##   crown_rS = col_integer(),
##   crown_rO = col_integer(),
##   age = col_integer()
## )
# Nei tabelloni originari (1 per plot!!) il calcolo delle coordinate cartesiane è sviluppato nei fogli 'cooridinate' che, in generale, pescano i valori da 'Dati'. I casi per i quali 'b'+'c'<10m sono però corretti direttamente in 'cooridinate'!! La tabella 'corr' raccolglie le differenze riscontrate tra 'Dati' e 'cooridinate'.
corr <- tpp %>% gs_read(ws="Correzioni",  col_types=cols(id_sogetto = col_character()))
## Accessing worksheet titled 'Correzioni'.
nais0 <- function(num) {
  return(ifelse(is.na(num), 0, num))
}
# apply corrections
ppwm01 <- ppwm %>%
  left_join(corr) %>%
  mutate(b = ifelse(is.na(b_corr), b, b_corr),
         c = ifelse(is.na(c_corr), c, c_corr)) %>%
  select(-ends_with("_corr"))
## Joining, by = c("plot", "subplot", "id_sogetto")

define plots windows (old version)

plot_window <- tribble( ~plot, ~x00, ~y00, ~x01, ~y01, 1, 0, 0, 5000, 5000, 2, 0, 0, 5000, 5000, 3, 0, 0, 5000, 4000, 4,1000, 0, 2000, 5000 )

Compute plot-wise coordinates (x, y)

# compute subplots origins
side <- 1:5
subplot_origin <- expand.grid(c=side, r=side) %>%
  mutate(subplot = paste(LETTERS[c], r, sep=""),
         x0 = 1000 * (c - 1),
         y0 = 1000 * (r - 1)) %>%
  select(-r, -c)

# distances are registered as cm (integers)
a = 10*100


ppwm02 <- ppwm01 %>%
# compute local cartesian coordiantes (lx, ly)
  mutate(lx = (a^2 - b^2 + c^2)/(2*a),
         ly = sqrt((4*a^2*c^2 - (a^2 - b^2 + c^2)^2))/(2*a),
        #(alternativa di Laura) ly = sqrt((2*(a^2*b^2 + a^2*c^2 + b^2*c^2)- (a^4 + b^4 + c^4))/(2*a)))
         dbh = ifelse(is.na(dbhEO),dbhNS,sqrt((dbhNS^2+dbhEO^2)/2)),
         basal_area = pi * dbh^2/4,
         crown_area = pi * (nais0(crown_rE^2)+nais0(crown_rO^2)+nais0(crown_rN^2)+nais0(crown_rS^2))/4
         ) %>%
# compute plot-wise coordinates (x, y)
  full_join(subplot_origin) %>%
  mutate(x = (x0 + lx), 
         y = (y0 + ly))
## Joining, by = "subplot"
# CREATE one PPP object for each 'plot'
cf <- 1/100 # conversion of "cm" to "m" 
#               marks = .[,7:16],

pw <- plot_window %>% 
  group_by(plot) %>% 
  do(window = owin(xrange=c(.$x00 * cf, .$x01 * cf), 
                   yrange=c(.$y00 * cf, .$y01 * cf),
                            unitname = 'm'))
Arborea_permanent_plots <- ppwm02 %>%
  full_join(plot_window) %>%
  group_by(plot) %>%
  do(ppp = ppp(.$x * cf, .$y * cf, 
               window = pw$window[.$plot][[1]],
               unitname="m",
               marks = data.frame(.$species, .$age, .$h_tot, 
                                  .$crown_area, .$dbh,
                                  .$basal_area, .$h_crown_ins))
  ) %>%
  ungroup()
## Joining, by = "plot"

Verify distribution of points

# x,y coorinates
plot(as.solist(Arborea_permanent_plots$ppp), main="2014Concas-Monitoring Pinus pinea regeneration, Arborea", main.panel=paste("Plot",Arborea_permanent_plots$plot), use.marks=F)

# marks
plot.with.Axis <- function(p, m) {
  ungroup(Arborea_permanent_plots) %$% 
    plot(.$ppp[[p]], main=paste("Plot", .$plot[[p]]), which.marks = m)
  at <- seq(0,50,10)
  Axis(side=1, at=at)
  Axis(side=4, at=at)
}
nm <- Arborea_permanent_plots$ppp[[1]] %>% marks() %>% colnames() %>% length()
op <- par(no.readonly=T)
par(pin= c(par()$pin[1],.7 * par()$fin[2]))
for(p in 1:4) for (m in 1:nm) plot.with.Axis(p, m)
## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

## Warning in plot.ppp(.$ppp[[p]], main = paste("Plot", .$plot[[p]]),
## which.marks = m): Some marks are NA; corresponding points are omitted.

par(op)
  
#          dbh = ifelse(is.na(dbhEO), dbhNS, sqrt(mean(dbhNS^2, dbhEO^2)))

Marks descriptive statistics

#rs calcolare statistiche individuali per plot (n.punti, n.NA, min. mean, max)
#    distribuzioni e correlazioni tra marche
#    DA FINIRE DI SISTEMARE

library(PerformanceAnalytics)
## Warning: package 'PerformanceAnalytics' was built under R version 3.3.3
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.3.3
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
ow <- options("warn")[[1]]
options(warn = -1)
for(i in 1:4) chart.Correlation(marks(Arborea_permanent_plots$ppp[[i]])[, c(2:7)]
                                , histogram=TRUE, pch=19
                                , main=names(Arborea_permanent_plots$ppp)[i])

#  hist(ppwm02$age[ppwm02$plot==tid], main="age", xlab="age")
#  hist(ppwm02$h_tot[ppwm02$plot==tid], main="h_tot", xlab="h_tot")
#  hist(ppwm02$dbh[ppwm02$plot==tid], main="dbh", xlab="dbh")

Statistical Analysis

statsanalysis <- list()
for(tidplot in 1:4) {
  species = unique(toupper(ppwm02$species[ppwm02$plot==tidplot]))
  newstatsanalysis = tribble( ~species, ~mark,~NANumber, ~Media, ~Max, ~Min, ~CVPercentuale)
  for (spec in species) {
    for (c_mark in c("age", "h_tot", "crown_area", "dbh", "basal_area", "h_crown_ins")) {
    newstatsanalysis = rbind(newstatsanalysis, data.frame(
      species=spec,
      mark=c_mark,
      NANumber=sum(is.na(ppwm02[toupper(ppwm02$species)==spec & ppwm02$plot==tidplot, c_mark])),
      Media=mean(unlist(ppwm02[toupper(ppwm02$species)==spec & ppwm02$plot==tidplot, c_mark]), na.rm = T),
      Max=max(unlist(ppwm02[toupper(ppwm02$species)==spec & ppwm02$plot==tidplot, c_mark]), na.rm = T),
      Min=min(unlist(ppwm02[toupper(ppwm02$species)==spec & ppwm02$plot==tidplot, c_mark]), na.rm = T),
      CVPercentuale=sd(unlist(ppwm02[toupper(ppwm02$species)==spec & ppwm02$plot==tidplot, c_mark]), na.rm = T) /mean(unlist(ppwm02[toupper(ppwm02$species)==spec & ppwm02$plot==tidplot, c_mark]), na.rm = T)*100))
    }
  }
  statsanalysis[[tidplot]] <- newstatsanalysis
  show(paste("Plot",tidplot))
  show(statsanalysis[[tidplot]])
}
## [1] "Plot 1"
##    species        mark NANumber        Media          Max          Min
## 1   PINPIN         age        6 1.654601e+01 8.500000e+01 3.000000e+00
## 2   PINPIN       h_tot        0 3.247574e+02 1.820000e+03 4.000000e+01
## 3   PINPIN  crown_area        0 9.486820e+04 2.441402e+06 6.008296e+02
## 4   PINPIN         dbh       41 8.317519e+00 6.051859e+01 1.000000e+00
## 5   PINPIN  basal_area       41 1.781841e+02 2.876521e+03 7.853982e-01
## 6   PINPIN h_crown_ins       12 1.278408e+02 8.400000e+02 1.500000e+01
## 7   PHYANG         age       57 2.200000e+01 2.200000e+01 2.200000e+01
## 8   PHYANG       h_tot        0 1.775862e+02 3.320000e+02 7.800000e+01
## 9   PHYANG  crown_area        0 1.089681e+05 1.050187e+06 1.313971e+03
## 10  PHYANG         dbh       58          NaN         -Inf          Inf
## 11  PHYANG  basal_area       58          NaN         -Inf          Inf
## 12  PHYANG h_crown_ins       58          NaN         -Inf          Inf
## 13  PISLEN         age       11          NaN         -Inf          Inf
## 14  PISLEN       h_tot        0 1.588182e+02 2.300000e+02 8.300000e+01
## 15  PISLEN  crown_area        0 1.364693e+05 3.748124e+05 1.482675e+04
## 16  PISLEN         dbh       11          NaN         -Inf          Inf
## 17  PISLEN  basal_area       11          NaN         -Inf          Inf
## 18  PISLEN h_crown_ins       11          NaN         -Inf          Inf
## 19     EUC         age       20          NaN         -Inf          Inf
## 20     EUC       h_tot        0 7.029000e+02 1.080000e+03 1.080000e+02
## 21     EUC  crown_area        0 6.862275e+04 2.206097e+05 0.000000e+00
## 22     EUC         dbh        0 6.550000e+00 1.200000e+01 3.000000e+00
## 23     EUC  basal_area        0 3.891648e+01 1.130973e+02 7.068583e+00
## 24     EUC h_crown_ins        1 3.371053e+02 6.500000e+02 3.000000e+01
## 25  CALVIL         age        5          NaN         -Inf          Inf
## 26  CALVIL       h_tot        0 1.898000e+02 2.220000e+02 1.470000e+02
## 27  CALVIL  crown_area        0 1.077139e+05 2.151991e+05 9.225287e+03
## 28  CALVIL         dbh        5          NaN         -Inf          Inf
## 29  CALVIL  basal_area        5          NaN         -Inf          Inf
## 30  CALVIL h_crown_ins        5          NaN         -Inf          Inf
## 31  ERIARB         age        1          NaN         -Inf          Inf
## 32  ERIARB       h_tot        0 2.100000e+02 2.100000e+02 2.100000e+02
## 33  ERIARB  crown_area        0 3.981969e+04 3.981969e+04 3.981969e+04
## 34  ERIARB         dbh        1          NaN         -Inf          Inf
## 35  ERIARB  basal_area        1          NaN         -Inf          Inf
## 36  ERIARB h_crown_ins        1          NaN         -Inf          Inf
##    CVPercentuale
## 1      104.23232
## 2       98.34523
## 3      296.43175
## 4      151.56934
## 5      277.11946
## 6      106.85321
## 7             NA
## 8       39.19727
## 9      171.37526
## 10            NA
## 11            NA
## 12            NA
## 13            NA
## 14      29.45907
## 15      88.72834
## 16            NA
## 17            NA
## 18            NA
## 19            NA
## 20      32.88227
## 21      78.44854
## 22      40.38556
## 23      79.60740
## 24      57.86511
## 25            NA
## 26      20.01553
## 27      82.68789
## 28            NA
## 29            NA
## 30            NA
## 31            NA
## 32            NA
## 33            NA
## 34            NA
## 35            NA
## 36            NA
## [1] "Plot 2"
##    species        mark NANumber        Media          Max          Min
## 1   PINPIN         age       33 7.099153e+00     85.00000 1.000000e+00
## 2   PINPIN       h_tot        2 1.900520e+02   1390.00000 1.300000e+01
## 3   PINPIN  crown_area        0 7.844540e+03 821421.23556 0.000000e+00
## 4   PINPIN         dbh      703 2.985825e+00     45.00000 1.000000e+00
## 5   PINPIN  basal_area      703 1.942628e+01   1590.43128 7.853982e-01
## 6   PINPIN h_crown_ins       13 7.201417e+01    790.00000 4.000000e+00
## 7   PHYANG         age      101 6.600000e+00      7.00000 5.000000e+00
## 8   PHYANG       h_tot        0 1.548208e+02    300.00000 5.700000e+01
## 9   PHYANG  crown_area        0 4.612271e+04 174779.36569 3.347367e+03
## 10  PHYANG         dbh      106          NaN         -Inf          Inf
## 11  PHYANG  basal_area      106          NaN         -Inf          Inf
## 12  PHYANG h_crown_ins      103 1.866667e+01     23.00000 1.600000e+01
## 13  PISLEN         age       28 7.000000e+00      7.00000 7.000000e+00
## 14  PISLEN       h_tot        0 1.391034e+02    220.00000 6.500000e+01
## 15  PISLEN  crown_area        0 7.463742e+04 239745.14557 9.440486e+02
## 16  PISLEN         dbh       29          NaN         -Inf          Inf
## 17  PISLEN  basal_area       29          NaN         -Inf          Inf
## 18  PISLEN h_crown_ins       27 5.700000e+01     67.00000 4.700000e+01
## 19 CEPPAIA         age       32 7.000000e+00      7.00000 7.000000e+00
## 20 CEPPAIA       h_tot       21 1.000000e+01     10.00000 1.000000e+01
## 21 CEPPAIA  crown_area        0 0.000000e+00      0.00000 0.000000e+00
## 22 CEPPAIA         dbh        0 3.807354e+01     53.00943 1.300000e+01
## 23 CEPPAIA  basal_area        0 1.210096e+03   2206.96884 1.327323e+02
## 24 CEPPAIA h_crown_ins       33          NaN         -Inf          Inf
## 25  DAFGNI         age        1          NaN         -Inf          Inf
## 26  DAFGNI       h_tot        0 1.300000e+02    130.00000 1.300000e+02
## 27  DAFGNI  crown_area        0 7.725176e+03   7725.17634 7.725176e+03
## 28  DAFGNI         dbh        1          NaN         -Inf          Inf
## 29  DAFGNI  basal_area        1          NaN         -Inf          Inf
## 30  DAFGNI h_crown_ins        1          NaN         -Inf          Inf
## 31  QUEILE         age        1          NaN         -Inf          Inf
## 32  QUEILE       h_tot        0 3.200000e+01     32.00000 3.200000e+01
## 33  QUEILE  crown_area        0 0.000000e+00      0.00000 0.000000e+00
## 34  QUEILE         dbh        1          NaN         -Inf          Inf
## 35  QUEILE  basal_area        1          NaN         -Inf          Inf
## 36  QUEILE h_crown_ins        1          NaN         -Inf          Inf
## 37  ALYALY         age        9 7.000000e+00      7.00000 7.000000e+00
## 38  ALYALY       h_tot        0 1.473000e+02    225.00000 9.300000e+01
## 39  ALYALY  crown_area        0 4.288753e+04 115001.92608 1.026908e+04
## 40  ALYALY         dbh       10          NaN         -Inf          Inf
## 41  ALYALY  basal_area       10          NaN         -Inf          Inf
## 42  ALYALY h_crown_ins        9 1.900000e+01     19.00000 1.900000e+01
## 43  CISSAL         age       53          NaN         -Inf          Inf
## 44  CISSAL       h_tot        0 8.088679e+01    154.00000 4.800000e+01
## 45  CISSAL  crown_area        0 6.450846e+04 270396.09430 6.683738e+03
## 46  CISSAL         dbh       53          NaN         -Inf          Inf
## 47  CISSAL  basal_area       53          NaN         -Inf          Inf
## 48  CISSAL h_crown_ins       52 8.300000e+01     83.00000 8.300000e+01
## 49     EUC         age       11          NaN         -Inf          Inf
## 50     EUC       h_tot        0 1.040909e+03   1280.00000 4.500000e+02
## 51     EUC  crown_area        0 1.177263e+05 196486.98553 6.759529e+04
## 52     EUC         dbh        0 1.418182e+01     20.00000 1.000000e+01
## 53     EUC  basal_area        0 1.660760e+02    314.15927 7.853982e+01
## 54     EUC h_crown_ins        0 1.715455e+02    230.00000 1.210000e+02
## 55  OLEEUR         age        1          NaN         -Inf          Inf
## 56  OLEEUR       h_tot        0 1.740000e+02    174.00000 1.740000e+02
## 57  OLEEUR  crown_area        0 2.125602e+04  21256.01589 2.125602e+04
## 58  OLEEUR         dbh        1          NaN         -Inf          Inf
## 59  OLEEUR  basal_area        1          NaN         -Inf          Inf
## 60  OLEEUR h_crown_ins        0 9.000000e+01     90.00000 9.000000e+01
##    CVPercentuale
## 1       63.99118
## 2       49.35355
## 3      419.78339
## 4      133.33790
## 5      632.34194
## 6       66.08792
## 7       13.55193
## 8       33.73970
## 9       79.07835
## 10            NA
## 11            NA
## 12      20.28182
## 13            NA
## 14      30.49345
## 15      69.49372
## 16            NA
## 17            NA
## 18      24.81076
## 19            NA
## 20       0.00000
## 21           NaN
## 22      25.46438
## 23      43.83228
## 24            NA
## 25            NA
## 26            NA
## 27            NA
## 28            NA
## 29            NA
## 30            NA
## 31            NA
## 32            NA
## 33            NA
## 34            NA
## 35            NA
## 36            NA
## 37            NA
## 38      30.22558
## 39      72.21538
## 40            NA
## 41            NA
## 42            NA
## 43            NA
## 44      23.70469
## 45      73.93185
## 46            NA
## 47            NA
## 48            NA
## 49            NA
## 50      22.55681
## 51      29.15081
## 52      23.76987
## 53      47.31861
## 54      17.49461
## 55            NA
## 56            NA
## 57            NA
## 58            NA
## 59            NA
## 60            NA
## [1] "Plot 3"
##    species        mark NANumber        Media          Max          Min
## 1   PHYANG         age       75     37.33333      85.0000 1.200000e+01
## 2   PHYANG       h_tot        0    123.82051     520.0000 4.000000e+01
## 3   PHYANG  crown_area        0  44761.81490  366275.1459 1.415287e+03
## 4   PHYANG         dbh       78          NaN         -Inf          Inf
## 5   PHYANG  basal_area       78          NaN         -Inf          Inf
## 6   PHYANG h_crown_ins       77    550.00000     550.0000 5.500000e+02
## 7   PISLEN         age       26     15.00000      15.0000 1.500000e+01
## 8   PISLEN       h_tot        0    134.88889     252.0000 7.500000e+01
## 9   PISLEN  crown_area        0 190552.83698 1585380.3853 7.041880e+03
## 10  PISLEN         dbh       27          NaN         -Inf          Inf
## 11  PISLEN  basal_area       27          NaN         -Inf          Inf
## 12  PISLEN h_crown_ins       27          NaN         -Inf          Inf
## 13  PINPIN         age       27     12.87079      85.0000 3.000000e+00
## 14  PINPIN       h_tot        0    286.26341    1360.0000 3.000000e+01
## 15  PINPIN  crown_area        0  78885.54478 1161619.5916 6.298893e+02
## 16  PINPIN         dbh      105     11.18278      40.0000 1.000000e+00
## 17  PINPIN  basal_area      105    225.69987    1256.6371 7.853982e-01
## 18  PINPIN h_crown_ins        1    129.62745     780.0000 5.000000e+00
## 19 CEPPAIA         age       16          NaN         -Inf          Inf
## 20 CEPPAIA       h_tot       16          NaN         -Inf          Inf
## 21 CEPPAIA  crown_area        0      0.00000       0.0000 0.000000e+00
## 22 CEPPAIA         dbh        0     35.39868      49.0102 1.802776e+01
## 23 CEPPAIA  basal_area        0   1041.19253    1886.5264 2.552544e+02
## 24 CEPPAIA h_crown_ins       16          NaN         -Inf          Inf
## 25  CISSAL         age        7          NaN         -Inf          Inf
## 26  CISSAL       h_tot        0     64.14286     107.0000 4.500000e+01
## 27  CISSAL  crown_area        0 113352.36553  279025.2639 8.643307e+03
## 28  CISSAL         dbh        7          NaN         -Inf          Inf
## 29  CISSAL  basal_area        7          NaN         -Inf          Inf
## 30  CISSAL h_crown_ins        7          NaN         -Inf          Inf
## 31  RHAALA         age        1          NaN         -Inf          Inf
## 32  RHAALA       h_tot        0    150.00000     150.0000 1.500000e+02
## 33  RHAALA  crown_area        0  78932.51542   78932.5154 7.893252e+04
## 34  RHAALA         dbh        1          NaN         -Inf          Inf
## 35  RHAALA  basal_area        1          NaN         -Inf          Inf
## 36  RHAALA h_crown_ins        1          NaN         -Inf          Inf
##    CVPercentuale
## 1      110.64586
## 2       58.45608
## 3      157.39628
## 4             NA
## 5             NA
## 6             NA
## 7             NA
## 8       39.08410
## 9      160.43632
## 10            NA
## 11            NA
## 12            NA
## 13     119.45784
## 14      95.88959
## 15     238.41826
## 16     114.50183
## 17     166.10762
## 18     118.35373
## 19            NA
## 20            NA
## 21           NaN
## 22      24.86322
## 23      43.77375
## 24            NA
## 25            NA
## 26      33.82784
## 27      80.15767
## 28            NA
## 29            NA
## 30            NA
## 31            NA
## 32            NA
## 33            NA
## 34            NA
## 35            NA
## 36            NA
## [1] "Plot 4"
##    species        mark NANumber       Media          Max          Min
## 1  CEPPAIA         age        7         NaN         -Inf          Inf
## 2  CEPPAIA       h_tot        7         NaN         -Inf          Inf
## 3  CEPPAIA  crown_area        0     0.00000      0.00000    0.0000000
## 4  CEPPAIA         dbh        0    22.06696     29.84125   16.5075740
## 5  CEPPAIA  basal_area        0   395.84067    699.39706  214.0209995
## 6  CEPPAIA h_crown_ins        7         NaN         -Inf          Inf
## 7   PINPIN         age        2    13.45174     85.00000    4.0000000
## 8   PINPIN       h_tot        0   314.16092   1310.00000   43.0000000
## 9   PINPIN  crown_area        0 21054.56578 977389.52984  530.9291585
## 10  PINPIN         dbh       62     4.81407     45.00000    1.0000000
## 11  PINPIN  basal_area       62    34.90483   1590.43128    0.7853982
## 12  PINPIN h_crown_ins        2   113.76834    940.00000    8.0000000
## 13  PHYANG         age        3     9.00000      9.00000    9.0000000
## 14  PHYANG       h_tot        0    74.50000     98.00000   43.0000000
## 15  PHYANG  crown_area        0  7715.35886  19835.23062  702.9313562
## 16  PHYANG         dbh        4         NaN         -Inf          Inf
## 17  PHYANG  basal_area        4         NaN         -Inf          Inf
## 18  PHYANG h_crown_ins        3    26.00000     26.00000   26.0000000
## 19  PISLEN         age       12         NaN         -Inf          Inf
## 20  PISLEN       h_tot        0   126.91667    251.00000   39.0000000
## 21  PISLEN  crown_area        0 23583.28155  58959.84013  463.3849164
## 22  PISLEN         dbh       12         NaN         -Inf          Inf
## 23  PISLEN  basal_area       12         NaN         -Inf          Inf
## 24  PISLEN h_crown_ins       12         NaN         -Inf          Inf
## 25  CALVIL         age        8    13.00000     13.00000   13.0000000
## 26  CALVIL       h_tot        0   115.00000    156.00000   60.0000000
## 27  CALVIL  crown_area        0 39700.82996 105476.61715 4619.7119971
## 28  CALVIL         dbh        9         NaN         -Inf          Inf
## 29  CALVIL  basal_area        9         NaN         -Inf          Inf
## 30  CALVIL h_crown_ins        8    34.00000     34.00000   34.0000000
##    CVPercentuale
## 1             NA
## 2             NA
## 3            NaN
## 4       20.21089
## 5       41.20723
## 6             NA
## 7       50.48373
## 8       48.72941
## 9      366.14573
## 10      96.03598
## 11     428.97498
## 12      82.06885
## 13            NA
## 14      33.68209
## 15     108.25722
## 16            NA
## 17            NA
## 18            NA
## 19            NA
## 20      56.35529
## 21      89.46927
## 22            NA
## 23            NA
## 24            NA
## 25            NA
## 26      30.06609
## 27      96.73555
## 28            NA
## 29            NA
## 30            NA