This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

#install the necessary packages
# install.packages("readr")
# install.packages("plyr")
# install.packages("stringr")
# install.packages("stringi")
# install.packages("magrittr")
# install.packages("dplyr")
library(readr)
gear <- read.csv("Samsung Tweets.csv", comment.char="#")
geartweets <- gear$tweettext
#********************************************
#         Word Cloud
#********************************************
#use this function to clean the tweets
clean.text = function(x)
{
  # tolower
  x = tolower(x)
  # remove rt
  x = gsub("rt", "", x)
  # remove at
  x = gsub("@\\w+", "", x)
  # remove punctuation
  x = gsub("[[:punct:]]", "", x)
  # remove numbers
  x = gsub("[[:digit:]]", "", x)
  # remove links http
  x = gsub("http\\w+", "", x)
  # remove tabs
  x = gsub("[ |\t]{2,}", "", x)
  # remove blank spaces at the beginning
  x = gsub("^ ", "", x)
  # remove blank spaces at the end
  x = gsub(" $", "", x)
  return(x)
}
# clean tweets
geartweets = clean.text(geartweets)
#********************************************
#         Topic Analysis
#********************************************
sports.words = scan('Sports_Word.txt', what='character', comment.char=';')
Read 368 items
score.topic = function(sentences, dict, .progress='none')
{
  require(plyr)
  require(stringr)
  require(stringi)
  
  # we got a vector of sentences. plyr will handle a list
  # or a vector as an "l" for us
  # we want a simple array of scores back, so we use
  # "l" + "a" + "ply" = "laply":
  scores = laply(sentences, function(sentence, dict) {
    
    # clean up sentences with R's regex-driven global substitute, gsub():
    sentence = gsub('[[:punct:]]', '', sentence)
    sentence = gsub('[[:cntrl:]]', '', sentence)
    sentence = gsub('\\d+', '', sentence)
    # and convert to lower case:
    sentence = tolower(sentence)
    
    # split into words. str_split is in the stringr package
    word.list = str_split(sentence, '\\s+')
    # sometimes a list() is one level of hierarchy too much
    words = unlist(word.list)
    
    # compare our words to the dictionaries of positive & negative terms
    topic.matches = match(words, dict)
    
    # match() returns the position of the matched term or NA
    # we just want a TRUE/FALSE:
    topic.matches = !is.na(topic.matches)
    
    # and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
    score = sum(topic.matches)
    
    return(score)
  }, dict, .progress=.progress )
  
  topicscores.df = data.frame(score=scores, text=sentences)
  return(topicscores.df)
}
topic.scores= score.topic(tweets, sports.words, .progress='none')
topic.mentioned = subset(topic.scores, score !=0)
N= nrow(topic.scores)
Nmentioned = nrow(topic.mentioned)
dftemp=data.frame(topic=c("Mentioned", "Not Mentioned"), 
                  number=c(Nmentioned,N-Nmentioned))
library(plotly)
p <- plot_ly(data=dftemp, labels = ~topic, values = ~number, type = 'pie') %>%
  layout(title = 'Pie Chart of Mentions',
         xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
         yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE))
p
LS0tCnRpdGxlOiAiQ1M2OTU6IFRvcGljIEFuYWx5c2lzIFIgTm90ZWJvb2siCmF1dGhvcjogIlJpY2hhcmQgUy4iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KClRoaXMgaXMgYW4gW1IgTWFya2Rvd25dKGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20pIE5vdGVib29rLiBXaGVuIHlvdSBleGVjdXRlIGNvZGUgd2l0aGluIHRoZSBub3RlYm9vaywgdGhlIHJlc3VsdHMgYXBwZWFyIGJlbmVhdGggdGhlIGNvZGUuIAoKCmBgYHtyfQojaW5zdGFsbCB0aGUgbmVjZXNzYXJ5IHBhY2thZ2VzCiMgaW5zdGFsbC5wYWNrYWdlcygicmVhZHIiKQojIGluc3RhbGwucGFja2FnZXMoInBseXIiKQojIGluc3RhbGwucGFja2FnZXMoInN0cmluZ3IiKQojIGluc3RhbGwucGFja2FnZXMoInN0cmluZ2kiKQojIGluc3RhbGwucGFja2FnZXMoIm1hZ3JpdHRyIikKIyBpbnN0YWxsLnBhY2thZ2VzKCJkcGx5ciIpCmBgYAoKYGBge3J9CmxpYnJhcnkocmVhZHIpCmdlYXIgPC0gcmVhZC5jc3YoIlNhbXN1bmcgVHdlZXRzLmNzdiIsIGNvbW1lbnQuY2hhcj0iIyIpCmdlYXJ0d2VldHMgPC0gZ2VhciR0d2VldHRleHQKCiMqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKgojICAgICAgICAgV29yZCBDbG91ZAojKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioKI3VzZSB0aGlzIGZ1bmN0aW9uIHRvIGNsZWFuIHRoZSB0d2VldHMKY2xlYW4udGV4dCA9IGZ1bmN0aW9uKHgpCnsKICAjIHRvbG93ZXIKICB4ID0gdG9sb3dlcih4KQogICMgcmVtb3ZlIHJ0CiAgeCA9IGdzdWIoInJ0IiwgIiIsIHgpCiAgIyByZW1vdmUgYXQKICB4ID0gZ3N1YigiQFxcdysiLCAiIiwgeCkKICAjIHJlbW92ZSBwdW5jdHVhdGlvbgogIHggPSBnc3ViKCJbWzpwdW5jdDpdXSIsICIiLCB4KQogICMgcmVtb3ZlIG51bWJlcnMKICB4ID0gZ3N1YigiW1s6ZGlnaXQ6XV0iLCAiIiwgeCkKICAjIHJlbW92ZSBsaW5rcyBodHRwCiAgeCA9IGdzdWIoImh0dHBcXHcrIiwgIiIsIHgpCiAgIyByZW1vdmUgdGFicwogIHggPSBnc3ViKCJbIHxcdF17Mix9IiwgIiIsIHgpCiAgIyByZW1vdmUgYmxhbmsgc3BhY2VzIGF0IHRoZSBiZWdpbm5pbmcKICB4ID0gZ3N1YigiXiAiLCAiIiwgeCkKICAjIHJlbW92ZSBibGFuayBzcGFjZXMgYXQgdGhlIGVuZAogIHggPSBnc3ViKCIgJCIsICIiLCB4KQogIHJldHVybih4KQp9CgojIGNsZWFuIHR3ZWV0cwpnZWFydHdlZXRzID0gY2xlYW4udGV4dChnZWFydHdlZXRzKQoKYGBgCgpgYGB7cn0KIyoqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqCiMgICAgICAgICBUb3BpYyBBbmFseXNpcwojKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioKc3BvcnRzLndvcmRzID0gc2NhbignU3BvcnRzX1dvcmQudHh0Jywgd2hhdD0nY2hhcmFjdGVyJywgY29tbWVudC5jaGFyPSc7JykKCnNjb3JlLnRvcGljID0gZnVuY3Rpb24oc2VudGVuY2VzLCBkaWN0LCAucHJvZ3Jlc3M9J25vbmUnKQp7CiAgcmVxdWlyZShwbHlyKQogIHJlcXVpcmUoc3RyaW5ncikKICByZXF1aXJlKHN0cmluZ2kpCiAgCiAgIyB3ZSBnb3QgYSB2ZWN0b3Igb2Ygc2VudGVuY2VzLiBwbHlyIHdpbGwgaGFuZGxlIGEgbGlzdAogICMgb3IgYSB2ZWN0b3IgYXMgYW4gImwiIGZvciB1cwogICMgd2Ugd2FudCBhIHNpbXBsZSBhcnJheSBvZiBzY29yZXMgYmFjaywgc28gd2UgdXNlCiAgIyAibCIgKyAiYSIgKyAicGx5IiA9ICJsYXBseSI6CiAgc2NvcmVzID0gbGFwbHkoc2VudGVuY2VzLCBmdW5jdGlvbihzZW50ZW5jZSwgZGljdCkgewogICAgCiAgICAjIGNsZWFuIHVwIHNlbnRlbmNlcyB3aXRoIFIncyByZWdleC1kcml2ZW4gZ2xvYmFsIHN1YnN0aXR1dGUsIGdzdWIoKToKICAgIHNlbnRlbmNlID0gZ3N1YignW1s6cHVuY3Q6XV0nLCAnJywgc2VudGVuY2UpCiAgICBzZW50ZW5jZSA9IGdzdWIoJ1tbOmNudHJsOl1dJywgJycsIHNlbnRlbmNlKQogICAgc2VudGVuY2UgPSBnc3ViKCdcXGQrJywgJycsIHNlbnRlbmNlKQogICAgIyBhbmQgY29udmVydCB0byBsb3dlciBjYXNlOgogICAgc2VudGVuY2UgPSB0b2xvd2VyKHNlbnRlbmNlKQogICAgCiAgICAjIHNwbGl0IGludG8gd29yZHMuIHN0cl9zcGxpdCBpcyBpbiB0aGUgc3RyaW5nciBwYWNrYWdlCiAgICB3b3JkLmxpc3QgPSBzdHJfc3BsaXQoc2VudGVuY2UsICdcXHMrJykKICAgICMgc29tZXRpbWVzIGEgbGlzdCgpIGlzIG9uZSBsZXZlbCBvZiBoaWVyYXJjaHkgdG9vIG11Y2gKICAgIHdvcmRzID0gdW5saXN0KHdvcmQubGlzdCkKICAgIAogICAgIyBjb21wYXJlIG91ciB3b3JkcyB0byB0aGUgZGljdGlvbmFyaWVzIG9mIHBvc2l0aXZlICYgbmVnYXRpdmUgdGVybXMKICAgIHRvcGljLm1hdGNoZXMgPSBtYXRjaCh3b3JkcywgZGljdCkKICAgIAogICAgIyBtYXRjaCgpIHJldHVybnMgdGhlIHBvc2l0aW9uIG9mIHRoZSBtYXRjaGVkIHRlcm0gb3IgTkEKICAgICMgd2UganVzdCB3YW50IGEgVFJVRS9GQUxTRToKICAgIHRvcGljLm1hdGNoZXMgPSAhaXMubmEodG9waWMubWF0Y2hlcykKICAgIAogICAgIyBhbmQgY29udmVuaWVudGx5IGVub3VnaCwgVFJVRS9GQUxTRSB3aWxsIGJlIHRyZWF0ZWQgYXMgMS8wIGJ5IHN1bSgpOgogICAgc2NvcmUgPSBzdW0odG9waWMubWF0Y2hlcykKICAgIAogICAgcmV0dXJuKHNjb3JlKQogIH0sIGRpY3QsIC5wcm9ncmVzcz0ucHJvZ3Jlc3MgKQogIAogIHRvcGljc2NvcmVzLmRmID0gZGF0YS5mcmFtZShzY29yZT1zY29yZXMsIHRleHQ9c2VudGVuY2VzKQogIHJldHVybih0b3BpY3Njb3Jlcy5kZikKfQoKdG9waWMuc2NvcmVzPSBzY29yZS50b3BpYyh0d2VldHMsIHNwb3J0cy53b3JkcywgLnByb2dyZXNzPSdub25lJykKdG9waWMubWVudGlvbmVkID0gc3Vic2V0KHRvcGljLnNjb3Jlcywgc2NvcmUgIT0wKQoKTj0gbnJvdyh0b3BpYy5zY29yZXMpCk5tZW50aW9uZWQgPSBucm93KHRvcGljLm1lbnRpb25lZCkKCmRmdGVtcD1kYXRhLmZyYW1lKHRvcGljPWMoIk1lbnRpb25lZCIsICJOb3QgTWVudGlvbmVkIiksIAogICAgICAgICAgICAgICAgICBudW1iZXI9YyhObWVudGlvbmVkLE4tTm1lbnRpb25lZCkpCgpsaWJyYXJ5KHBsb3RseSkKcCA8LSBwbG90X2x5KGRhdGE9ZGZ0ZW1wLCBsYWJlbHMgPSB+dG9waWMsIHZhbHVlcyA9IH5udW1iZXIsIHR5cGUgPSAncGllJykgJT4lCiAgbGF5b3V0KHRpdGxlID0gJ1BpZSBDaGFydCBvZiBNZW50aW9ucycsCiAgICAgICAgIHhheGlzID0gbGlzdChzaG93Z3JpZCA9IEZBTFNFLCB6ZXJvbGluZSA9IEZBTFNFLCBzaG93dGlja2xhYmVscyA9IEZBTFNFKSwKICAgICAgICAgeWF4aXMgPSBsaXN0KHNob3dncmlkID0gRkFMU0UsIHplcm9saW5lID0gRkFMU0UsIHNob3d0aWNrbGFiZWxzID0gRkFMU0UpKQpwCmBgYAoK