#Graph of cuts
ggplot(data=diamonds)+geom_bar(mapping = aes(x=cut),color="Red",fill=I("blue"))

#Count of diamonds dataset
diamonds%>% count()




diamonds2 <- diamonds %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y))
diamonds2




Ideal cut has smaller price so I should think of Ideal cut diamonds.
#Covariation of two variables
ggplot(data = diamonds) +
geom_count(mapping = aes(x = cut, y = color))






# install.packages("hexbin")
library(hexbin)
ggplot(data = smaller) +
geom_hex(mapping = aes(x = carat, y = price))

ggplot(data = smaller, mapping = aes(x = carat, y = price)) +
geom_boxplot(mapping = aes(group = cut_number(carat, 20)))

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCiNHcmFwaCBvZiBjdXRzIA0KZ2dwbG90KGRhdGE9ZGlhbW9uZHMpK2dlb21fYmFyKG1hcHBpbmcgPSBhZXMoeD1jdXQpLGNvbG9yPSJSZWQiLGZpbGw9SSgiYmx1ZSIpKQ0KYGBgDQpgYGB7cn0NCiNDb3VudCBvZiBkaWFtb25kcyBkYXRhc2V0DQpkaWFtb25kcyU+JSBjb3VudCgpDQpgYGANCmBgYHtyfQ0KI2NvdW50IG9mIGN1dHMgDQpkaWFtb25kcyAlPiUgY291bnQoY3V0KQ0KYGBgDQpgYGB7cn0NCiNHcmFwaHMgb2YgY2FyYXRzDQpnZ3Bsb3QoZGF0YT1kaWFtb25kcykrZ2VvbV9oaXN0b2dyYW0obWFwcGluZyA9IGFlcyh4PWNhcmF0KSxiaW53aWR0aCA9IDAuNSxjb2w9IlJlZCIsYnJlYWtzPXNlcSgtNSw1LGJ5PTAuNSksZmlsbD0iZ3JlZW4iKStsYWJzKHRpdGxlPSJIaXN0b2dyYW0gb2YgQ2FyYXQiKStsYWJzKHg9IkNhcmF0Iix5PSJjb3VudCIpDQpgYGANCmBgYHtyfQ0KI0NvdW50IG9mIGVxdWFsIGludGVydmFscyANCmRpYW1vbmRzICU+JSBjb3VudChjdXRfd2lkdGgoY2FyYXQsMC41KSkNCmBgYA0KYGBge3J9DQojRmlsdGVyaW5nIGNhcmF0IGxlc3MgdGhhbiAzDQpzbWFsbGVyPSBkaWFtb25kcyAlPiUgZmlsdGVyKGNhcmF0PDMpDQojIA0KZ2dwbG90KGRhdGEgPSBzbWFsbGVyLCBtYXBwaW5nID0gYWVzKHggPSBjYXJhdCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAwLjEsY29sPSJyZWQiLGZpbGw9ImdyZWVuIikrbGFicyh0aXRsZT0iaGlzdG9ncmFtIG9mIGNhcmF0IGxlc3MgdGhhbiAzIikNCmBgYA0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IHNtYWxsZXIsIG1hcHBpbmcgPSBhZXMoeCA9IGNhcmF0LCBjb2xvdXIgPSBjdXQpKSArDQogIGdlb21fZnJlcXBvbHkoYmlud2lkdGggPSAwLjEpDQpgYGANCmBgYHtyfQ0KI1NtYWxsZXIgZGlhbW9uZCBjYXJhdCBoaXN0b2dyYW0NCmdncGxvdChkYXRhID0gc21hbGxlciwgbWFwcGluZyA9IGFlcyh4ID0gY2FyYXQpKSArDQogIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gMC4wMSxjb2w9InJlZCIsZmlsbD0iZ3JlZW4iKStsYWJzKHRpdGxlPSJIaXN0b2dyYW0gb2YgY2FyYXQiKQ0KYGBgDQpgYGB7cn0NCmE9ZGlhbW9uZHMNCmBgYA0KYGBge3J9DQojVXNpbmcgZGltZW5zdGlvbnMgb2YgZGlhbW9uZHMNCmRpYW1vbmRzMiA8LSBkaWFtb25kcyAlPiUgDQogIG11dGF0ZSh5ID0gaWZlbHNlKHkgPCAzIHwgeSA+IDIwLCBOQSwgeSkpDQpkaWFtb25kczINCmBgYA0KYGBge3J9DQojIEdyYXBoaWNhbCByZXByZXNlbnRhaW9uIG9mIHggYW5kIHkNCmdncGxvdChkYXRhID0gZGlhbW9uZHMyLCBtYXBwaW5nID0gYWVzKHggPSB4LCB5ID0geSksY29sPSJHcmVlbiIpICsgDQogIGdlb21fcG9pbnQobmEucm0gPSBUUlVFKQ0KYGBgDQpgYGB7cn0NCiNMZXRzIHVzIGRpc2N1c3NlZCBhYm91dCBwcmljZQ0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcywgbWFwcGluZyA9IGFlcyh4ID0gcHJpY2UpKSArIA0KICBnZW9tX2ZyZXFwb2x5KG1hcHBpbmcgPSBhZXMoY29sb3VyID0gY3V0KSwgYmlud2lkdGggPSA1MDApDQpgYGANCmBgYHtyfQ0KI1ByaWNlIGRlbnNpdHkgcGxvdA0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcywgbWFwcGluZyA9IGFlcyh4ID0gcHJpY2UsIHkgPSAuLmRlbnNpdHkuLikpICsgDQogIGdlb21fZnJlcXBvbHkobWFwcGluZyA9IGFlcyhjb2xvdXIgPSBjdXQpLCBiaW53aWR0aCA9IDUwMCkNCmBgYA0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYW1vbmRzLCBtYXBwaW5nID0gYWVzKHggPSBjdXQsIHkgPSBwcmljZSkpICsNCiAgZ2VvbV9ib3hwbG90KGNvbD0iYmx1ZSIsZmlsbD0iZ3JlZW4iKQ0KYGBgDQpJZGVhbCBjdXQgaGFzIHNtYWxsZXIgcHJpY2Ugc28gSSBzaG91bGQgdGhpbmsgb2YgSWRlYWwgY3V0IGRpYW1vbmRzLg0KDQpgYGB7cn0NCiNDb3ZhcmlhdGlvbiBvZiB0d28gdmFyaWFibGVzIA0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcykgKw0KICBnZW9tX2NvdW50KG1hcHBpbmcgPSBhZXMoeCA9IGN1dCwgeSA9IGNvbG9yKSkNCmBgYA0KYGBge3J9DQojY291bnQgb2YgY29sb3JzIGFuZCBjb3V0DQpkaWFtb25kcyAlPiUgDQogIGNvdW50KGNvbG9yLCBjdXQpDQpgYGANCmBgYHtyfQ0KZGlhbW9uZHMgJT4lIA0KICBjb3VudChjb2xvciwgY3V0KSAlPiUgIA0KICBnZ3Bsb3QobWFwcGluZyA9IGFlcyh4ID0gY29sb3IsIHkgPSBjdXQpKSArDQogICAgZ2VvbV90aWxlKG1hcHBpbmcgPSBhZXMoZmlsbCA9IG4pKQ0KYGBgDQpgYGB7cn0NCiNQbG90IG9mIGNhcmF0IGFuZCBwcmljZQ0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcykgKw0KICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoeCA9IGNhcmF0LCB5ID0gcHJpY2UpKQ0KYGBgDQpgYGB7cn0NCiNQbG90IG9mIHggYW5kIHkNCmdncGxvdChkYXRhID0gZGlhbW9uZHMpICsNCiAgZ2VvbV9wb2ludChtYXBwaW5nID0gYWVzKHggPSB4LCB5ID0geSkpK2Nvb3JkX2NhcnRlc2lhbih4bGltID0gYygyLCAxMCksIHlsaW0gPSBjKDIsIDEwKSkNCmBgYA0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYW1vbmRzKSArIA0KICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoeCA9IGNhcmF0LCB5ID0gcHJpY2UpLCBhbHBoYSA9IDEgLyA1MCkNCmBgYA0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IHNtYWxsZXIpICsNCiAgZ2VvbV9iaW4yZChtYXBwaW5nID0gYWVzKHggPSBjYXJhdCwgeSA9IHByaWNlKSkNCmBgYA0KYGBge3J9DQojRGlhbW9uZCBBbmFseXNpcw0KbGlicmFyeShoZXhiaW4pDQpnZ3Bsb3QoZGF0YSA9IHNtYWxsZXIpICsNCiAgZ2VvbV9oZXgobWFwcGluZyA9IGFlcyh4ID0gY2FyYXQsIHkgPSBwcmljZSkpDQpgYGANCmBgYHtyfQ0KI1NtYWxsZXIgY2FyYXQgcHJpY2UgYW5hbHlzaXMNCmdncGxvdChkYXRhID0gc21hbGxlciwgbWFwcGluZyA9IGFlcyh4ID0gY2FyYXQsIHkgPSBwcmljZSkpICsgDQogIGdlb21fYm94cGxvdChtYXBwaW5nID0gYWVzKGdyb3VwID0gY3V0X251bWJlcihjYXJhdCwgMjApKSkNCmBgYA0KDQo=