How do in-the-moment experiences of youth (i.e., challenge, relevance, learning, and affect) cultivate situational interest and engagement in STEM activities?
Broadly, these in-the-moment experiences predict situational interest and engagement, though the subsequent models may be of greater interest to us (and our audience).
rowname | overall_engagement | interest | challenge | relevance | learning | positive_affect |
---|---|---|---|---|---|---|
overall_engagement | ||||||
interest | .69 | |||||
challenge | .30 | .28 | ||||
relevance | .65 | .61 | .39 | |||
learning | .68 | .56 | .30 | .65 | ||
positive_affect | .65 | .56 | .27 | .52 | .48 |
m30 <- lmer(interest ~ 1 +
overall_pre_interest +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m30, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.10
## Current Matrix version is 1.2.11
## Please re-install 'TMB' from source or restore original 'Matrix' package
interest | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 2.44 | 0.19 | <.001 | |
overall_pre_interest | 0.14 | 0.06 | .018 | |
Random Parts | ||||
Nbeep_ID_new | 248 | |||
Nparticipant_ID | 181 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.040 | |||
ICCparticipant_ID | 0.328 | |||
ICCprogram_ID | 0.017 | |||
Observations | 2738 | |||
R2 / Ω02 | .448 / .438 |
The ICC for the null model for interest shows high levels of unexplained participant-level variability and small amounts of momentary and program-level variability.
m30i <- lmer(overall_engagement ~ 1 +
overall_pre_interest +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m30i, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
overall_engagement | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 2.50 | 0.16 | <.001 | |
overall_pre_interest | 0.11 | 0.05 | .030 | |
Random Parts | ||||
Nbeep_ID_new | 248 | |||
Nparticipant_ID | 181 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.034 | |||
ICCparticipant_ID | 0.429 | |||
ICCprogram_ID | 0.000 | |||
Observations | 2738 | |||
R2 / Ω02 | .523 / .518 |
The ICC for the null for model engagement shows high levels of unexplained participant-level variability, small amounts of momentary variability, and no program-level variability.
Predicting interest (sans challenge and relevance):
m3a <- lmer(interest ~ 1 +
gender +
classroom_versus_field_enrichment +
CLASS_comp +
youth_activity_rc +
overall_pre_interest +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m3a, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
interest | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 2.22 | 0.22 | <.001 | |
gender (M) | 0.11 | 0.10 | .283 | |
classroom_versus_field_enrichment | 0.05 | 0.06 | .425 | |
CLASS_comp | 0.03 | 0.03 | .177 | |
youth_activity_rc (Basic Skills Activity) | -0.07 | 0.07 | .303 | |
youth_activity_rc (Creating Product) | 0.04 | 0.07 | .628 | |
youth_activity_rc (Field Trip Speaker) | 0.11 | 0.13 | .367 | |
youth_activity_rc (Lab Activity) | 0.00 | 0.12 | .987 | |
youth_activity_rc (Program Staff Led) | -0.04 | 0.08 | .554 | |
overall_pre_interest | 0.14 | 0.06 | .016 | |
Random Parts | ||||
Nbeep_ID_new | 228 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.036 | |||
ICCparticipant_ID | 0.325 | |||
ICCprogram_ID | 0.023 | |||
Observations | 2483 | |||
R2 / Ω02 | .452 / .442 |
Predicting interest (with challenge and relevance):
m3b <- lmer(interest ~ 1 +
challenge + relevance +
gender +
classroom_versus_field_enrichment +
CLASS_comp +
youth_activity_rc +
overall_pre_interest +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m3b, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
interest | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 0.96 | 0.15 | <.001 | |
challenge | 0.05 | 0.02 | .007 | |
relevance | 0.60 | 0.02 | <.001 | |
gender (M) | -0.04 | 0.06 | .453 | |
classroom_versus_field_enrichment | 0.07 | 0.05 | .167 | |
CLASS_comp | 0.02 | 0.02 | .464 | |
youth_activity_rc (Basic Skills Activity) | -0.13 | 0.06 | .030 | |
youth_activity_rc (Creating Product) | -0.08 | 0.07 | .248 | |
youth_activity_rc (Field Trip Speaker) | -0.01 | 0.11 | .959 | |
youth_activity_rc (Lab Activity) | -0.02 | 0.11 | .854 | |
youth_activity_rc (Program Staff Led) | -0.10 | 0.07 | .133 | |
overall_pre_interest | 0.07 | 0.04 | .045 | |
Random Parts | ||||
Nbeep_ID_new | 228 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.049 | |||
ICCparticipant_ID | 0.131 | |||
ICCprogram_ID | 0.018 | |||
Observations | 2483 | |||
R2 / Ω02 | .543 / .539 |
This model suggests that relevance and learing predict momentary interest; and that basic skills activities are less interesting to learners. Much of the individual-level variability has been explained, though not very much has been explained at the momentary and program levels.
Predicting overall engagement (sans challenge and relevance):
m4a <- lmer(overall_engagement ~ 1 +
gender +
classroom_versus_field_enrichment +
CLASS_comp +
youth_activity_rc +
overall_pre_interest +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m4a, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
overall_engagement | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 2.25 | 0.19 | <.001 | |
gender (M) | 0.05 | 0.09 | .622 | |
classroom_versus_field_enrichment | 0.09 | 0.04 | .046 | |
CLASS_comp | 0.03 | 0.02 | .118 | |
youth_activity_rc (Basic Skills Activity) | 0.09 | 0.05 | .079 | |
youth_activity_rc (Creating Product) | 0.07 | 0.06 | .233 | |
youth_activity_rc (Field Trip Speaker) | 0.15 | 0.09 | .097 | |
youth_activity_rc (Lab Activity) | 0.10 | 0.09 | .283 | |
youth_activity_rc (Program Staff Led) | -0.02 | 0.06 | .687 | |
overall_pre_interest | 0.12 | 0.05 | .023 | |
Random Parts | ||||
Nbeep_ID_new | 228 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.023 | |||
ICCparticipant_ID | 0.426 | |||
ICCprogram_ID | 0.015 | |||
Observations | 2483 | |||
R2 / Ω02 | .523 / .517 |
Predicting overall engagement (sans challenge and relevance):
m4b <- lmer(overall_engagement ~ 1 +
challenge + relevance +
gender +
classroom_versus_field_enrichment +
CLASS_comp +
youth_activity_rc +
overall_pre_interest +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m4b, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
overall_engagement | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 1.05 | 0.13 | <.001 | |
challenge | 0.06 | 0.01 | <.001 | |
relevance | 0.53 | 0.02 | <.001 | |
gender (M) | -0.09 | 0.06 | .118 | |
classroom_versus_field_enrichment | 0.10 | 0.04 | .007 | |
CLASS_comp | 0.01 | 0.02 | .381 | |
youth_activity_rc (Basic Skills Activity) | 0.03 | 0.04 | .516 | |
youth_activity_rc (Creating Product) | -0.03 | 0.05 | .490 | |
youth_activity_rc (Field Trip Speaker) | 0.05 | 0.08 | .512 | |
youth_activity_rc (Lab Activity) | 0.07 | 0.08 | .378 | |
youth_activity_rc (Program Staff Led) | -0.07 | 0.05 | .139 | |
overall_pre_interest | 0.07 | 0.03 | .038 | |
Random Parts | ||||
Nbeep_ID_new | 228 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.042 | |||
ICCparticipant_ID | 0.258 | |||
ICCprogram_ID | 0.012 | |||
Observations | 2483 | |||
R2 / Ω02 | .653 / .651 |
This model suggests that releavence and learning predict momentary engagement; and that challenge predicts momentary engagement, though with a very small effect. Classroom settings are associated with higher engagement. Some of the individual-level variability has been explained, though not very much has been explained at the momentary and program levels.