Install packages from BioConductor as needed:

source("http://bioconductor.org/biocLite.R")
biocLite("edgeR")
biocLite("DESeq2")
biocLite("qvalue")

prepare files and load libraries

#setwd("C:/Users/steibelj/OneDrive/Documents/job/ans824/2015")    # Set current working directory
rm(list=ls())        # Remove all objects from work environment
setwd("C:\\Users\\Admin\\OneDrive\\Documents\\TCGA\\")    # Set current working directory

library(edgeR)
## Loading required package: limma
library(qvalue)
library(DESeq2)
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following object is masked from 'package:limma':
## 
##     plotMA
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, cbind, colMeans,
##     colnames, colSums, do.call, duplicated, eval, evalq, Filter,
##     Find, get, grep, grepl, intersect, is.unsorted, lapply,
##     lengths, Map, mapply, match, mget, order, paste, pmax,
##     pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
##     rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
##     tapply, union, unique, unsplit, which, which.max, which.min
## 
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
## 
##     expand.grid
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: DelayedArray
## Loading required package: matrixStats
## 
## Attaching package: 'matrixStats'
## The following objects are masked from 'package:Biobase':
## 
##     anyMissing, rowMedians
## 
## Attaching package: 'DelayedArray'
## The following objects are masked from 'package:matrixStats':
## 
##     colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
## The following object is masked from 'package:base':
## 
##     apply

Go to the ReCount website http://bowtie-bio.sourceforge.net/recount/
1)download the dataset from bottomly in the count table format:
http://bowtie-bio.sourceforge.net/recount/countTables/bottomly_count_table.txt
2)dowload the phenotype table:
http://bowtie-bio.sourceforge.net/recount/phenotypeTables/bottomly_phenodata.txt
3) Save both files in your working directory, for instance: “C:/User/Plasmodes/Bottomly”

cts<-read.delim("bottomly_count_table.txt")  #complete raw data set
pheno<-read.delim("bottomly_phenodata.txt",sep=" ")  #file with descpription of the experiment

dim(cts)
## [1] 36536    22
dim(pheno)
## [1] 21  5
head(cts)
##                 gene SRX033480 SRX033488 SRX033481 SRX033489 SRX033482
## 1 ENSMUSG00000000001       369       744       287       769       348
## 2 ENSMUSG00000000003         0         0         0         0         0
## 3 ENSMUSG00000000028         0         1         0         1         1
## 4 ENSMUSG00000000031         0         0         0         0         0
## 5 ENSMUSG00000000037         0         1         1         5         0
## 6 ENSMUSG00000000049         0         1         0         1         0
##   SRX033490 SRX033483 SRX033476 SRX033478 SRX033479 SRX033472 SRX033473
## 1       803       433       469       585       321       301       461
## 2         0         0         0         0         0         0         0
## 3         1         0         7         6         1         1         1
## 4         0         0         0         0         0         0         0
## 5         4         0         0         0         0         4         1
## 6         0         0         0         0         0         0         0
##   SRX033474 SRX033475 SRX033491 SRX033484 SRX033492 SRX033485 SRX033493
## 1       309       374       781       555       820       294       758
## 2         0         0         0         0         0         0         0
## 3         1         1         1         2         1         1         4
## 4         0         0         0         0         0         0         0
## 5         1         0         1         2         1         1         1
## 6         0         0         0         0         0         0         0
##   SRX033486 SRX033494
## 1       419       857
## 2         0         0
## 3         1         5
## 4         0         0
## 5         1         2
## 6         0         0
head(pheno)
##   sample.id num.tech.reps   strain experiment.number lane.number
## 1 SRX033480             1 C57BL/6J                 6           1
## 2 SRX033488             1 C57BL/6J                 7           1
## 3 SRX033481             1 C57BL/6J                 6           2
## 4 SRX033489             1 C57BL/6J                 7           2
## 5 SRX033482             1 C57BL/6J                 6           3
## 6 SRX033490             1 C57BL/6J                 7           3
rownames(cts)<-cts$gene #genes should be rownames

cts<-cts[,-1]  #eliminates first columns with number or rows
dim(cts)
## [1] 36536    21
head(cts)
##                    SRX033480 SRX033488 SRX033481 SRX033489 SRX033482
## ENSMUSG00000000001       369       744       287       769       348
## ENSMUSG00000000003         0         0         0         0         0
## ENSMUSG00000000028         0         1         0         1         1
## ENSMUSG00000000031         0         0         0         0         0
## ENSMUSG00000000037         0         1         1         5         0
## ENSMUSG00000000049         0         1         0         1         0
##                    SRX033490 SRX033483 SRX033476 SRX033478 SRX033479
## ENSMUSG00000000001       803       433       469       585       321
## ENSMUSG00000000003         0         0         0         0         0
## ENSMUSG00000000028         1         0         7         6         1
## ENSMUSG00000000031         0         0         0         0         0
## ENSMUSG00000000037         4         0         0         0         0
## ENSMUSG00000000049         0         0         0         0         0
##                    SRX033472 SRX033473 SRX033474 SRX033475 SRX033491
## ENSMUSG00000000001       301       461       309       374       781
## ENSMUSG00000000003         0         0         0         0         0
## ENSMUSG00000000028         1         1         1         1         1
## ENSMUSG00000000031         0         0         0         0         0
## ENSMUSG00000000037         4         1         1         0         1
## ENSMUSG00000000049         0         0         0         0         0
##                    SRX033484 SRX033492 SRX033485 SRX033493 SRX033486
## ENSMUSG00000000001       555       820       294       758       419
## ENSMUSG00000000003         0         0         0         0         0
## ENSMUSG00000000028         2         1         1         4         1
## ENSMUSG00000000031         0         0         0         0         0
## ENSMUSG00000000037         2         1         1         1         1
## ENSMUSG00000000049         0         0         0         0         0
##                    SRX033494
## ENSMUSG00000000001       857
## ENSMUSG00000000003         0
## ENSMUSG00000000028         5
## ENSMUSG00000000031         0
## ENSMUSG00000000037         2
## ENSMUSG00000000049         0
head(pheno)
##   sample.id num.tech.reps   strain experiment.number lane.number
## 1 SRX033480             1 C57BL/6J                 6           1
## 2 SRX033488             1 C57BL/6J                 7           1
## 3 SRX033481             1 C57BL/6J                 6           2
## 4 SRX033489             1 C57BL/6J                 7           2
## 5 SRX033482             1 C57BL/6J                 6           3
## 6 SRX033490             1 C57BL/6J                 7           3
pheno[,1]
##  [1] SRX033480 SRX033488 SRX033481 SRX033489 SRX033482 SRX033490 SRX033483
##  [8] SRX033476 SRX033478 SRX033479 SRX033472 SRX033473 SRX033474 SRX033475
## [15] SRX033491 SRX033484 SRX033492 SRX033485 SRX033493 SRX033486 SRX033494
## 21 Levels: SRX033472 SRX033473 SRX033474 SRX033475 SRX033476 ... SRX033494

Check distribution of counts

sum(colnames(cts)!=pheno[,1])
## [1] 0
totalcount<-rowSums(cts)
length(totalcount)
## [1] 36536
table(totalcount>0)
## 
## FALSE  TRUE 
## 22604 13932
cnt<-cts[totalcount>0,] #eliminates genes with zero counts in all samples
dim(cnt)
## [1] 13932    21
length(totalcount)
## [1] 36536
hist(totalcount,col="lightgreen",main="")

hist(log10(totalcount+1),col="lightgreen",main="")

If genes with total count = 0 are eliminated

totalfiltercount<-rowSums(cnt)
length(totalfiltercount)
## [1] 13932
hist(log10(totalfiltercount),probability=T,col="lightgreen",main="")

prepare phenodata

head(pheno)
##   sample.id num.tech.reps   strain experiment.number lane.number
## 1 SRX033480             1 C57BL/6J                 6           1
## 2 SRX033488             1 C57BL/6J                 7           1
## 3 SRX033481             1 C57BL/6J                 6           2
## 4 SRX033489             1 C57BL/6J                 7           2
## 5 SRX033482             1 C57BL/6J                 6           3
## 6 SRX033490             1 C57BL/6J                 7           3
groups<-pheno[,3]             #extract group info
groups
##  [1] C57BL/6J C57BL/6J C57BL/6J C57BL/6J C57BL/6J C57BL/6J C57BL/6J
##  [8] C57BL/6J C57BL/6J C57BL/6J DBA/2J   DBA/2J   DBA/2J   DBA/2J  
## [15] DBA/2J   DBA/2J   DBA/2J   DBA/2J   DBA/2J   DBA/2J   DBA/2J  
## Levels: C57BL/6J DBA/2J
levels(groups)
## [1] "C57BL/6J" "DBA/2J"
levels(groups)<-c("B6","D2")  #rename groups using levels
groups
##  [1] B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2
## Levels: B6 D2
design<-model.matrix(~groups) #create incidence matrix
design
##    (Intercept) groupsD2
## 1            1        0
## 2            1        0
## 3            1        0
## 4            1        0
## 5            1        0
## 6            1        0
## 7            1        0
## 8            1        0
## 9            1        0
## 10           1        0
## 11           1        1
## 12           1        1
## 13           1        1
## 14           1        1
## 15           1        1
## 16           1        1
## 17           1        1
## 18           1        1
## 19           1        1
## 20           1        1
## 21           1        1
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$groups
## [1] "contr.treatment"
design2<-model.matrix(~groups-1) #create incidence matrix
design2
##    groupsB6 groupsD2
## 1         1        0
## 2         1        0
## 3         1        0
## 4         1        0
## 5         1        0
## 6         1        0
## 7         1        0
## 8         1        0
## 9         1        0
## 10        1        0
## 11        0        1
## 12        0        1
## 13        0        1
## 14        0        1
## 15        0        1
## 16        0        1
## 17        0        1
## 18        0        1
## 19        0        1
## 20        0        1
## 21        0        1
## attr(,"assign")
## [1] 1 1
## attr(,"contrasts")
## attr(,"contrasts")$groups
## [1] "contr.treatment"
head(design)
##   (Intercept) groupsD2
## 1           1        0
## 2           1        0
## 3           1        0
## 4           1        0
## 5           1        0
## 6           1        0

analysis using edgeR

We fit a negative binomial model and perform moderated tests
First prepare a Digital gene expression object:

dge<-DGEList(counts=cnt,group=groups,remove.zeros=T) #assemble dataset
names(dge)
## [1] "counts"  "samples"
head(dge$samples)
##           group lib.size norm.factors
## SRX033480    B6  3040296            1
## SRX033488    B6  6303665            1
## SRX033481    B6  2717092            1
## SRX033489    B6  6545795            1
## SRX033482    B6  3016179            1
## SRX033490    B6  7097379            1
sum(cnt[,1])
## [1] 3040296
cpm.dge<-cpm(dge) #compute counts per million
dim(cpm.dge)
## [1] 13932    21
cpm.dge[1:5,1:5]
##                     SRX033480   SRX033488   SRX033481   SRX033489
## ENSMUSG00000000001 121.369761 118.0265766 105.6276343 117.4800005
## ENSMUSG00000000028   0.000000   0.1586379   0.0000000   0.1527698
## ENSMUSG00000000037   0.000000   0.1586379   0.3680405   0.7638492
## ENSMUSG00000000049   0.000000   0.1586379   0.0000000   0.1527698
## ENSMUSG00000000056   6.907222   7.2973421   7.3608107   5.4997139
##                      SRX033482
## ENSMUSG00000000001 115.3777677
## ENSMUSG00000000028   0.3315453
## ENSMUSG00000000037   0.0000000
## ENSMUSG00000000049   0.0000000
## ENSMUSG00000000056   3.9785437
filtercpm<-rowSums(cpm.dge>1)>=9
table(filtercpm)
## filtercpm
## FALSE  TRUE 
##  4413  9519
dge<-dge[filtercpm,]   #Filter out tags wich have fewer than one count per million in 10 or more libraries
dim(dge)
## [1] 9519   21

Some descriptive graphics

colors<-c("black","green","blue","red")[8-pheno[,4]]
labels<-groups

#check similarity between samples, color=experiment number
plotMDS(dge,main="MDS plot for Bottomly B6 and D2",labels=groups,col=colors) 

#check similarity between samples
plotMDS(dge,main="MDS plot for Bottomly B6 and D2") 

prepare design matrix

strain<-groups
exprmt<-as.factor(pheno[,4]) #extract flowcell as a factor
design<-model.matrix(~exprmt+strain) #create an incidence matrix
head(design)
##   (Intercept) exprmt6 exprmt7 strainD2
## 1           1       1       0        0
## 2           1       0       1        0
## 3           1       1       0        0
## 4           1       0       1        0
## 5           1       1       0        0
## 6           1       0       1        0
tail(design)
##    (Intercept) exprmt6 exprmt7 strainD2
## 16           1       1       0        1
## 17           1       0       1        1
## 18           1       1       0        1
## 19           1       0       1        1
## 20           1       1       0        1
## 21           1       0       1        1

Normalization and estimation of gene-specific variances

names(dge)
## [1] "counts"  "samples"
class(dge)
## [1] "DGEList"
## attr(,"package")
## [1] "edgeR"
head(dge$samples)
##           group lib.size norm.factors
## SRX033480    B6  3040296            1
## SRX033488    B6  6303665            1
## SRX033481    B6  2717092            1
## SRX033489    B6  6545795            1
## SRX033482    B6  3016179            1
## SRX033490    B6  7097379            1
dge<-calcNormFactors(dge)
head(dge$samples)
##           group lib.size norm.factors
## SRX033480    B6  3040296    0.9796169
## SRX033488    B6  6303665    0.9823782
## SRX033481    B6  2717092    0.9945498
## SRX033489    B6  6545795    1.0089641
## SRX033482    B6  3016179    0.9731442
## SRX033490    B6  7097379    0.9952180
hist(dge$samples$norm.factors)

dge<-estimateGLMCommonDisp(dge,design,verbose=T)
## Disp = 0.01928 , BCV = 0.1389
names(dge)
## [1] "counts"            "samples"           "common.dispersion"
## [4] "AveLogCPM"
class(dge$AveLogCPM)
## [1] "numeric"
head(dge$AveLogCPM)
## [1] 6.734600 2.923142 2.445708 6.956765 6.873608 2.654991
length(dge$AveLogCPM)
## [1] 9519
dge$common.dispersion
## [1] 0.01928269
dge<-estimateGLMTrendedDisp(dge,design,verbose=T)
## Disp = 0.07321 , BCV = 0.2706 
## Disp = 0.08536 , BCV = 0.2922 
## Disp = 0.07107 , BCV = 0.2666 
## Disp = 0.06811 , BCV = 0.261 
## Disp = 0.06278 , BCV = 0.2505 
## Disp = 0.055 , BCV = 0.2345 
## Disp = 0.05551 , BCV = 0.2356 
## Disp = 0.05198 , BCV = 0.228 
## Disp = 0.05009 , BCV = 0.2238 
## Disp = 0.03785 , BCV = 0.1945 
## Disp = 0.03319 , BCV = 0.1822 
## Disp = 0.03668 , BCV = 0.1915 
## Disp = 0.03275 , BCV = 0.181 
## Disp = 0.02764 , BCV = 0.1663 
## Disp = 0.03582 , BCV = 0.1893 
## Disp = 0.02473 , BCV = 0.1573 
## Disp = 0.0273 , BCV = 0.1652 
## Disp = 0.02562 , BCV = 0.1601 
## Disp = 0.02251 , BCV = 0.15 
## Disp = 0.02415 , BCV = 0.1554 
## Disp = 0.02246 , BCV = 0.1499 
## Disp = 0.02366 , BCV = 0.1538 
## Disp = 0.02063 , BCV = 0.1436 
## Disp = 0.01971 , BCV = 0.1404 
## Disp = 0.02041 , BCV = 0.1429 
## Disp = 0.01673 , BCV = 0.1293 
## Disp = 0.01694 , BCV = 0.1302 
## Disp = 0.01572 , BCV = 0.1254 
## Disp = 0.0152 , BCV = 0.1233 
## Disp = 0.01436 , BCV = 0.1198 
## Disp = 0.01563 , BCV = 0.125 
## Disp = 0.01681 , BCV = 0.1297 
## Disp = 0.01645 , BCV = 0.1283 
## Disp = 0.0169 , BCV = 0.13 
## Disp = 0.01345 , BCV = 0.116 
## Disp = 0.02003 , BCV = 0.1415 
## Disp = 0.01406 , BCV = 0.1186 
## Disp = 0.01332 , BCV = 0.1154 
## Disp = 0.01636 , BCV = 0.1279
names(dge)
## [1] "counts"             "samples"            "common.dispersion" 
## [4] "AveLogCPM"          "trend.method"       "trended.dispersion"
length(dge$bin.dispersion)
## [1] 0
length(dge$bin.AveLogCPM)
## [1] 0
length(dge$trended.dispersion)
## [1] 9519
plot(dge$trended.dispersion~dge$AveLogCPM)

dge<-estimateGLMTagwiseDisp(dge,design)     # to use Tagwise, either Common or Trended should be calculated before
names(dge)
## [1] "counts"             "samples"            "common.dispersion" 
## [4] "AveLogCPM"          "trend.method"       "trended.dispersion"
## [7] "span"               "prior.df"           "tagwise.dispersion"
head(dge$tagwise.dispersion)
## [1] 0.01441471 0.01224999 0.03056632 0.01999724 0.01558286 0.04635289
plot(dge$tagwise.dispersion~dge$AveLogCPM,
     xlab="averge CPM",
     ylab="dispersion",
     pch=19)


points(dge$trended.dispersion~dge$AveLogCPM,col="red",pch=19)
abline(h=dge$common.dispersion,col="blue",lwd=2)

Model fit

fit<-glmFit(dge,design)
names(fit)
##  [1] "coefficients"          "fitted.values"        
##  [3] "deviance"              "iter"                 
##  [5] "failed"                "method"               
##  [7] "counts"                "unshrunk.coefficients"
##  [9] "df.residual"           "design"               
## [11] "offset"                "dispersion"           
## [13] "prior.count"           "samples"              
## [15] "prior.df"              "AveLogCPM"
class(fit)
## [1] "DGEGLM"
## attr(,"package")
## [1] "edgeR"
de.tagwiseGLM<-glmLRT(fit,coef=4)       #test D2 vs B6
class(de.tagwiseGLM)
## [1] "DGELRT"
## attr(,"package")
## [1] "edgeR"
names(de.tagwiseGLM)
##  [1] "coefficients"          "fitted.values"        
##  [3] "deviance"              "iter"                 
##  [5] "failed"                "method"               
##  [7] "unshrunk.coefficients" "df.residual"          
##  [9] "design"                "offset"               
## [11] "dispersion"            "prior.count"          
## [13] "samples"               "prior.df"             
## [15] "AveLogCPM"             "table"                
## [17] "comparison"            "df.test"
head(de.tagwiseGLM$table)
##                          logFC   logCPM          LR       PValue
## ENSMUSG00000000001 -0.09627786 6.734600  1.38672829 2.389584e-01
## ENSMUSG00000000056 -0.06025021 2.923142  0.21907087 6.397488e-01
## ENSMUSG00000000058 -0.21151132 2.445708  1.55009465 2.131215e-01
## ENSMUSG00000000078  0.01756544 6.956765  0.03482755 8.519575e-01
## ENSMUSG00000000088  0.46898056 6.873608 31.02589322 2.546090e-08
## ENSMUSG00000000093 -0.22154119 2.654991  1.48313210 2.232851e-01
hist(de.tagwiseGLM$table$PValue,col="green")

tags<-rownames(de.tagwiseGLM$table)         #extract names of genes

Extract info about tests

?topTags
## starting httpd help server ... done
signif<-topTags(de.tagwiseGLM, 
                n=nrow(de.tagwiseGLM$table), 
                adjust.method="BH", 
                sort.by="PValue")

class(signif)
## [1] "TopTags"
## attr(,"package")
## [1] "edgeR"
names(signif)
## [1] "table"         "adjust.method" "comparison"    "test"
signif05<-signif$table[signif$table$FDR<0.01, ]

dim(signif05)
## [1] 1167    5
head(signif05)
##                        logFC   logCPM       LR        PValue           FDR
## ENSMUSG00000020912 -5.142992 3.134837 472.1626 1.084362e-104 1.032204e-100
## ENSMUSG00000023236  1.419564 7.064411 410.4905  2.866583e-91  1.364350e-87
## ENSMUSG00000030532  1.521327 5.572772 408.5279  7.666137e-91  2.432465e-87
## ENSMUSG00000024248 -3.236471 3.470048 406.6863  1.929473e-90  4.591663e-87
## ENSMUSG00000015484 -1.998867 4.304941 393.6393  1.335380e-87  2.542295e-84
## ENSMUSG00000028393  1.746000 6.107919 380.5399  9.493472e-85  1.506139e-81
?decideTestsDGE
dexpressed05<-decideTestsDGE(de.tagwiseGLM,p.value=0.01)
class(dexpressed05)
## [1] "TestResults"
## attr(,"package")
## [1] "limma"
names(dexpressed05)
## NULL
dim(dexpressed05)
## [1] 9519    1
head(dexpressed05)
##                    strainD2
## ENSMUSG00000000001        0
## ENSMUSG00000000056        0
## ENSMUSG00000000058        0
## ENSMUSG00000000078        0
## ENSMUSG00000000088        1
## ENSMUSG00000000093        0
sum(abs(dexpressed05))
## [1] 1167
table(dexpressed05)
## dexpressed05
##   -1    0    1 
##  658 8352  509
head(design)
##   (Intercept) exprmt6 exprmt7 strainD2
## 1           1       1       0        0
## 2           1       0       1        0
## 3           1       1       0        0
## 4           1       0       1        0
## 5           1       1       0        0
## 6           1       0       1        0
denames<-rownames(de.tagwiseGLM)[dexpressed05!=0]
denames
##    [1] "ENSMUSG00000000088" "ENSMUSG00000000184" "ENSMUSG00000000276"
##    [4] "ENSMUSG00000000296" "ENSMUSG00000000326" "ENSMUSG00000000340"
##    [7] "ENSMUSG00000000402" "ENSMUSG00000000560" "ENSMUSG00000000792"
##   [10] "ENSMUSG00000000958" "ENSMUSG00000001156" "ENSMUSG00000001248"
##   [13] "ENSMUSG00000001285" "ENSMUSG00000001380" "ENSMUSG00000001473"
##   [16] "ENSMUSG00000001493" "ENSMUSG00000001700" "ENSMUSG00000001773"
##   [19] "ENSMUSG00000001774" "ENSMUSG00000001948" "ENSMUSG00000002308"
##   [22] "ENSMUSG00000002341" "ENSMUSG00000002477" "ENSMUSG00000002847"
##   [25] "ENSMUSG00000002870" "ENSMUSG00000002910" "ENSMUSG00000003039"
##   [28] "ENSMUSG00000003072" "ENSMUSG00000003228" "ENSMUSG00000003355"
##   [31] "ENSMUSG00000003559" "ENSMUSG00000003665" "ENSMUSG00000003863"
##   [34] "ENSMUSG00000003934" "ENSMUSG00000003955" "ENSMUSG00000004032"
##   [37] "ENSMUSG00000004341" "ENSMUSG00000004508" "ENSMUSG00000004562"
##   [40] "ENSMUSG00000004609" "ENSMUSG00000004730" "ENSMUSG00000005057"
##   [43] "ENSMUSG00000005103" "ENSMUSG00000005142" "ENSMUSG00000005442"
##   [46] "ENSMUSG00000005483" "ENSMUSG00000005553" "ENSMUSG00000005677"
##   [49] "ENSMUSG00000005973" "ENSMUSG00000006095" "ENSMUSG00000006154"
##   [52] "ENSMUSG00000006235" "ENSMUSG00000006281" "ENSMUSG00000006342"
##   [55] "ENSMUSG00000006392" "ENSMUSG00000006403" "ENSMUSG00000006412"
##   [58] "ENSMUSG00000006456" "ENSMUSG00000006587" "ENSMUSG00000006711"
##   [61] "ENSMUSG00000006724" "ENSMUSG00000006740" "ENSMUSG00000006782"
##   [64] "ENSMUSG00000007021" "ENSMUSG00000007035" "ENSMUSG00000007603"
##   [67] "ENSMUSG00000007682" "ENSMUSG00000008435" "ENSMUSG00000008999"
##   [70] "ENSMUSG00000009030" "ENSMUSG00000009035" "ENSMUSG00000009075"
##   [73] "ENSMUSG00000009145" "ENSMUSG00000009575" "ENSMUSG00000010048"
##   [76] "ENSMUSG00000010797" "ENSMUSG00000010936" "ENSMUSG00000011884"
##   [79] "ENSMUSG00000012296" "ENSMUSG00000013584" "ENSMUSG00000013989"
##   [82] "ENSMUSG00000014361" "ENSMUSG00000014426" "ENSMUSG00000014776"
##   [85] "ENSMUSG00000014837" "ENSMUSG00000014932" "ENSMUSG00000015120"
##   [88] "ENSMUSG00000015176" "ENSMUSG00000015202" "ENSMUSG00000015305"
##   [91] "ENSMUSG00000015354" "ENSMUSG00000015484" "ENSMUSG00000015568"
##   [94] "ENSMUSG00000015749" "ENSMUSG00000015806" "ENSMUSG00000015843"
##   [97] "ENSMUSG00000015852" "ENSMUSG00000015889" "ENSMUSG00000016018"
##  [100] "ENSMUSG00000016503" "ENSMUSG00000016637" "ENSMUSG00000016757"
##  [103] "ENSMUSG00000016942" "ENSMUSG00000016946" "ENSMUSG00000016984"
##  [106] "ENSMUSG00000017009" "ENSMUSG00000017132" "ENSMUSG00000017167"
##  [109] "ENSMUSG00000017188" "ENSMUSG00000017721" "ENSMUSG00000017943"
##  [112] "ENSMUSG00000017969" "ENSMUSG00000018102" "ENSMUSG00000018166"
##  [115] "ENSMUSG00000018340" "ENSMUSG00000018666" "ENSMUSG00000019158"
##  [118] "ENSMUSG00000019179" "ENSMUSG00000019232" "ENSMUSG00000019235"
##  [121] "ENSMUSG00000019261" "ENSMUSG00000019362" "ENSMUSG00000019433"
##  [124] "ENSMUSG00000019461" "ENSMUSG00000019478" "ENSMUSG00000019737"
##  [127] "ENSMUSG00000019808" "ENSMUSG00000019820" "ENSMUSG00000019865"
##  [130] "ENSMUSG00000019873" "ENSMUSG00000019899" "ENSMUSG00000019943"
##  [133] "ENSMUSG00000019978" "ENSMUSG00000019986" "ENSMUSG00000019996"
##  [136] "ENSMUSG00000019997" "ENSMUSG00000020014" "ENSMUSG00000020019"
##  [139] "ENSMUSG00000020099" "ENSMUSG00000020108" "ENSMUSG00000020131"
##  [142] "ENSMUSG00000020160" "ENSMUSG00000020180" "ENSMUSG00000020196"
##  [145] "ENSMUSG00000020295" "ENSMUSG00000020312" "ENSMUSG00000020358"
##  [148] "ENSMUSG00000020361" "ENSMUSG00000020390" "ENSMUSG00000020411"
##  [151] "ENSMUSG00000020475" "ENSMUSG00000020496" "ENSMUSG00000020513"
##  [154] "ENSMUSG00000020553" "ENSMUSG00000020591" "ENSMUSG00000020629"
##  [157] "ENSMUSG00000020793" "ENSMUSG00000020803" "ENSMUSG00000020890"
##  [160] "ENSMUSG00000020912" "ENSMUSG00000020961" "ENSMUSG00000020962"
##  [163] "ENSMUSG00000020994" "ENSMUSG00000021025" "ENSMUSG00000021033"
##  [166] "ENSMUSG00000021044" "ENSMUSG00000021057" "ENSMUSG00000021070"
##  [169] "ENSMUSG00000021091" "ENSMUSG00000021096" "ENSMUSG00000021143"
##  [172] "ENSMUSG00000021223" "ENSMUSG00000021286" "ENSMUSG00000021367"
##  [175] "ENSMUSG00000021379" "ENSMUSG00000021414" "ENSMUSG00000021420"
##  [178] "ENSMUSG00000021510" "ENSMUSG00000021548" "ENSMUSG00000021591"
##  [181] "ENSMUSG00000021594" "ENSMUSG00000021607" "ENSMUSG00000021636"
##  [184] "ENSMUSG00000021680" "ENSMUSG00000021700" "ENSMUSG00000021702"
##  [187] "ENSMUSG00000021703" "ENSMUSG00000021719" "ENSMUSG00000021747"
##  [190] "ENSMUSG00000021750" "ENSMUSG00000021756" "ENSMUSG00000021773"
##  [193] "ENSMUSG00000021799" "ENSMUSG00000021803" "ENSMUSG00000021806"
##  [196] "ENSMUSG00000021815" "ENSMUSG00000021903" "ENSMUSG00000021904"
##  [199] "ENSMUSG00000021943" "ENSMUSG00000021951" "ENSMUSG00000021969"
##  [202] "ENSMUSG00000022000" "ENSMUSG00000022022" "ENSMUSG00000022040"
##  [205] "ENSMUSG00000022064" "ENSMUSG00000022066" "ENSMUSG00000022070"
##  [208] "ENSMUSG00000022076" "ENSMUSG00000022106" "ENSMUSG00000022112"
##  [211] "ENSMUSG00000022123" "ENSMUSG00000022136" "ENSMUSG00000022146"
##  [214] "ENSMUSG00000022159" "ENSMUSG00000022175" "ENSMUSG00000022177"
##  [217] "ENSMUSG00000022195" "ENSMUSG00000022212" "ENSMUSG00000022220"
##  [220] "ENSMUSG00000022228" "ENSMUSG00000022339" "ENSMUSG00000022361"
##  [223] "ENSMUSG00000022362" "ENSMUSG00000022434" "ENSMUSG00000022436"
##  [226] "ENSMUSG00000022468" "ENSMUSG00000022512" "ENSMUSG00000022514"
##  [229] "ENSMUSG00000022560" "ENSMUSG00000022577" "ENSMUSG00000022620"
##  [232] "ENSMUSG00000022673" "ENSMUSG00000022676" "ENSMUSG00000022677"
##  [235] "ENSMUSG00000022742" "ENSMUSG00000022756" "ENSMUSG00000022849"
##  [238] "ENSMUSG00000022867" "ENSMUSG00000022899" "ENSMUSG00000022935"
##  [241] "ENSMUSG00000023011" "ENSMUSG00000023022" "ENSMUSG00000023236"
##  [244] "ENSMUSG00000023272" "ENSMUSG00000023345" "ENSMUSG00000023348"
##  [247] "ENSMUSG00000023495" "ENSMUSG00000023885" "ENSMUSG00000023908"
##  [250] "ENSMUSG00000023918" "ENSMUSG00000023921" "ENSMUSG00000023935"
##  [253] "ENSMUSG00000023938" "ENSMUSG00000023949" "ENSMUSG00000023961"
##  [256] "ENSMUSG00000023963" "ENSMUSG00000023992" "ENSMUSG00000024011"
##  [259] "ENSMUSG00000024026" "ENSMUSG00000024044" "ENSMUSG00000024049"
##  [262] "ENSMUSG00000024053" "ENSMUSG00000024065" "ENSMUSG00000024076"
##  [265] "ENSMUSG00000024082" "ENSMUSG00000024084" "ENSMUSG00000024114"
##  [268] "ENSMUSG00000024132" "ENSMUSG00000024140" "ENSMUSG00000024174"
##  [271] "ENSMUSG00000024210" "ENSMUSG00000024219" "ENSMUSG00000024227"
##  [274] "ENSMUSG00000024248" "ENSMUSG00000024251" "ENSMUSG00000024312"
##  [277] "ENSMUSG00000024319" "ENSMUSG00000024376" "ENSMUSG00000024381"
##  [280] "ENSMUSG00000024411" "ENSMUSG00000024474" "ENSMUSG00000024486"
##  [283] "ENSMUSG00000024517" "ENSMUSG00000024521" "ENSMUSG00000024526"
##  [286] "ENSMUSG00000024597" "ENSMUSG00000024598" "ENSMUSG00000024661"
##  [289] "ENSMUSG00000024697" "ENSMUSG00000024712" "ENSMUSG00000024735"
##  [292] "ENSMUSG00000024750" "ENSMUSG00000024758" "ENSMUSG00000024795"
##  [295] "ENSMUSG00000024810" "ENSMUSG00000024812" "ENSMUSG00000024827"
##  [298] "ENSMUSG00000024855" "ENSMUSG00000024858" "ENSMUSG00000024878"
##  [301] "ENSMUSG00000024883" "ENSMUSG00000024912" "ENSMUSG00000024966"
##  [304] "ENSMUSG00000024983" "ENSMUSG00000024990" "ENSMUSG00000025027"
##  [307] "ENSMUSG00000025034" "ENSMUSG00000025036" "ENSMUSG00000025066"
##  [310] "ENSMUSG00000025076" "ENSMUSG00000025089" "ENSMUSG00000025133"
##  [313] "ENSMUSG00000025203" "ENSMUSG00000025207" "ENSMUSG00000025217"
##  [316] "ENSMUSG00000025264" "ENSMUSG00000025324" "ENSMUSG00000025355"
##  [319] "ENSMUSG00000025374" "ENSMUSG00000025401" "ENSMUSG00000025421"
##  [322] "ENSMUSG00000025450" "ENSMUSG00000025731" "ENSMUSG00000025823"
##  [325] "ENSMUSG00000025905" "ENSMUSG00000025931" "ENSMUSG00000026003"
##  [328] "ENSMUSG00000026028" "ENSMUSG00000026062" "ENSMUSG00000026074"
##  [331] "ENSMUSG00000026078" "ENSMUSG00000026083" "ENSMUSG00000026158"
##  [334] "ENSMUSG00000026224" "ENSMUSG00000026234" "ENSMUSG00000026255"
##  [337] "ENSMUSG00000026258" "ENSMUSG00000026355" "ENSMUSG00000026356"
##  [340] "ENSMUSG00000026380" "ENSMUSG00000026385" "ENSMUSG00000026393"
##  [343] "ENSMUSG00000026414" "ENSMUSG00000026421" "ENSMUSG00000026442"
##  [346] "ENSMUSG00000026511" "ENSMUSG00000026554" "ENSMUSG00000026563"
##  [349] "ENSMUSG00000026577" "ENSMUSG00000026579" "ENSMUSG00000026585"
##  [352] "ENSMUSG00000026587" "ENSMUSG00000026637" "ENSMUSG00000026655"
##  [355] "ENSMUSG00000026687" "ENSMUSG00000026688" "ENSMUSG00000026697"
##  [358] "ENSMUSG00000026830" "ENSMUSG00000026879" "ENSMUSG00000027079"
##  [361] "ENSMUSG00000027107" "ENSMUSG00000027187" "ENSMUSG00000027199"
##  [364] "ENSMUSG00000027253" "ENSMUSG00000027285" "ENSMUSG00000027315"
##  [367] "ENSMUSG00000027358" "ENSMUSG00000027375" "ENSMUSG00000027377"
##  [370] "ENSMUSG00000027386" "ENSMUSG00000027387" "ENSMUSG00000027424"
##  [373] "ENSMUSG00000027430" "ENSMUSG00000027531" "ENSMUSG00000027562"
##  [376] "ENSMUSG00000027568" "ENSMUSG00000027577" "ENSMUSG00000027636"
##  [379] "ENSMUSG00000027706" "ENSMUSG00000027737" "ENSMUSG00000027793"
##  [382] "ENSMUSG00000027852" "ENSMUSG00000027855" "ENSMUSG00000027858"
##  [385] "ENSMUSG00000027864" "ENSMUSG00000027962" "ENSMUSG00000027983"
##  [388] "ENSMUSG00000028024" "ENSMUSG00000028031" "ENSMUSG00000028032"
##  [391] "ENSMUSG00000028068" "ENSMUSG00000028128" "ENSMUSG00000028158"
##  [394] "ENSMUSG00000028172" "ENSMUSG00000028174" "ENSMUSG00000028218"
##  [397] "ENSMUSG00000028331" "ENSMUSG00000028393" "ENSMUSG00000028447"
##  [400] "ENSMUSG00000028550" "ENSMUSG00000028575" "ENSMUSG00000028583"
##  [403] "ENSMUSG00000028602" "ENSMUSG00000028619" "ENSMUSG00000028675"
##  [406] "ENSMUSG00000028747" "ENSMUSG00000028758" "ENSMUSG00000028779"
##  [409] "ENSMUSG00000028780" "ENSMUSG00000028838" "ENSMUSG00000028843"
##  [412] "ENSMUSG00000028865" "ENSMUSG00000028907" "ENSMUSG00000028971"
##  [415] "ENSMUSG00000028979" "ENSMUSG00000028989" "ENSMUSG00000029090"
##  [418] "ENSMUSG00000029153" "ENSMUSG00000029163" "ENSMUSG00000029169"
##  [421] "ENSMUSG00000029245" "ENSMUSG00000029298" "ENSMUSG00000029309"
##  [424] "ENSMUSG00000029319" "ENSMUSG00000029333" "ENSMUSG00000029343"
##  [427] "ENSMUSG00000029381" "ENSMUSG00000029419" "ENSMUSG00000029422"
##  [430] "ENSMUSG00000029440" "ENSMUSG00000029484" "ENSMUSG00000029490"
##  [433] "ENSMUSG00000029547" "ENSMUSG00000029625" "ENSMUSG00000029701"
##  [436] "ENSMUSG00000029716" "ENSMUSG00000029729" "ENSMUSG00000029765"
##  [439] "ENSMUSG00000029797" "ENSMUSG00000029816" "ENSMUSG00000029821"
##  [442] "ENSMUSG00000029838" "ENSMUSG00000029860" "ENSMUSG00000030004"
##  [445] "ENSMUSG00000030075" "ENSMUSG00000030101" "ENSMUSG00000030104"
##  [448] "ENSMUSG00000030134" "ENSMUSG00000030168" "ENSMUSG00000030189"
##  [451] "ENSMUSG00000030220" "ENSMUSG00000030223" "ENSMUSG00000030255"
##  [454] "ENSMUSG00000030397" "ENSMUSG00000030406" "ENSMUSG00000030513"
##  [457] "ENSMUSG00000030532" "ENSMUSG00000030536" "ENSMUSG00000030579"
##  [460] "ENSMUSG00000030600" "ENSMUSG00000030605" "ENSMUSG00000030606"
##  [463] "ENSMUSG00000030616" "ENSMUSG00000030653" "ENSMUSG00000030704"
##  [466] "ENSMUSG00000030718" "ENSMUSG00000030747" "ENSMUSG00000030754"
##  [469] "ENSMUSG00000030835" "ENSMUSG00000030878" "ENSMUSG00000030905"
##  [472] "ENSMUSG00000030917" "ENSMUSG00000030942" "ENSMUSG00000030994"
##  [475] "ENSMUSG00000031004" "ENSMUSG00000031070" "ENSMUSG00000031176"
##  [478] "ENSMUSG00000031227" "ENSMUSG00000031245" "ENSMUSG00000031342"
##  [481] "ENSMUSG00000031483" "ENSMUSG00000031485" "ENSMUSG00000031492"
##  [484] "ENSMUSG00000031534" "ENSMUSG00000031538" "ENSMUSG00000031577"
##  [487] "ENSMUSG00000031584" "ENSMUSG00000031610" "ENSMUSG00000031613"
##  [490] "ENSMUSG00000031661" "ENSMUSG00000031714" "ENSMUSG00000031775"
##  [493] "ENSMUSG00000031780" "ENSMUSG00000031787" "ENSMUSG00000031790"
##  [496] "ENSMUSG00000031803" "ENSMUSG00000031805" "ENSMUSG00000031858"
##  [499] "ENSMUSG00000031924" "ENSMUSG00000031970" "ENSMUSG00000031972"
##  [502] "ENSMUSG00000031974" "ENSMUSG00000031990" "ENSMUSG00000032018"
##  [505] "ENSMUSG00000032060" "ENSMUSG00000032066" "ENSMUSG00000032091"
##  [508] "ENSMUSG00000032113" "ENSMUSG00000032123" "ENSMUSG00000032125"
##  [511] "ENSMUSG00000032135" "ENSMUSG00000032182" "ENSMUSG00000032202"
##  [514] "ENSMUSG00000032220" "ENSMUSG00000032262" "ENSMUSG00000032264"
##  [517] "ENSMUSG00000032320" "ENSMUSG00000032323" "ENSMUSG00000032340"
##  [520] "ENSMUSG00000032343" "ENSMUSG00000032377" "ENSMUSG00000032398"
##  [523] "ENSMUSG00000032403" "ENSMUSG00000032425" "ENSMUSG00000032463"
##  [526] "ENSMUSG00000032470" "ENSMUSG00000032479" "ENSMUSG00000032487"
##  [529] "ENSMUSG00000032517" "ENSMUSG00000032554" "ENSMUSG00000032556"
##  [532] "ENSMUSG00000032565" "ENSMUSG00000032584" "ENSMUSG00000032586"
##  [535] "ENSMUSG00000032667" "ENSMUSG00000032673" "ENSMUSG00000032679"
##  [538] "ENSMUSG00000032807" "ENSMUSG00000032854" "ENSMUSG00000032942"
##  [541] "ENSMUSG00000032968" "ENSMUSG00000033006" "ENSMUSG00000033033"
##  [544] "ENSMUSG00000033039" "ENSMUSG00000033063" "ENSMUSG00000033170"
##  [547] "ENSMUSG00000033177" "ENSMUSG00000033186" "ENSMUSG00000033268"
##  [550] "ENSMUSG00000033417" "ENSMUSG00000033429" "ENSMUSG00000033454"
##  [553] "ENSMUSG00000033458" "ENSMUSG00000033488" "ENSMUSG00000033544"
##  [556] "ENSMUSG00000033557" "ENSMUSG00000033585" "ENSMUSG00000033793"
##  [559] "ENSMUSG00000033813" "ENSMUSG00000033826" "ENSMUSG00000033863"
##  [562] "ENSMUSG00000033931" "ENSMUSG00000033960" "ENSMUSG00000034111"
##  [565] "ENSMUSG00000034161" "ENSMUSG00000034205" "ENSMUSG00000034226"
##  [568] "ENSMUSG00000034227" "ENSMUSG00000034248" "ENSMUSG00000034254"
##  [571] "ENSMUSG00000034282" "ENSMUSG00000034285" "ENSMUSG00000034413"
##  [574] "ENSMUSG00000034453" "ENSMUSG00000034459" "ENSMUSG00000034463"
##  [577] "ENSMUSG00000034488" "ENSMUSG00000034602" "ENSMUSG00000034616"
##  [580] "ENSMUSG00000034617" "ENSMUSG00000034639" "ENSMUSG00000034653"
##  [583] "ENSMUSG00000034684" "ENSMUSG00000034723" "ENSMUSG00000034768"
##  [586] "ENSMUSG00000034807" "ENSMUSG00000034845" "ENSMUSG00000034875"
##  [589] "ENSMUSG00000034936" "ENSMUSG00000035048" "ENSMUSG00000035227"
##  [592] "ENSMUSG00000035237" "ENSMUSG00000035238" "ENSMUSG00000035239"
##  [595] "ENSMUSG00000035274" "ENSMUSG00000035283" "ENSMUSG00000035349"
##  [598] "ENSMUSG00000035390" "ENSMUSG00000035431" "ENSMUSG00000035674"
##  [601] "ENSMUSG00000035686" "ENSMUSG00000035754" "ENSMUSG00000035775"
##  [604] "ENSMUSG00000035781" "ENSMUSG00000035790" "ENSMUSG00000035849"
##  [607] "ENSMUSG00000035863" "ENSMUSG00000035868" "ENSMUSG00000035964"
##  [610] "ENSMUSG00000036098" "ENSMUSG00000036138" "ENSMUSG00000036181"
##  [613] "ENSMUSG00000036256" "ENSMUSG00000036295" "ENSMUSG00000036333"
##  [616] "ENSMUSG00000036339" "ENSMUSG00000036422" "ENSMUSG00000036430"
##  [619] "ENSMUSG00000036473" "ENSMUSG00000036492" "ENSMUSG00000036503"
##  [622] "ENSMUSG00000036570" "ENSMUSG00000036634" "ENSMUSG00000036672"
##  [625] "ENSMUSG00000036712" "ENSMUSG00000036854" "ENSMUSG00000036860"
##  [628] "ENSMUSG00000036887" "ENSMUSG00000036896" "ENSMUSG00000036905"
##  [631] "ENSMUSG00000036907" "ENSMUSG00000036934" "ENSMUSG00000036941"
##  [634] "ENSMUSG00000036964" "ENSMUSG00000037001" "ENSMUSG00000037010"
##  [637] "ENSMUSG00000037071" "ENSMUSG00000037103" "ENSMUSG00000037151"
##  [640] "ENSMUSG00000037196" "ENSMUSG00000037206" "ENSMUSG00000037242"
##  [643] "ENSMUSG00000037353" "ENSMUSG00000037358" "ENSMUSG00000037363"
##  [646] "ENSMUSG00000037461" "ENSMUSG00000037474" "ENSMUSG00000037493"
##  [649] "ENSMUSG00000037519" "ENSMUSG00000037536" "ENSMUSG00000037578"
##  [652] "ENSMUSG00000037594" "ENSMUSG00000037624" "ENSMUSG00000037625"
##  [655] "ENSMUSG00000037649" "ENSMUSG00000037683" "ENSMUSG00000037762"
##  [658] "ENSMUSG00000037787" "ENSMUSG00000037813" "ENSMUSG00000037815"
##  [661] "ENSMUSG00000037852" "ENSMUSG00000037855" "ENSMUSG00000037872"
##  [664] "ENSMUSG00000037971" "ENSMUSG00000038020" "ENSMUSG00000038028"
##  [667] "ENSMUSG00000038059" "ENSMUSG00000038086" "ENSMUSG00000038095"
##  [670] "ENSMUSG00000038156" "ENSMUSG00000038170" "ENSMUSG00000038233"
##  [673] "ENSMUSG00000038252" "ENSMUSG00000038274" "ENSMUSG00000038276"
##  [676] "ENSMUSG00000038349" "ENSMUSG00000038370" "ENSMUSG00000038390"
##  [679] "ENSMUSG00000038422" "ENSMUSG00000038425" "ENSMUSG00000038552"
##  [682] "ENSMUSG00000038605" "ENSMUSG00000038622" "ENSMUSG00000038760"
##  [685] "ENSMUSG00000038811" "ENSMUSG00000038838" "ENSMUSG00000038844"
##  [688] "ENSMUSG00000039065" "ENSMUSG00000039086" "ENSMUSG00000039126"
##  [691] "ENSMUSG00000039194" "ENSMUSG00000039195" "ENSMUSG00000039218"
##  [694] "ENSMUSG00000039234" "ENSMUSG00000039246" "ENSMUSG00000039252"
##  [697] "ENSMUSG00000039323" "ENSMUSG00000039328" "ENSMUSG00000039452"
##  [700] "ENSMUSG00000039474" "ENSMUSG00000039529" "ENSMUSG00000039533"
##  [703] "ENSMUSG00000039594" "ENSMUSG00000039601" "ENSMUSG00000039607"
##  [706] "ENSMUSG00000039634" "ENSMUSG00000039770" "ENSMUSG00000040035"
##  [709] "ENSMUSG00000040113" "ENSMUSG00000040125" "ENSMUSG00000040136"
##  [712] "ENSMUSG00000040147" "ENSMUSG00000040298" "ENSMUSG00000040312"
##  [715] "ENSMUSG00000040373" "ENSMUSG00000040424" "ENSMUSG00000040441"
##  [718] "ENSMUSG00000040490" "ENSMUSG00000040552" "ENSMUSG00000040563"
##  [721] "ENSMUSG00000040629" "ENSMUSG00000040680" "ENSMUSG00000040703"
##  [724] "ENSMUSG00000040714" "ENSMUSG00000040767" "ENSMUSG00000040794"
##  [727] "ENSMUSG00000040841" "ENSMUSG00000040848" "ENSMUSG00000040852"
##  [730] "ENSMUSG00000040856" "ENSMUSG00000040867" "ENSMUSG00000040877"
##  [733] "ENSMUSG00000040899" "ENSMUSG00000040936" "ENSMUSG00000040987"
##  [736] "ENSMUSG00000041096" "ENSMUSG00000041219" "ENSMUSG00000041263"
##  [739] "ENSMUSG00000041297" "ENSMUSG00000041354" "ENSMUSG00000041362"
##  [742] "ENSMUSG00000041377" "ENSMUSG00000041445" "ENSMUSG00000041460"
##  [745] "ENSMUSG00000041548" "ENSMUSG00000041596" "ENSMUSG00000041653"
##  [748] "ENSMUSG00000041733" "ENSMUSG00000041748" "ENSMUSG00000041782"
##  [751] "ENSMUSG00000041907" "ENSMUSG00000041959" "ENSMUSG00000041992"
##  [754] "ENSMUSG00000042073" "ENSMUSG00000042115" "ENSMUSG00000042178"
##  [757] "ENSMUSG00000042210" "ENSMUSG00000042293" "ENSMUSG00000042312"
##  [760] "ENSMUSG00000042406" "ENSMUSG00000042506" "ENSMUSG00000042632"
##  [763] "ENSMUSG00000042638" "ENSMUSG00000042644" "ENSMUSG00000042680"
##  [766] "ENSMUSG00000042734" "ENSMUSG00000042750" "ENSMUSG00000042770"
##  [769] "ENSMUSG00000042797" "ENSMUSG00000042826" "ENSMUSG00000042943"
##  [772] "ENSMUSG00000042962" "ENSMUSG00000043122" "ENSMUSG00000043190"
##  [775] "ENSMUSG00000043298" "ENSMUSG00000043445" "ENSMUSG00000043501"
##  [778] "ENSMUSG00000043542" "ENSMUSG00000043631" "ENSMUSG00000043668"
##  [781] "ENSMUSG00000043719" "ENSMUSG00000043773" "ENSMUSG00000043999"
##  [784] "ENSMUSG00000044018" "ENSMUSG00000044022" "ENSMUSG00000044024"
##  [787] "ENSMUSG00000044052" "ENSMUSG00000044068" "ENSMUSG00000044229"
##  [790] "ENSMUSG00000044231" "ENSMUSG00000044338" "ENSMUSG00000044339"
##  [793] "ENSMUSG00000044349" "ENSMUSG00000044364" "ENSMUSG00000044433"
##  [796] "ENSMUSG00000044501" "ENSMUSG00000044519" "ENSMUSG00000044534"
##  [799] "ENSMUSG00000044562" "ENSMUSG00000044573" "ENSMUSG00000044617"
##  [802] "ENSMUSG00000044676" "ENSMUSG00000044708" "ENSMUSG00000044847"
##  [805] "ENSMUSG00000044881" "ENSMUSG00000044906" "ENSMUSG00000045004"
##  [808] "ENSMUSG00000045053" "ENSMUSG00000045087" "ENSMUSG00000045092"
##  [811] "ENSMUSG00000045348" "ENSMUSG00000045498" "ENSMUSG00000045515"
##  [814] "ENSMUSG00000045551" "ENSMUSG00000045625" "ENSMUSG00000045657"
##  [817] "ENSMUSG00000045659" "ENSMUSG00000045813" "ENSMUSG00000045871"
##  [820] "ENSMUSG00000045876" "ENSMUSG00000045954" "ENSMUSG00000045968"
##  [823] "ENSMUSG00000045994" "ENSMUSG00000046056" "ENSMUSG00000046101"
##  [826] "ENSMUSG00000046152" "ENSMUSG00000046192" "ENSMUSG00000046229"
##  [829] "ENSMUSG00000046338" "ENSMUSG00000046380" "ENSMUSG00000046402"
##  [832] "ENSMUSG00000046480" "ENSMUSG00000046618" "ENSMUSG00000046719"
##  [835] "ENSMUSG00000046792" "ENSMUSG00000046805" "ENSMUSG00000046818"
##  [838] "ENSMUSG00000046991" "ENSMUSG00000047013" "ENSMUSG00000047044"
##  [841] "ENSMUSG00000047085" "ENSMUSG00000047153" "ENSMUSG00000047180"
##  [844] "ENSMUSG00000047228" "ENSMUSG00000047259" "ENSMUSG00000047281"
##  [847] "ENSMUSG00000047361" "ENSMUSG00000047388" "ENSMUSG00000047414"
##  [850] "ENSMUSG00000047419" "ENSMUSG00000047428" "ENSMUSG00000047658"
##  [853] "ENSMUSG00000047797" "ENSMUSG00000047828" "ENSMUSG00000048096"
##  [856] "ENSMUSG00000048163" "ENSMUSG00000048191" "ENSMUSG00000048376"
##  [859] "ENSMUSG00000048458" "ENSMUSG00000048544" "ENSMUSG00000048546"
##  [862] "ENSMUSG00000048572" "ENSMUSG00000048612" "ENSMUSG00000048617"
##  [865] "ENSMUSG00000048677" "ENSMUSG00000048826" "ENSMUSG00000048827"
##  [868] "ENSMUSG00000048856" "ENSMUSG00000048899" "ENSMUSG00000048939"
##  [871] "ENSMUSG00000048960" "ENSMUSG00000048988" "ENSMUSG00000049086"
##  [874] "ENSMUSG00000049112" "ENSMUSG00000049130" "ENSMUSG00000049134"
##  [877] "ENSMUSG00000049281" "ENSMUSG00000049422" "ENSMUSG00000049551"
##  [880] "ENSMUSG00000049553" "ENSMUSG00000049562" "ENSMUSG00000049608"
##  [883] "ENSMUSG00000050063" "ENSMUSG00000050103" "ENSMUSG00000050121"
##  [886] "ENSMUSG00000050138" "ENSMUSG00000050141" "ENSMUSG00000050211"
##  [889] "ENSMUSG00000050549" "ENSMUSG00000050824" "ENSMUSG00000050873"
##  [892] "ENSMUSG00000051048" "ENSMUSG00000051107" "ENSMUSG00000051111"
##  [895] "ENSMUSG00000051113" "ENSMUSG00000051146" "ENSMUSG00000051246"
##  [898] "ENSMUSG00000051341" "ENSMUSG00000051391" "ENSMUSG00000051486"
##  [901] "ENSMUSG00000051498" "ENSMUSG00000051578" "ENSMUSG00000051599"
##  [904] "ENSMUSG00000051617" "ENSMUSG00000051663" "ENSMUSG00000051678"
##  [907] "ENSMUSG00000052026" "ENSMUSG00000052076" "ENSMUSG00000052135"
##  [910] "ENSMUSG00000052415" "ENSMUSG00000052430" "ENSMUSG00000052609"
##  [913] "ENSMUSG00000052714" "ENSMUSG00000052759" "ENSMUSG00000052833"
##  [916] "ENSMUSG00000052848" "ENSMUSG00000052962" "ENSMUSG00000053012"
##  [919] "ENSMUSG00000053198" "ENSMUSG00000053226" "ENSMUSG00000053475"
##  [922] "ENSMUSG00000053552" "ENSMUSG00000053644" "ENSMUSG00000053846"
##  [925] "ENSMUSG00000053935" "ENSMUSG00000053985" "ENSMUSG00000054003"
##  [928] "ENSMUSG00000054091" "ENSMUSG00000054123" "ENSMUSG00000054178"
##  [931] "ENSMUSG00000054199" "ENSMUSG00000054354" "ENSMUSG00000054426"
##  [934] "ENSMUSG00000054474" "ENSMUSG00000054493" "ENSMUSG00000054579"
##  [937] "ENSMUSG00000055148" "ENSMUSG00000055150" "ENSMUSG00000055240"
##  [940] "ENSMUSG00000055313" "ENSMUSG00000055489" "ENSMUSG00000055538"
##  [943] "ENSMUSG00000055560" "ENSMUSG00000055629" "ENSMUSG00000055707"
##  [946] "ENSMUSG00000055745" "ENSMUSG00000055839" "ENSMUSG00000055912"
##  [949] "ENSMUSG00000055917" "ENSMUSG00000055926" "ENSMUSG00000055945"
##  [952] "ENSMUSG00000055976" "ENSMUSG00000056014" "ENSMUSG00000056116"
##  [955] "ENSMUSG00000056121" "ENSMUSG00000056155" "ENSMUSG00000056216"
##  [958] "ENSMUSG00000056258" "ENSMUSG00000056391" "ENSMUSG00000056429"
##  [961] "ENSMUSG00000056492" "ENSMUSG00000056508" "ENSMUSG00000056553"
##  [964] "ENSMUSG00000056592" "ENSMUSG00000056608" "ENSMUSG00000056629"
##  [967] "ENSMUSG00000056656" "ENSMUSG00000056771" "ENSMUSG00000056895"
##  [970] "ENSMUSG00000056966" "ENSMUSG00000057230" "ENSMUSG00000057337"
##  [973] "ENSMUSG00000057667" "ENSMUSG00000057894" "ENSMUSG00000057899"
##  [976] "ENSMUSG00000057924" "ENSMUSG00000058099" "ENSMUSG00000058126"
##  [979] "ENSMUSG00000058230" "ENSMUSG00000058246" "ENSMUSG00000058325"
##  [982] "ENSMUSG00000058396" "ENSMUSG00000058503" "ENSMUSG00000058587"
##  [985] "ENSMUSG00000058761" "ENSMUSG00000059355" "ENSMUSG00000059423"
##  [988] "ENSMUSG00000059498" "ENSMUSG00000059554" "ENSMUSG00000059674"
##  [991] "ENSMUSG00000059824" "ENSMUSG00000059842" "ENSMUSG00000059970"
##  [994] "ENSMUSG00000060147" "ENSMUSG00000060176" "ENSMUSG00000060224"
##  [997] "ENSMUSG00000060284" "ENSMUSG00000060424" "ENSMUSG00000060466"
## [1000] "ENSMUSG00000060657" "ENSMUSG00000060675" "ENSMUSG00000060681"
## [1003] "ENSMUSG00000060716" "ENSMUSG00000060802" "ENSMUSG00000060992"
## [1006] "ENSMUSG00000061086" "ENSMUSG00000061232" "ENSMUSG00000061755"
## [1009] "ENSMUSG00000061808" "ENSMUSG00000061815" "ENSMUSG00000062012"
## [1012] "ENSMUSG00000062014" "ENSMUSG00000062078" "ENSMUSG00000062151"
## [1015] "ENSMUSG00000062169" "ENSMUSG00000062252" "ENSMUSG00000062260"
## [1018] "ENSMUSG00000062309" "ENSMUSG00000062352" "ENSMUSG00000062661"
## [1021] "ENSMUSG00000062691" "ENSMUSG00000062760" "ENSMUSG00000062822"
## [1024] "ENSMUSG00000062963" "ENSMUSG00000063011" "ENSMUSG00000063253"
## [1027] "ENSMUSG00000063296" "ENSMUSG00000063531" "ENSMUSG00000063687"
## [1030] "ENSMUSG00000063698" "ENSMUSG00000063897" "ENSMUSG00000063904"
## [1033] "ENSMUSG00000064023" "ENSMUSG00000064036" "ENSMUSG00000064125"
## [1036] "ENSMUSG00000064262" "ENSMUSG00000064307" "ENSMUSG00000064325"
## [1039] "ENSMUSG00000064351" "ENSMUSG00000064367" "ENSMUSG00000064368"
## [1042] "ENSMUSG00000064370" "ENSMUSG00000065990" "ENSMUSG00000066197"
## [1045] "ENSMUSG00000066510" "ENSMUSG00000066800" "ENSMUSG00000067279"
## [1048] "ENSMUSG00000067578" "ENSMUSG00000067594" "ENSMUSG00000067928"
## [1051] "ENSMUSG00000068184" "ENSMUSG00000068267" "ENSMUSG00000068299"
## [1054] "ENSMUSG00000068758" "ENSMUSG00000068921" "ENSMUSG00000069041"
## [1057] "ENSMUSG00000069072" "ENSMUSG00000069588" "ENSMUSG00000069763"
## [1060] "ENSMUSG00000069874" "ENSMUSG00000069911" "ENSMUSG00000070003"
## [1063] "ENSMUSG00000070336" "ENSMUSG00000070357" "ENSMUSG00000070427"
## [1066] "ENSMUSG00000070436" "ENSMUSG00000070498" "ENSMUSG00000070561"
## [1069] "ENSMUSG00000070695" "ENSMUSG00000070697" "ENSMUSG00000070858"
## [1072] "ENSMUSG00000070923" "ENSMUSG00000070942" "ENSMUSG00000071076"
## [1075] "ENSMUSG00000071083" "ENSMUSG00000071180" "ENSMUSG00000071291"
## [1078] "ENSMUSG00000071342" "ENSMUSG00000071379" "ENSMUSG00000071451"
## [1081] "ENSMUSG00000071604" "ENSMUSG00000071658" "ENSMUSG00000071659"
## [1084] "ENSMUSG00000071984" "ENSMUSG00000072115" "ENSMUSG00000072572"
## [1087] "ENSMUSG00000072582" "ENSMUSG00000072620" "ENSMUSG00000072647"
## [1090] "ENSMUSG00000072808" "ENSMUSG00000072899" "ENSMUSG00000072919"
## [1093] "ENSMUSG00000072960" "ENSMUSG00000072982" "ENSMUSG00000073209"
## [1096] "ENSMUSG00000073411" "ENSMUSG00000073416" "ENSMUSG00000073422"
## [1099] "ENSMUSG00000073423" "ENSMUSG00000073424" "ENSMUSG00000073437"
## [1102] "ENSMUSG00000073476" "ENSMUSG00000073532" "ENSMUSG00000073591"
## [1105] "ENSMUSG00000073617" "ENSMUSG00000073673" "ENSMUSG00000073680"
## [1108] "ENSMUSG00000073859" "ENSMUSG00000073906" "ENSMUSG00000073940"
## [1111] "ENSMUSG00000073982" "ENSMUSG00000074004" "ENSMUSG00000074064"
## [1114] "ENSMUSG00000074252" "ENSMUSG00000074283" "ENSMUSG00000074361"
## [1117] "ENSMUSG00000074384" "ENSMUSG00000074408" "ENSMUSG00000074517"
## [1120] "ENSMUSG00000074582" "ENSMUSG00000074634" "ENSMUSG00000074657"
## [1123] "ENSMUSG00000074682" "ENSMUSG00000074704" "ENSMUSG00000074715"
## [1126] "ENSMUSG00000074732" "ENSMUSG00000074738" "ENSMUSG00000074785"
## [1129] "ENSMUSG00000074829" "ENSMUSG00000074917" "ENSMUSG00000075536"
## [1132] "ENSMUSG00000076439" "ENSMUSG00000078129" "ENSMUSG00000078161"
## [1135] "ENSMUSG00000078188" "ENSMUSG00000078201" "ENSMUSG00000078235"
## [1138] "ENSMUSG00000078433" "ENSMUSG00000078453" "ENSMUSG00000078485"
## [1141] "ENSMUSG00000078486" "ENSMUSG00000078536" "ENSMUSG00000078552"
## [1144] "ENSMUSG00000078570" "ENSMUSG00000078584" "ENSMUSG00000078633"
## [1147] "ENSMUSG00000078651" "ENSMUSG00000078767" "ENSMUSG00000078853"
## [1150] "ENSMUSG00000078958" "ENSMUSG00000078995" "ENSMUSG00000079051"
## [1153] "ENSMUSG00000079077" "ENSMUSG00000079167" "ENSMUSG00000079227"
## [1156] "ENSMUSG00000079259" "ENSMUSG00000079414" "ENSMUSG00000079469"
## [1159] "ENSMUSG00000079470" "ENSMUSG00000079494" "ENSMUSG00000079658"
## [1162] "ENSMUSG00000079662" "ENSMUSG00000079714" "ENSMUSG00000083282"
## [1165] "ENSMUSG00000089629" "ENSMUSG00000089738" "ENSMUSG00000090223"
plotSmear(de.tagwiseGLM, de.tags=denames)

extract relevant values using some native R functions

qv<-qvalue(de.tagwiseGLM$table$PValue)      #calculate qvalues
result<-cbind(de.tagwiseGLM$table$logFC,qv$qvalues,qv$pvalue)
head(result)
##             [,1]         [,2]         [,3]
## [1,] -0.09627786 2.346595e-01 2.389584e-01
## [2,] -0.06025021 4.219170e-01 6.397488e-01
## [3,] -0.21151132 2.188526e-01 2.131215e-01
## [4,]  0.01756544 4.915675e-01 8.519575e-01
## [5,]  0.46898056 4.423185e-07 2.546090e-08
## [6,] -0.22154119 2.252180e-01 2.232851e-01
rownames(result)<-tags
colnames(result)<-c("logFC","qvalues","pvalues")
head(result)
##                          logFC      qvalues      pvalues
## ENSMUSG00000000001 -0.09627786 2.346595e-01 2.389584e-01
## ENSMUSG00000000056 -0.06025021 4.219170e-01 6.397488e-01
## ENSMUSG00000000058 -0.21151132 2.188526e-01 2.131215e-01
## ENSMUSG00000000078  0.01756544 4.915675e-01 8.519575e-01
## ENSMUSG00000000088  0.46898056 4.423185e-07 2.546090e-08
## ENSMUSG00000000093 -0.22154119 2.252180e-01 2.232851e-01
plot(signif$table[,1],-log10(signif$table[,4]),pch=19,cex=.5,col=c("black","red")[(signif$table[,5]<0.01)+1],
     xlab="log-count",ylab="log-pvalue")

plot(signif$table[,1],signif$table[,2],pch=19,cex=.5,col=c("black","red")[(signif$table[,5]<0.01)+1],
  xlab="log-FC",ylab="log-CPM")

Analysis using DESeq

Prepare the data, create DESeq object.

colData<-DataFrame(strain,exprmt)
class(colData)
## [1] "DataFrame"
## attr(,"package")
## [1] "S4Vectors"
head(colData)
## DataFrame with 6 rows and 2 columns
##     strain   exprmt
##   <factor> <factor>
## 1       B6        6
## 2       B6        7
## 3       B6        6
## 4       B6        7
## 5       B6        6
## 6       B6        7
dds <- DESeqDataSetFromMatrix(countData = cnt[rowSums(cpm.dge>1)>=9,],
                              colData = colData,
                              design = formula(~ strain+exprmt))

class(dds)
## [1] "DESeqDataSet"
## attr(,"package")
## [1] "DESeq2"
str(dds)
## Formal class 'DESeqDataSet' [package "DESeq2"] with 8 slots
##   ..@ design            :Class 'formula'  language ~strain + exprmt
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   ..@ dispersionFunction:function ()  
##   ..@ rowRanges         :Formal class 'GRangesList' [package "GenomicRanges"] with 5 slots
##   .. .. ..@ unlistData     :Formal class 'GRanges' [package "GenomicRanges"] with 6 slots
##   .. .. .. .. ..@ seqnames       :Formal class 'Rle' [package "S4Vectors"] with 4 slots
##   .. .. .. .. .. .. ..@ values         : Factor w/ 0 levels: 
##   .. .. .. .. .. .. ..@ lengths        : int(0) 
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ ranges         :Formal class 'IRanges' [package "IRanges"] with 6 slots
##   .. .. .. .. .. .. ..@ start          : int(0) 
##   .. .. .. .. .. .. ..@ width          : int(0) 
##   .. .. .. .. .. .. ..@ NAMES          : NULL
##   .. .. .. .. .. .. ..@ elementType    : chr "integer"
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ strand         :Formal class 'Rle' [package "S4Vectors"] with 4 slots
##   .. .. .. .. .. .. ..@ values         : Factor w/ 3 levels "+","-","*": 
##   .. .. .. .. .. .. ..@ lengths        : int(0) 
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. .. .. ..@ nrows          : int 0
##   .. .. .. .. .. .. ..@ listData       : Named list()
##   .. .. .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ seqinfo        :Formal class 'Seqinfo' [package "GenomeInfoDb"] with 4 slots
##   .. .. .. .. .. .. ..@ seqnames   : chr(0) 
##   .. .. .. .. .. .. ..@ seqlengths : int(0) 
##   .. .. .. .. .. .. ..@ is_circular: logi(0) 
##   .. .. .. .. .. .. ..@ genome     : chr(0) 
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. ..@ nrows          : int 9519
##   .. .. .. .. ..@ listData       : Named list()
##   .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. .. .. ..@ nrows          : int 0
##   .. .. .. .. .. .. ..@ listData       :List of 2
##   .. .. .. .. .. .. .. ..$ type       : chr(0) 
##   .. .. .. .. .. .. .. ..$ description: chr(0) 
##   .. .. .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ partitioning   :Formal class 'PartitioningByEnd' [package "IRanges"] with 5 slots
##   .. .. .. .. ..@ end            : int [1:9519] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. ..@ NAMES          : chr [1:9519] "ENSMUSG00000000001" "ENSMUSG00000000056" "ENSMUSG00000000058" "ENSMUSG00000000078" ...
##   .. .. .. .. ..@ elementType    : chr "integer"
##   .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ elementType    : chr "GRanges"
##   .. .. ..@ metadata       : list()
##   ..@ colData           :Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. ..@ rownames       : chr [1:21] "SRX033480" "SRX033488" "SRX033481" "SRX033489" ...
##   .. .. ..@ nrows          : int 21
##   .. .. ..@ listData       :List of 2
##   .. .. .. ..$ strain: Factor w/ 2 levels "B6","D2": 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. ..$ exprmt: Factor w/ 3 levels "4","6","7": 2 3 2 3 2 3 2 1 1 1 ...
##   .. .. ..@ elementType    : chr "ANY"
##   .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. ..@ nrows          : int 2
##   .. .. .. .. ..@ listData       :List of 2
##   .. .. .. .. .. ..$ type       : chr [1:2] "input" "input"
##   .. .. .. .. .. ..$ description: chr [1:2] "" ""
##   .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ metadata       : list()
##   ..@ assays            :Reference class 'ShallowSimpleListAssays' [package "SummarizedExperiment"] with 1 field
##   .. ..$ data: NULL
##   .. ..and 14 methods.
##   ..@ NAMES             : NULL
##   ..@ elementMetadata   :Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. ..@ rownames       : NULL
##   .. .. ..@ nrows          : int 9519
##   .. .. ..@ listData       : Named list()
##   .. .. ..@ elementType    : chr "ANY"
##   .. .. ..@ elementMetadata: NULL
##   .. .. ..@ metadata       : list()
##   ..@ metadata          :List of 1
##   .. ..$ version:Classes 'package_version', 'numeric_version'  hidden list of 1
##   .. .. ..$ : int [1:3] 1 16 1
slotNames(dds)
## [1] "design"             "dispersionFunction" "rowRanges"         
## [4] "colData"            "assays"             "NAMES"             
## [7] "elementMetadata"    "metadata"
head(dds@assays$data@listData$counts)
##                    SRX033480 SRX033488 SRX033481 SRX033489 SRX033482
## ENSMUSG00000000001       369       744       287       769       348
## ENSMUSG00000000056        21        46        20        36        12
## ENSMUSG00000000058        15        43        12        34        14
## ENSMUSG00000000078       517       874       340       813       378
## ENSMUSG00000000088       273       781       275       745       301
## ENSMUSG00000000093        11        24        13        34        27
##                    SRX033490 SRX033483 SRX033476 SRX033478 SRX033479
## ENSMUSG00000000001       803       433       469       585       321
## ENSMUSG00000000056        55        27        44        32        47
## ENSMUSG00000000058        32        19        18        44        22
## ENSMUSG00000000078       860       528       401       584       401
## ENSMUSG00000000088       653       365       414       454       331
## ENSMUSG00000000093        40        17        49        47        36
##                    SRX033472 SRX033473 SRX033474 SRX033475 SRX033491
## ENSMUSG00000000001       301       461       309       374       781
## ENSMUSG00000000056        40        40        30        27        46
## ENSMUSG00000000058        17        24        29        15        34
## ENSMUSG00000000078       331       431       341       480       930
## ENSMUSG00000000088       473       548       413       395      1153
## ENSMUSG00000000093        28        31        23        20        36
##                    SRX033484 SRX033492 SRX033485 SRX033493 SRX033486
## ENSMUSG00000000001       555       820       294       758       419
## ENSMUSG00000000056        28        40        21        52        27
## ENSMUSG00000000058        23        38        17        29        12
## ENSMUSG00000000078       585      1137       490      1079       565
## ENSMUSG00000000088       878       859       431       909       592
## ENSMUSG00000000093        15        38        36        31        10
##                    SRX033494
## ENSMUSG00000000001       857
## ENSMUSG00000000056        45
## ENSMUSG00000000058        28
## ENSMUSG00000000078       726
## ENSMUSG00000000088      1009
## ENSMUSG00000000093        35
dds<-DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
str(dds)
## Formal class 'DESeqDataSet' [package "DESeq2"] with 8 slots
##   ..@ design            :Class 'formula'  language ~strain + exprmt
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   ..@ dispersionFunction:function (q)  
##   .. ..- attr(*, "coefficients")= Named num [1:2] 0.0143 0.8319
##   .. .. ..- attr(*, "names")= chr [1:2] "asymptDisp" "extraPois"
##   .. ..- attr(*, "fitType")= chr "parametric"
##   .. ..- attr(*, "varLogDispEsts")= num 0.672
##   .. ..- attr(*, "dispPriorVar")= num 0.547
##   ..@ rowRanges         :Formal class 'GRangesList' [package "GenomicRanges"] with 5 slots
##   .. .. ..@ unlistData     :Formal class 'GRanges' [package "GenomicRanges"] with 6 slots
##   .. .. .. .. ..@ seqnames       :Formal class 'Rle' [package "S4Vectors"] with 4 slots
##   .. .. .. .. .. .. ..@ values         : Factor w/ 0 levels: 
##   .. .. .. .. .. .. ..@ lengths        : int(0) 
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ ranges         :Formal class 'IRanges' [package "IRanges"] with 6 slots
##   .. .. .. .. .. .. ..@ start          : int(0) 
##   .. .. .. .. .. .. ..@ width          : int(0) 
##   .. .. .. .. .. .. ..@ NAMES          : NULL
##   .. .. .. .. .. .. ..@ elementType    : chr "integer"
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ strand         :Formal class 'Rle' [package "S4Vectors"] with 4 slots
##   .. .. .. .. .. .. ..@ values         : Factor w/ 3 levels "+","-","*": 
##   .. .. .. .. .. .. ..@ lengths        : int(0) 
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. .. .. ..@ nrows          : int 0
##   .. .. .. .. .. .. ..@ listData       : Named list()
##   .. .. .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ seqinfo        :Formal class 'Seqinfo' [package "GenomeInfoDb"] with 4 slots
##   .. .. .. .. .. .. ..@ seqnames   : chr(0) 
##   .. .. .. .. .. .. ..@ seqlengths : int(0) 
##   .. .. .. .. .. .. ..@ is_circular: logi(0) 
##   .. .. .. .. .. .. ..@ genome     : chr(0) 
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. ..@ nrows          : int 9519
##   .. .. .. .. ..@ listData       :List of 29
##   .. .. .. .. .. ..$ baseMean                     : num [1:9519] 489.2 33.3 23.3 571.8 538.2 ...
##   .. .. .. .. .. ..$ baseVar                      : num [1:9519] 5367.7 51.6 39.2 13831.8 16166.7 ...
##   .. .. .. .. .. ..$ allZero                      : logi [1:9519] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. ..$ dispGeneEst                  : num [1:9519] 1.33e-02 1.00e-08 2.50e-02 2.33e-02 1.50e-02 ...
##   .. .. .. .. .. ..$ dispFit                      : num [1:9519] 0.016 0.0393 0.0501 0.0158 0.0159 ...
##   .. .. .. .. .. ..$ dispersion                   : num [1:9519] 0.0139 0.0188 0.0358 0.0207 0.0151 ...
##   .. .. .. .. .. ..$ dispIter                     : int [1:9519] 8 9 8 10 6 5 10 5 11 10 ...
##   .. .. .. .. .. ..$ dispOutlier                  : logi [1:9519] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. ..$ dispMAP                      : num [1:9519] 0.0139 0.0188 0.0358 0.0207 0.0151 ...
##   .. .. .. .. .. ..$ Intercept                    : num [1:9519] 8.79 5.34 4.8 8.82 8.58 ...
##   .. .. .. .. .. ..$ strain_D2_vs_B6              : num [1:9519] -0.1003 -0.0646 -0.2157 0.0136 0.4649 ...
##   .. .. .. .. .. ..$ exprmt_6_vs_4                : num [1:9519] 0.27 -0.409 -0.274 0.528 0.356 ...
##   .. .. .. .. .. ..$ exprmt_7_vs_4                : num [1:9519] 0.308 -0.38 -0.174 0.42 0.325 ...
##   .. .. .. .. .. ..$ SE_Intercept                 : num [1:9519] 0.0834 0.1389 0.1787 0.099 0.0866 ...
##   .. .. .. .. .. ..$ SE_strain_D2_vs_B6           : num [1:9519] 0.0805 0.1394 0.1772 0.0955 0.0833 ...
##   .. .. .. .. .. ..$ SE_exprmt_6_vs_4             : num [1:9519] 0.0997 0.181 0.2297 0.1176 0.1028 ...
##   .. .. .. .. .. ..$ SE_exprmt_7_vs_4             : num [1:9519] 0.097 0.16 0.206 0.116 0.1 ...
##   .. .. .. .. .. ..$ WaldStatistic_Intercept      : num [1:9519] 105.4 38.4 26.8 89.1 99 ...
##   .. .. .. .. .. ..$ WaldStatistic_strain_D2_vs_B6: num [1:9519] -1.246 -0.463 -1.217 0.142 5.585 ...
##   .. .. .. .. .. ..$ WaldStatistic_exprmt_6_vs_4  : num [1:9519] 2.71 -2.26 -1.19 4.49 3.46 ...
##   .. .. .. .. .. ..$ WaldStatistic_exprmt_7_vs_4  : num [1:9519] 3.169 -2.367 -0.846 3.633 3.242 ...
##   .. .. .. .. .. ..$ WaldPvalue_Intercept         : num [1:9519] 0.00 0.00 1.19e-158 0.00 0.00 ...
##   .. .. .. .. .. ..$ WaldPvalue_strain_D2_vs_B6   : num [1:9519] 2.13e-01 6.43e-01 2.24e-01 8.87e-01 2.34e-08 ...
##   .. .. .. .. .. ..$ WaldPvalue_exprmt_6_vs_4     : num [1:9519] 6.77e-03 2.39e-02 2.32e-01 7.10e-06 5.30e-04 ...
##   .. .. .. .. .. ..$ WaldPvalue_exprmt_7_vs_4     : num [1:9519] 0.00153 0.01793 0.39782 0.00028 0.00119 ...
##   .. .. .. .. .. ..$ betaConv                     : logi [1:9519] TRUE TRUE TRUE TRUE TRUE TRUE ...
##   .. .. .. .. .. ..$ betaIter                     : num [1:9519] 3 3 3 3 3 3 6 3 4 3 ...
##   .. .. .. .. .. ..$ deviance                     : num [1:9519] 229 133 131 244 233 ...
##   .. .. .. .. .. ..$ maxCooks                     : Named num [1:9519] 0.1037 0.0445 0.0771 0.1523 0.0579 ...
##   .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9519] "ENSMUSG00000000001" "ENSMUSG00000000056" "ENSMUSG00000000058" "ENSMUSG00000000078" ...
##   .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. .. .. ..@ nrows          : int 29
##   .. .. .. .. .. .. ..@ listData       :List of 2
##   .. .. .. .. .. .. .. ..$ type       : chr [1:29] "intermediate" "intermediate" "intermediate" "intermediate" ...
##   .. .. .. .. .. .. .. ..$ description: chr [1:29] "mean of normalized counts for all samples" "variance of normalized counts for all samples" "all counts for a gene are zero" "gene-wise estimates of dispersion" ...
##   .. .. .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. .. .. ..@ metadata       : list()
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ partitioning   :Formal class 'PartitioningByEnd' [package "IRanges"] with 5 slots
##   .. .. .. .. ..@ end            : int [1:9519] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. ..@ NAMES          : chr [1:9519] "ENSMUSG00000000001" "ENSMUSG00000000056" "ENSMUSG00000000058" "ENSMUSG00000000078" ...
##   .. .. .. .. ..@ elementType    : chr "integer"
##   .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ elementType    : chr "GRanges"
##   .. .. ..@ metadata       : list()
##   ..@ colData           :Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. ..@ rownames       : chr [1:21] "SRX033480" "SRX033488" "SRX033481" "SRX033489" ...
##   .. .. ..@ nrows          : int 21
##   .. .. ..@ listData       :List of 3
##   .. .. .. ..$ strain    : Factor w/ 2 levels "B6","D2": 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. ..$ exprmt    : Factor w/ 3 levels "4","6","7": 2 3 2 3 2 3 2 1 1 1 ...
##   .. .. .. ..$ sizeFactor: Named num [1:21] 0.644 1.345 0.578 1.429 0.635 ...
##   .. .. .. .. ..- attr(*, "names")= chr [1:21] "SRX033480" "SRX033488" "SRX033481" "SRX033489" ...
##   .. .. ..@ elementType    : chr "ANY"
##   .. .. ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. .. .. ..@ rownames       : NULL
##   .. .. .. .. ..@ nrows          : int 3
##   .. .. .. .. ..@ listData       :List of 2
##   .. .. .. .. .. ..$ type       : chr [1:3] "input" "input" "intermediate"
##   .. .. .. .. .. ..$ description: chr [1:3] "" "" "a scaling factor for columns"
##   .. .. .. .. ..@ elementType    : chr "ANY"
##   .. .. .. .. ..@ elementMetadata: NULL
##   .. .. .. .. ..@ metadata       : list()
##   .. .. ..@ metadata       : list()
##   ..@ assays            :Reference class 'ShallowSimpleListAssays' [package "SummarizedExperiment"] with 1 field
##   .. ..$ data: NULL
##   .. ..and 14 methods.
##   ..@ NAMES             : NULL
##   ..@ elementMetadata   :Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. ..@ rownames       : NULL
##   .. .. ..@ nrows          : int 9519
##   .. .. ..@ listData       : Named list()
##   .. .. ..@ elementType    : chr "ANY"
##   .. .. ..@ elementMetadata: NULL
##   .. .. ..@ metadata       : list()
##   ..@ metadata          :List of 1
##   .. ..$ version:Classes 'package_version', 'numeric_version'  hidden list of 1
##   .. .. ..$ : int [1:3] 1 16 1

Estimate and represent gene-specific dispersion

plotDispEsts(dds,main="parametric")

ddsLocal <- estimateDispersions(dds, fitType="local")
## found already estimated dispersions, replacing these
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
plotDispEsts(ddsLocal,main="local")

ddsMean <- estimateDispersions(dds, fitType="mean")
## found already estimated dispersions, replacing these
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
plotDispEsts(ddsMean,main="mean")

ddsLocal<-nbinomWaldTest(ddsLocal)
dds_pv<-results(ddsLocal,c("strain","B6","D2"))
str(dds_pv)
## Formal class 'DESeqResults' [package "DESeq2"] with 6 slots
##   ..@ rownames       : chr [1:9519] "ENSMUSG00000000001" "ENSMUSG00000000056" "ENSMUSG00000000058" "ENSMUSG00000000078" ...
##   ..@ nrows          : int 9519
##   ..@ listData       :List of 6
##   .. ..$ baseMean      : num [1:9519] 489.2 33.3 23.3 571.8 538.2 ...
##   .. ..$ log2FoldChange: num [1:9519] 0.1002 0.0646 0.2163 -0.0136 -0.4647 ...
##   .. ..$ lfcSE         : num [1:9519] 0.0773 0.1346 0.1701 0.092 0.0802 ...
##   .. ..$ stat          : num [1:9519] 1.296 0.48 1.272 -0.147 -5.795 ...
##   .. ..$ pvalue        : num [1:9519] 1.95e-01 6.31e-01 2.03e-01 8.83e-01 6.84e-09 ...
##   .. ..$ padj          : num [1:9519] 3.82e-01 7.83e-01 3.91e-01 9.40e-01 2.21e-07 ...
##   ..@ elementType    : chr "ANY"
##   ..@ elementMetadata:Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
##   .. .. ..@ rownames       : NULL
##   .. .. ..@ nrows          : int 6
##   .. .. ..@ listData       :List of 2
##   .. .. .. ..$ type       : chr [1:6] "intermediate" "results" "results" "results" ...
##   .. .. .. ..$ description: chr [1:6] "mean of normalized counts for all samples" "log2 fold change (MLE): strain B6 vs D2" "standard error: strain B6 vs D2" "Wald statistic: strain B6 vs D2" ...
##   .. .. ..@ elementType    : chr "ANY"
##   .. .. ..@ elementMetadata: NULL
##   .. .. ..@ metadata       : list()
##   ..@ metadata       :List of 5
##   .. ..$ filterThreshold: Named num 3.58
##   .. .. ..- attr(*, "names")= chr "0%"
##   .. ..$ filterTheta    : num 0
##   .. ..$ filterNumRej   :'data.frame':   50 obs. of  2 variables:
##   .. .. ..$ theta : num [1:50] 0 0.0194 0.0388 0.0582 0.0776 ...
##   .. .. ..$ numRej: num [1:50] 2617 2602 2571 2539 2508 ...
##   .. ..$ lo.fit         :List of 2
##   .. .. ..$ x: num [1:50] 0 0.0194 0.0388 0.0582 0.0776 ...
##   .. .. ..$ y: num [1:50] 2623 2596 2568 2540 2513 ...
##   .. ..$ alpha          : num 0.1
head(dds_pv)
## log2 fold change (MLE): strain B6 vs D2 
## Wald test p-value: strain B6 vs D2 
## DataFrame with 6 rows and 6 columns
##                     baseMean log2FoldChange      lfcSE       stat
##                    <numeric>      <numeric>  <numeric>  <numeric>
## ENSMUSG00000000001 489.20672     0.10020253 0.07730034  1.2962755
## ENSMUSG00000000056  33.27882     0.06461203 0.13460456  0.4800137
## ENSMUSG00000000058  23.28282     0.21632132 0.17007264  1.2719349
## ENSMUSG00000000078 571.78924    -0.01355334 0.09203595 -0.1472614
## ENSMUSG00000000088 538.23739    -0.46471858 0.08019547 -5.7948231
## ENSMUSG00000000093  27.59041     0.22810655 0.17659392  1.2917010
##                          pvalue         padj
##                       <numeric>    <numeric>
## ENSMUSG00000000001 1.948806e-01 3.817672e-01
## ENSMUSG00000000056 6.312177e-01 7.825153e-01
## ENSMUSG00000000058 2.033963e-01 3.914915e-01
## ENSMUSG00000000078 8.829257e-01 9.400097e-01
## ENSMUSG00000000088 6.839325e-09 2.206668e-07
## ENSMUSG00000000093 1.964607e-01 3.834376e-01
head(data.frame(dds_pv@listData))
##    baseMean log2FoldChange      lfcSE       stat       pvalue         padj
## 1 489.20672     0.10020253 0.07730034  1.2962755 1.948806e-01 3.817672e-01
## 2  33.27882     0.06461203 0.13460456  0.4800137 6.312177e-01 7.825153e-01
## 3  23.28282     0.21632132 0.17007264  1.2719349 2.033963e-01 3.914915e-01
## 4 571.78924    -0.01355334 0.09203595 -0.1472614 8.829257e-01 9.400097e-01
## 5 538.23739    -0.46471858 0.08019547 -5.7948231 6.839325e-09 2.206668e-07
## 6  27.59041     0.22810655 0.17659392  1.2917010 1.964607e-01 3.834376e-01

Analysis with Limma

Limma uses the data object created for edgeR. But it requires computation of normalized log-cpm and weights.

design
##    (Intercept) exprmt6 exprmt7 strainD2
## 1            1       1       0        0
## 2            1       0       1        0
## 3            1       1       0        0
## 4            1       0       1        0
## 5            1       1       0        0
## 6            1       0       1        0
## 7            1       1       0        0
## 8            1       0       0        0
## 9            1       0       0        0
## 10           1       0       0        0
## 11           1       0       0        1
## 12           1       0       0        1
## 13           1       0       0        1
## 14           1       0       0        1
## 15           1       0       1        1
## 16           1       1       0        1
## 17           1       0       1        1
## 18           1       1       0        1
## 19           1       0       1        1
## 20           1       1       0        1
## 21           1       0       1        1
## attr(,"assign")
## [1] 0 1 1 2
## attr(,"contrasts")
## attr(,"contrasts")$exprmt
## [1] "contr.treatment"
## 
## attr(,"contrasts")$strain
## [1] "contr.treatment"
v<-voom(dge,design=design,plot=T)

class(v)
## [1] "EList"
## attr(,"package")
## [1] "limma"
names(v)
## [1] "targets" "E"       "weights" "design"
head(v$targets)
##           group lib.size norm.factors
## SRX033480    B6  2978325    0.9796169
## SRX033488    B6  6192583    0.9823782
## SRX033481    B6  2702283    0.9945498
## SRX033489    B6  6604472    1.0089641
## SRX033482    B6  2935177    0.9731442
## SRX033490    B6  7063440    0.9952180
head(v$E)
##                    SRX033480 SRX033488 SRX033481 SRX033489 SRX033482
## ENSMUSG00000000001  6.954929  6.909586  6.733239  6.864334  6.891567
## ENSMUSG00000000056  2.851763  2.908617  2.923373  2.466381  2.090408
## ENSMUSG00000000058  2.379694  2.812402  2.209677  2.385081  2.304533
## ENSMUSG00000000078  7.440913  7.141773  6.977332  6.944555  7.010701
## ENSMUSG00000000088  6.520895  6.979560  6.671729  6.818621  6.682566
## ENSMUSG00000000093  1.949060  1.984168  2.320708  2.385081  3.227912
##                    SRX033490 SRX033483 SRX033476 SRX033478 SRX033479
## ENSMUSG00000000001  6.829783  6.893875  6.499324  6.881874  6.270703
## ENSMUSG00000000056  2.974045  2.915347  3.100077  2.710717  3.511884
## ENSMUSG00000000058  2.201997  2.419389  1.833796  3.164082  2.433882
## ENSMUSG00000000078  6.928660  7.179746  6.273599  6.879408  6.591285
## ENSMUSG00000000088  6.531672  6.647714  6.319571  6.516485  6.314893
## ENSMUSG00000000093  2.519479  2.263270  3.253700  3.258204  3.131853
##                    SRX033472 SRX033473 SRX033474 SRX033475 SRX033491
## ENSMUSG00000000001  6.218531  6.609389  6.394088  6.710040  6.712050
## ENSMUSG00000000056  3.322367  3.099052  3.051030  2.942577  2.641107
## ENSMUSG00000000058  2.111800  2.373912  3.002936  2.115414  2.210472
## ENSMUSG00000000078  6.355382  6.512419  6.536035  7.069610  6.963810
## ENSMUSG00000000088  6.869737  6.858550  6.812036  6.788752  7.273750
## ENSMUSG00000000093  2.815407  2.736482  2.674882  2.518770  2.291772
##                    SRX033484 SRX033492 SRX033485 SRX033493 SRX033486
## ENSMUSG00000000001  6.921020  6.825649  6.398033  6.675466  6.788622
## ENSMUSG00000000056  2.636267  2.485139  2.622174  2.822706  2.857454
## ENSMUSG00000000058  2.357966  2.412076  2.325193  1.991104  1.719951
## ENSMUSG00000000078  6.996902  7.296940  7.134019  7.184608  7.219478
## ENSMUSG00000000088  7.582275  6.892643  6.949126  6.937390  7.286766
## ENSMUSG00000000093  1.757573  2.412076  3.385734  2.085741  1.468412
##                    SRX033494
## ENSMUSG00000000001  6.988519
## ENSMUSG00000000056  2.752321
## ENSMUSG00000000058  2.077416
## ENSMUSG00000000078  6.749345
## ENSMUSG00000000088  7.223952
## ENSMUSG00000000093  2.394273
head(v$weights)
##           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
## [1,] 29.520121 37.592371 28.418093 38.191085 29.352906 38.803350 31.797637
## [2,]  4.753512  8.712961  4.359972  9.145292  4.692210  9.602105  5.638693
## [3,]  3.738808  7.280757  3.432784  7.658706  3.690856  8.069170  4.479787
## [4,] 31.787614 38.453483 30.705487 39.031534 31.623213 39.625190 33.995007
## [5,] 28.470426 36.245594 27.354121 36.877720 28.300114 37.515754 30.767908
## [6,]  4.032555  7.423172  3.698069  7.810445  3.980048  8.224901  4.829683
##           [,8]      [,9]     [,10]     [,11]     [,12]     [,13]     [,14]
## [1,] 33.606744 33.132722 31.185637 30.082612 31.824820 28.998998 28.682172
## [2,]  9.312308  9.015158  7.883283  7.570647  8.534937  7.021820  6.866388
## [3,]  6.818210  6.580629  5.701176  4.992767  5.684194  4.593480  4.480163
## [4,] 33.791194 33.313923 31.374523 31.179458 32.900208 30.100064 29.780342
## [5,] 32.129032 31.636951 29.658117 32.955911 34.596531 31.897338 31.578157
## [6,]  9.004416  8.707285  7.603952  6.463668  7.311152  5.979566  5.842153
##          [,15]     [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
## [1,] 38.659319 33.544453 38.385294 30.539659 38.617985 31.467327 37.755020
## [2,]  9.816726  6.671090  9.604692  5.337045  9.785119  5.717583  9.137173
## [3,]  7.602853  4.887909  7.425180  3.835544  7.575817  4.131169  7.033229
## [4,] 40.176512 36.424644 39.918593 33.642238 40.137621 34.519129 39.318666
## [5,] 40.850905 36.602147 40.598256 33.838445 40.812814 34.708788 40.006712
## [6,]  7.474163  5.049776  7.300230  3.969444  7.447698  4.276132  6.913856
head(v$design)
##   (Intercept) exprmt6 exprmt7 strainD2
## 1           1       1       0        0
## 2           1       0       1        0
## 3           1       1       0        0
## 4           1       0       1        0
## 5           1       1       0        0
## 6           1       0       1        0
plot(rowMeans(v$weights)~rowMeans(v$E),ylab="average weight", xlab="average normalized log-cpm")

Fit the model and compute empirical bayes tests

gausfit<-lmFit(v)

gausfit<-eBayes(gausfit)
names(gausfit)
##  [1] "coefficients"     "stdev.unscaled"   "sigma"           
##  [4] "df.residual"      "cov.coefficients" "pivot"           
##  [7] "rank"             "Amean"            "method"          
## [10] "design"           "df.prior"         "s2.prior"        
## [13] "var.prior"        "proportion"       "s2.post"         
## [16] "t"                "df.total"         "p.value"         
## [19] "lods"             "F"                "F.p.value"
DElist<-topTable(gausfit,coef=4,sort.by="P",number=nrow(gausfit))
head(DElist)
##                        logFC    AveExpr         t      P.Value
## ENSMUSG00000023236  1.417362  6.8878509  22.65338 8.234075e-19
## ENSMUSG00000030532  1.524011  5.3545041  21.40751 3.396734e-18
## ENSMUSG00000028393  1.741480  5.8179317  20.38376 1.151548e-17
## ENSMUSG00000015484 -2.009751  3.9634711 -19.71669 2.627959e-17
## ENSMUSG00000054354 -5.787430 -0.2156264 -19.10139 5.750502e-17
## ENSMUSG00000027855  5.464415 -0.3131727  18.80571 8.443931e-17
##                       adj.P.Val        B
## ENSMUSG00000023236 7.838016e-15 33.00454
## ENSMUSG00000030532 1.616676e-14 31.65096
## ENSMUSG00000028393 3.653861e-14 30.39929
## ENSMUSG00000015484 6.253886e-14 29.62608
## ENSMUSG00000054354 1.094781e-13 27.00095
## ENSMUSG00000027855 1.339630e-13 26.43706
names(DElist)
## [1] "logFC"     "AveExpr"   "t"         "P.Value"   "adj.P.Val" "B"
Delist05<-DElist[DElist$adj.P.Val<0.01,]
dim(Delist05)
## [1] 887   6

Class activity

Compare log-pvalues obtained with each analysis.

edgeRres<-(de.tagwiseGLM$table)
limmares<-DElist
head(edgeRres)
##                          logFC   logCPM          LR       PValue
## ENSMUSG00000000001 -0.09627786 6.734600  1.38672829 2.389584e-01
## ENSMUSG00000000056 -0.06025021 2.923142  0.21907087 6.397488e-01
## ENSMUSG00000000058 -0.21151132 2.445708  1.55009465 2.131215e-01
## ENSMUSG00000000078  0.01756544 6.956765  0.03482755 8.519575e-01
## ENSMUSG00000000088  0.46898056 6.873608 31.02589322 2.546090e-08
## ENSMUSG00000000093 -0.22154119 2.654991  1.48313210 2.232851e-01
head(limmares)
##                        logFC    AveExpr         t      P.Value
## ENSMUSG00000023236  1.417362  6.8878509  22.65338 8.234075e-19
## ENSMUSG00000030532  1.524011  5.3545041  21.40751 3.396734e-18
## ENSMUSG00000028393  1.741480  5.8179317  20.38376 1.151548e-17
## ENSMUSG00000015484 -2.009751  3.9634711 -19.71669 2.627959e-17
## ENSMUSG00000054354 -5.787430 -0.2156264 -19.10139 5.750502e-17
## ENSMUSG00000027855  5.464415 -0.3131727  18.80571 8.443931e-17
##                       adj.P.Val        B
## ENSMUSG00000023236 7.838016e-15 33.00454
## ENSMUSG00000030532 1.616676e-14 31.65096
## ENSMUSG00000028393 3.653861e-14 30.39929
## ENSMUSG00000015484 6.253886e-14 29.62608
## ENSMUSG00000054354 1.094781e-13 27.00095
## ENSMUSG00000027855 1.339630e-13 26.43706
limmares<-limmares[rownames(edgeRres),]
head(limmares)
##                          logFC  AveExpr          t      P.Value
## ENSMUSG00000000001 -0.09784892 6.712887 -1.2730741 2.141035e-01
## ENSMUSG00000000056 -0.03782639 2.842134 -0.3021938 7.648755e-01
## ENSMUSG00000000058 -0.19364475 2.325846 -1.2016889 2.401679e-01
## ENSMUSG00000000078  0.01447678 6.923168  0.1645905 8.705217e-01
## ENSMUSG00000000088  0.45879578 6.832318  5.8202896 3.718937e-06
## ENSMUSG00000000093 -0.26961377 2.515931 -1.6093341 1.194539e-01
##                       adj.P.Val         B
## ENSMUSG00000000001 0.4101532568 -7.206067
## ENSMUSG00000000056 0.8708320948 -7.236201
## ENSMUSG00000000058 0.4383800964 -6.418743
## ENSMUSG00000000078 0.9331093015 -8.028798
## ENSMUSG00000000088 0.0001224933  3.258217
## ENSMUSG00000000093 0.2859862513 -5.923539
DESeqres<-(data.frame(dds_pv@listData))
rownames(DESeqres)<-rownames(dds_pv)
head(DESeqres)
##                     baseMean log2FoldChange      lfcSE       stat
## ENSMUSG00000000001 489.20672     0.10020253 0.07730034  1.2962755
## ENSMUSG00000000056  33.27882     0.06461203 0.13460456  0.4800137
## ENSMUSG00000000058  23.28282     0.21632132 0.17007264  1.2719349
## ENSMUSG00000000078 571.78924    -0.01355334 0.09203595 -0.1472614
## ENSMUSG00000000088 538.23739    -0.46471858 0.08019547 -5.7948231
## ENSMUSG00000000093  27.59041     0.22810655 0.17659392  1.2917010
##                          pvalue         padj
## ENSMUSG00000000001 1.948806e-01 3.817672e-01
## ENSMUSG00000000056 6.312177e-01 7.825153e-01
## ENSMUSG00000000058 2.033963e-01 3.914915e-01
## ENSMUSG00000000078 8.829257e-01 9.400097e-01
## ENSMUSG00000000088 6.839325e-09 2.206668e-07
## ENSMUSG00000000093 1.964607e-01 3.834376e-01
sum(rownames(limmares)!=rownames(edgeRres))
## [1] 0
sum(rownames(limmares)!=rownames(DESeqres))
## [1] 0
plot(-log10(limmares$"P.Value"),-log10(edgeRres$PValue),
     xlab="Limma",ylab="EdgeR")
abline(0,1)
abline(v=4)
abline(h=4)

plot(-log10(DESeqres$pvalue),-log10(edgeRres$PValue),
     xlab="DESeq2",ylab="EdgeR")
abline(0,1)

p05limma<-1*(limmares$"P.Value"<0.0001)
p05edge<-1*(edgeRres$PValue<0.0001)
p05des<-1*(DESeqres$pvalue<0.0001)
p05des[is.na(p05des)]<-0

obcount<-vennCounts(cbind(p05limma,p05edge,p05des))
vennDiagram(obcount)

table(p05des,p05edge)
##       p05edge
## p05des    0    1
##      0 8681   20
##      1  102  716
q05limma<-1*(qvalue(limmares$"P.Value")$qvalue<0.01)
q05edge<-1*(qvalue(edgeRres$PValue)$qvalue<0.01)
pres<-DESeqres$pvalue
pres[is.na(pres)]<-1
q05des<-1*(qvalue(pres)$qvalue<0.01)

obcount<-vennCounts(cbind(q05limma,q05edge,q05des))
vennDiagram(obcount)

table(p05des,p05edge)
##       p05edge
## p05des    0    1
##      0 8681   20
##      1  102  716