install.packages('Ryacas')
Solution:
For a single turnbuckles, Let X be a random variable with value 1 if the turnbuckles is defective and 0 if turnbuckles is nondefective. The probability function of X:
\(h(N, k, n, x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}} (0 \leq x \leq n)\)
As $= $
So \(h_k > h_{k-1}\) if \(k<x(N+1)/n\) So \(h_k < h_{k-1}\) if \(k>x(N+1)/n\)
Thus, \(h_k\) takes its maximum value when its maximum value when k is the largest interger\(\frac{x}{n}(N+1)\). In 1000 turnbuckles, a sample of 100 turnbuckles has 2 defectives. The maximum likelihood estimate of the total number of defective, number D, in the sample is 20 or 2%.
In a size n sample, the probability of finding D defectives,\({\Pi}\), is:
\(p = \frac{n!}{D!(n-D)!}\Pi^D(1-\Pi)^{n-D}\)
\(\frac{\delta p}{\delta \hat{{\Pi}}}=B(\frac{\hat{n}!}{D!(n-D)!}\hat{\Pi}^{D-1}(1-\hat{\Pi})^{n-D})-(n-D)(\frac{\hat{n}!}{D!(n-D)!}\hat{\Pi}^D(1-\hat{\Pi})^{n-D-1})=0\)
\(D\hat{\Pi}^{D-1}(1-\hat{\Pi})^{n-D}-(n-D)\hat{\Pi}^D(1-\hat{\Pi})^{n-D-1}=0\)
\(D\hat{\Pi}^{-1}=(n-D)\hat{\Pi}^D(1-\hat{\Pi})^{-1}\)
\(D\hat{\Pi}^{-1}=(n-D)(1-\hat{\Pi})^{-1}\)
\(D(1-\hat{\Pi})^{-1}=(n-D)\hat{\Pi}^{-1}\)
\(\hat{\Pi}=D/n\)
library(Ryacas)
p <- Sym("p")
s <- expression(factorial(n)/(factorial(D)*factorial(n-D))*p^D*(1-p)^(n-D))
deriv(s,p)
## expression({
## .expr3 <- n - D
## .expr6 <- factorial(n)/(factorial(D) * factorial(.expr3))
## .expr8 <- .expr6 * p^D
## .expr9 <- 1 - p
## .expr10 <- .expr9^.expr3
## .value <- .expr8 * .expr10
## .grad <- array(0, c(length(.value), 1L), list(NULL, c("p")))
## .grad[, "p"] <- .expr6 * (p^(D - 1) * D) * .expr10 - .expr8 *
## (.expr9^(.expr3 - 1) * .expr3)
## attr(.value, "gradient") <- .grad
## .value
## })
So we know
\(\frac{n!}{D!(n-D)!}D*p^{D-1}(1-p)^{n-D}-\frac{n!}{D!(n-D)!}(n-D)p^D((1-p)^{n-D}-1)=0\)
\(D*p^{D-1}(1-p)^{n-D}-(n-D)p^D((1-p)^{n-D}-1)=0\)
\(p=D/n\)