Y | X | Distribution |
---|---|---|
Continuous | Scalar | T |
Cont | Binary(2) | T |
Cont | Category >2 | F |
Cat. | Cat. | \(\chi^2\) |
\(H_0:\mu_1=\mu_2=\mu_3\)
\(H_1:\neg(\mu_1=\mu_2=\mu_3)\) F-Test \[\begin{aligned} f_{stat}=\frac{\textrm{average variance between groups}}{\textrm{average variance within groups}} \\ \text{between groups}=\frac{n_{1}(\bar{y}_{1} - \bar{y})^{2}+ ... + n_{G}(\bar{y}_{G} - \bar{y})^{2} }{df=G-1} \\ \text{within groups}=\frac{(n_{1}-1)s_{1}^{2}+ ... + (n_{G}-1)s_{G}^{2} }{df=N-G}\\ \text{ where }N=\text{sum(n) in all},G=\text{# of Groups} \\ \text{compare }f_{stat} \text{ to } \text{qf}(cl,df_1,df_2) \\
\text{or compare }p_{value}=\text{1-pf}(f_{stat},df_1,df_2) \text{ to }\alpha\end{aligned}\]
(91 * (3.23 - 3.89)^2 + 111 * (3.9 - 3.89)^2 + 74 * (4.7 - 3.89)^2)/2
## [1] 44.10105
# Two samples - for use in determining to pool or not to pool in a t-test.
# var.test() or for multiple variables
datafilename = "http://personality-project.org/r/datasets/R.appendix1.data"
data.ex1 <- read.table(datafilename, header = T)
aov.ex1 <- aov(Alertness ~ Dosage, data = data.ex1)
summary(aov.ex1)
## Df Sum Sq Mean Sq F value Pr(>F)
## Dosage 2 426.2 213.12 8.789 0.00298 **
## Residuals 15 363.8 24.25
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(sexparty <- data.frame(dem = c(573, 386), indep = c(516, 475), rep = c(422, 399),
row.names = c("female", "male")))
## dem indep rep
## female 573 516 422
## male 386 475 399
chisq.test(sexparty)
##
## Pearson's Chi-squared test
##
## data: sexparty
## X-squared = 16.202, df = 2, p-value = 0.0003033