Packages

Concepts

  • sample size
  • effect size
  • significance level = P(Type I error) = probability of finding an effect that is not there
  • power = 1 - P(Type II error) = probability of finding an effect that is there

With three you can calculate the fourth

Assumptions

Under normal circumstantes, there is a proportion of 35% of patients with the characteristic. An intervention or exposure that could increase by 10% difference (45% or more) could be consider as clinically significant.

Effect size

This difference in terms of effect size for a difference 0.45 to 0.35 is 0.2045252

ES.h(.45, .35)
[1] 0.2045252

Sample size calculations

Hence we calculate the required sample size for this effect size.

For equal groups:

10% difference

pwr.2p.test(h = ES.h(.45, .35)  ,  # this is the effect size

          n =  ,  # sample size to calculate

          sig.level = 0.05,  # 5% alpha value

          power = 0.8) # 80% power
        
pwr.2p.test(h = ES.h(.45, .35)  , 
            n =  , 
            sig.level = 0.05, 
            power = 0.8)

     Difference of proportion power calculation for binomial distribution (arcsine transformation) 

              h = 0.2045252
              n = 375.2691
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

NOTE: same sample sizes

You need two groups of 376 patients each

20% difference

For a difference pf 20% (35 to 55)

pwr.2p.test(h = ES.h(.55, .35)  , 
            n =  , 
            sig.level = 0.05, 
            power = 0.8)

     Difference of proportion power calculation for binomial distribution (arcsine transformation) 

              h = 0.4048601
              n = 95.76939
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

NOTE: same sample sizes

You need two groups of 96 patients each

For unequal groups

Assuming that in one group you have already 75 patients

20% difference

pwr.2p2n.test(h = 0.4048601 , 
              n1 = 75, 
              power = 0.8, 
              sig.level = 0.05)

     difference of proportion power calculation for binomial distribution (arcsine transformation) 

              h = 0.4048601
             n1 = 75
             n2 = 132.4474
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

NOTE: different sample sizes

You need in the other group 133 patients

LS0tCnRpdGxlOiAiRGlmZmVyZW5jZSBpbiBwcm9wb3J0aW9ucyIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHRydWUKLS0tCgojIFBhY2thZ2VzCiAgLSBbcHdyXShodHRwczovL2NyYW4uci1wcm9qZWN0Lm9yZy93ZWIvcGFja2FnZXMvcHdyL2luZGV4Lmh0bWwpCgpgYGB7ciwgaW5jbHVkZT1UUlVFfQpsaWJyYXJ5KHB3cikKYGBgCgojIENvbmNlcHRzCgogIC0gc2FtcGxlIHNpemUKICAtIGVmZmVjdCBzaXplCiAgLSBzaWduaWZpY2FuY2UgbGV2ZWwgPSBQKFR5cGUgSSBlcnJvcikgPSBwcm9iYWJpbGl0eSBvZiBmaW5kaW5nIGFuIGVmZmVjdCB0aGF0IGlzIG5vdCB0aGVyZQogIC0gcG93ZXIgPSAxIC0gUChUeXBlIElJIGVycm9yKSA9IHByb2JhYmlsaXR5IG9mIGZpbmRpbmcgYW4gZWZmZWN0IHRoYXQgaXMgdGhlcmUKCldpdGggdGhyZWUgeW91IGNhbiBjYWxjdWxhdGUgdGhlIGZvdXJ0aAoKCiMgQXNzdW1wdGlvbnMKClVuZGVyIG5vcm1hbCBjaXJjdW1zdGFudGVzLCB0aGVyZSBpcyBhIHByb3BvcnRpb24gb2YgMzUlIG9mIHBhdGllbnRzIHdpdGggdGhlIGNoYXJhY3RlcmlzdGljLiBBbiBpbnRlcnZlbnRpb24gb3IgZXhwb3N1cmUgdGhhdCBjb3VsZCBpbmNyZWFzZSBieSAxMCUgZGlmZmVyZW5jZSAoNDUlIG9yIG1vcmUpIGNvdWxkIGJlIGNvbnNpZGVyIGFzIGNsaW5pY2FsbHkgc2lnbmlmaWNhbnQuIAoKIyMgRWZmZWN0IHNpemUKClRoaXMgZGlmZmVyZW5jZSBpbiB0ZXJtcyBvZiBlZmZlY3Qgc2l6ZSBmb3IgYSBkaWZmZXJlbmNlIDAuNDUgdG8gMC4zNSBpcyBgciBFUy5oKC40NSwgLjM1KSBgCgpgYGB7cn0KRVMuaCguNDUsIC4zNSkKYGBgCgojIFNhbXBsZSBzaXplIGNhbGN1bGF0aW9ucwpIZW5jZSB3ZSBjYWxjdWxhdGUgdGhlIHJlcXVpcmVkIHNhbXBsZSBzaXplIGZvciB0aGlzIGVmZmVjdCBzaXplLgoKIyMgRm9yIGVxdWFsIGdyb3VwczogCgojIyMgMTAlIGRpZmZlcmVuY2UKCiAgICBwd3IuMnAudGVzdChoID0gRVMuaCguNDUsIC4zNSkgICwgICMgdGhpcyBpcyB0aGUgZWZmZWN0IHNpemUKCiAgICAgICAgICAgICAgbiA9ICAsICAjIHNhbXBsZSBzaXplIHRvIGNhbGN1bGF0ZQoKICAgICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjA1LCAgIyA1JSBhbHBoYSB2YWx1ZQoKICAgICAgICAgICAgICBwb3dlciA9IDAuOCkgIyA4MCUgcG93ZXIKICAgICAgICAgICAgCmBgYHtyfQpwd3IuMnAudGVzdChoID0gRVMuaCguNDUsIC4zNSkgICwgICMgdGhpcyBpcyB0aGUgZWZmZWN0IHNpemUKICAgICAgICAgICAgbiA9ICAsICAjIHNhbXBsZSBzaXplIHRvIGNhbGN1bGF0ZQogICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjA1LCAgIyA1JSBhbHBoYSB2YWx1ZQogICAgICAgICAgICBwb3dlciA9IDAuOCkgIyA4MCUgcG93ZXIKYGBgCioqWW91IG5lZWQgdHdvIGdyb3VwcyBvZiAzNzYgcGF0aWVudHMgZWFjaCoqCgpgYGB7cn0KcC5vdXQgPC0gcHdyLjJwLnRlc3QoaCA9IEVTLmgoLjQ1LCAuMzUpICAsIAogICAgICAgICAgICBuID0gICwgCiAgICAgICAgICAgIHNpZy5sZXZlbCA9IDAuMDUsIAogICAgICAgICAgICBwb3dlciA9IDAuOCkKcGxvdChwLm91dCkKYGBgCgojIyMgMjAlIGRpZmZlcmVuY2UKCkZvciBhIGRpZmZlcmVuY2UgcGYgMjAlICgzNSB0byA1NSkKCmBgYHtyfQpwd3IuMnAudGVzdChoID0gRVMuaCguNTUsIC4zNSkgICwgCiAgICAgICAgICAgIG4gPSAgLCAKICAgICAgICAgICAgc2lnLmxldmVsID0gMC4wNSwgCiAgICAgICAgICAgIHBvd2VyID0gMC44KQpgYGAKKipZb3UgbmVlZCB0d28gZ3JvdXBzIG9mIDk2IHBhdGllbnRzIGVhY2gqKgoKYGBge3J9CnAub3V0IDwtIHB3ci4ycC50ZXN0KGggPSBFUy5oKC41NSwgLjM1KSAgLCAKICAgICAgICAgICAgbiA9ICAsIAogICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjA1LCAKICAgICAgICAgICAgcG93ZXIgPSAwLjgpCgpwbG90KHAub3V0KQpgYGAKCgojIyBGb3IgdW5lcXVhbCBncm91cHMKCkFzc3VtaW5nIHRoYXQgaW4gb25lIGdyb3VwIHlvdSBoYXZlIGFscmVhZHkgKio3NSoqIHBhdGllbnRzCgojIyMgMjAlIGRpZmZlcmVuY2UKCmBgYHtyfQpwd3IuMnAybi50ZXN0KGggPSAwLjQwNDg2MDEgLCAKICAgICAgICAgICAgICBuMSA9IDc1LCAKICAgICAgICAgICAgICBwb3dlciA9IDAuOCwgCiAgICAgICAgICAgICAgc2lnLmxldmVsID0gMC4wNSkKYGBgCioqWW91IG5lZWQgaW4gdGhlIG90aGVyIGdyb3VwIDEzMyBwYXRpZW50cyoqCg==