Create data frame with unequal n’s for DSF, DSB, & Trails B (our original analyses)

TeloCogSPSS_exclude <- TeloCogSPSS[ which(TeloCogSPSS$MedHxAlzheimersDisease==0&TeloCogSPSS$MedHxDementiaAny==0&
                                            TeloCogSPSS$MedHxCVstroke==0&TeloCogSPSS$MedHxEpilepsy==0&
                                            TeloCogSPSS$MedHxMultipleSclerosis==0&TeloCogSPSS$MedHxParkinsonDisease==0),] 

varNames = c('tLength', 'LgTrailA', 'LgTrailB', 'DSF', 'DSB', 'TeloPov', 'TeloRace', 'RacePov', 'TeloRacePov', 'Educ', 'CRPdi3', 'HTNDic', 'DiabDic', 'BMI', 'Age', 'Sex', 'Race', 'PovStat')
zNamesCheck(TeloCogSPSS_exclude, varNames)
TeloCogR=TeloCogSPSS_exclude[,varNames]

zQuick(TeloCogR)
## Dimensions: 339 18 
## 
##     tLength         LgTrailA        LgTrailB          DSF        
##  Min.   :2.600   Min.   :1.146   Min.   :1.491   Min.   : 0.000  
##  1st Qu.:5.200   1st Qu.:1.380   1st Qu.:1.785   1st Qu.: 6.000  
##  Median :5.670   Median :1.491   Median :1.929   Median : 7.000  
##  Mean   :5.645   Mean   :1.514   Mean   :2.017   Mean   : 7.074  
##  3rd Qu.:6.080   3rd Qu.:1.602   3rd Qu.:2.152   3rd Qu.: 9.000  
##  Max.   :8.500   Max.   :2.778   Max.   :2.778   Max.   :14.000  
##                  NA's   :14      NA's   :14      NA's   :3       
##       DSB            TeloPov          TeloRace         RacePov     
##  Min.   : 0.000   Min.   : 2.600   Min.   : 3.770   Min.   :1.000  
##  1st Qu.: 4.000   1st Qu.: 5.690   1st Qu.: 5.600   1st Qu.:1.000  
##  Median : 5.000   Median : 6.840   Median : 7.600   Median :2.000  
##  Mean   : 5.507   Mean   : 8.349   Mean   : 8.438   Mean   :2.215  
##  3rd Qu.: 7.000   3rd Qu.:11.190   3rd Qu.:11.360   3rd Qu.:2.000  
##  Max.   :13.000   Max.   :16.600   Max.   :17.000   Max.   :4.000  
##  NA's   :2                                                         
##   TeloRacePov       Educ      CRPdi3        HTNDic       DiabDic   
##  Min.   : 3.770   HS+ :253   <3  :190   Min.   :0.0000   No  :286  
##  1st Qu.: 6.825   <HS : 85   3+  :134   1st Qu.:0.0000   Yes : 52  
##  Median :11.200   NA's:  1   NA's: 15   Median :0.0000   NA's:  1  
##  Mean   :12.465                         Mean   :0.4036             
##  3rd Qu.:14.780                         3rd Qu.:1.0000             
##  Max.   :30.800                         Max.   :1.0000             
##                                         NA's   :2                  
##      BMI           Age           Sex         Race      PovStat   
##  < 30  :202   Min.   :30.16   Women:167   White:171   Above:175  
##  >=  30:137   1st Qu.:41.07   Men  :172   AfrAm:168   Below:164  
##               Median :48.72                                      
##               Mean   :48.04                                      
##               3rd Qu.:55.32                                      
##               Max.   :64.99                                      
## 

Create Bulk Formulas & Tables for analyses with unequal n’s for DSF, DSB, & Trails B (our original analyses)

bulkFormula1a= 'DSF + DSB + LgTrailB ~ Race*PovStat*tLength + tLength*Race + tLength*PovStat + Race*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR, bulkFormula1a)

Effects DSF DSB LgTrailB
R**2  0.109**   0.160***  0.188***
RaceAfrAm -6.790*   -4.374     0.453   
PovStatBelow -9.983**  -8.782**   0.766   
tLength -0.802    -0.540     0.022   
Educ -0.725*   -1.385***  0.144***
CRPdi33+ -0.327     0.110    -0.076*  
HTNDic  0.780*    0.415     0.061   
DiabDicYes -0.595    -1.011*    0.020   
BMI>= 30 -0.268    -0.233     0.038   
Age -0.040*   -0.027     0.004   
SexMen -0.292     0.019     0.020   
RaceAfrAm:PovStatBelow  10.778*    8.139    -0.153   
RaceAfrAm:tLength  1.114     0.613    -0.052   
PovStatBelow:tLength  1.691**   1.481**  -0.117   
RaceAfrAm:PovStatBelow:tLength -1.984*   -1.460*    0.029   

3-way interaction of Telo x Race x Poverty Status was significant for DSF & DSB, but not for Trails B, so we backward eliminate.

bulkFormula1b= 'LgTrailB ~ tLength*Race + tLength*PovStat + Race*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR, bulkFormula1b)

Effects LgTrailB
R**2  0.187***
tLength  0.014   
RaceAfrAm  0.362   
PovStatBelow  0.684*  
Educ  0.145***
CRPdi33+ -0.077*  
HTNDic  0.062   
DiabDicYes  0.020   
BMI>= 30  0.038   
Age  0.004   
SexMen  0.021   
tLength:RaceAfrAm -0.036   
tLength:PovStatBelow -0.102*  
RaceAfrAm:PovStatBelow  0.010   
bulkFormula1c= 'LgTrailB ~ tLength*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR, bulkFormula1c)

Effects LgTrailB
R**2  0.186***
tLength -0.006   
PovStatBelow  0.670*  
RaceAfrAm  0.161***
Educ  0.145***
CRPdi33+ -0.078*  
HTNDic  0.065   
DiabDicYes  0.020   
BMI>= 30  0.036   
Age  0.004   
SexMen  0.017   
tLength:PovStatBelow -0.099*  

2-way interaction of Telo x Poverty Status was significant for Trails B

Create data frame with equal n’s for all cognitive outcomes (i.e., equal n for DSF, DSB, & Trails B)

TeloCogSPSS_equaln <- TeloCogSPSS[ which(TeloCogSPSS$MedHxAlzheimersDisease==0&TeloCogSPSS$MedHxDementiaAny==0&
                                            TeloCogSPSS$MedHxCVstroke==0&TeloCogSPSS$MedHxEpilepsy==0&
                                            TeloCogSPSS$MedHxMultipleSclerosis==0&TeloCogSPSS$MedHxParkinsonDisease==0&TeloCogSPSS$valicog==3),] 

varNames = c('tLength', 'LgTrailA', 'LgTrailB', 'DSF', 'DSB', 'TeloPov', 'TeloRace', 'RacePov', 'TeloRacePov', 'Educ', 'CRPdi3', 'HTNDic', 'DiabDic', 'BMI', 'Age', 'Sex', 'Race', 'PovStat')
zNamesCheck(TeloCogSPSS_equaln, varNames)
TeloCogR_equaln=TeloCogSPSS_equaln[,varNames] 

Create Bulk Formulas & Tables for analyses with equal n’s for DSF, DSB, & Trails B

bulkFormula2a= 'DSF + DSB + LgTrailB ~ Race*PovStat*tLength + tLength*Race + tLength*PovStat + Race*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR_equaln, bulkFormula2a)

Effects DSF DSB LgTrailB
R**2  0.119***  0.181***  0.188***
RaceAfrAm -6.510*   -4.024     0.446   
PovStatBelow -9.803**  -8.779**   0.777   
tLength -0.853*   -0.576     0.022   
Educ -0.809**  -1.486***  0.143***
CRPdi33+  0.049     0.417    -0.077*  
HTNDic  0.799**   0.418     0.061   
DiabDicYes -0.344    -0.855*    0.020   
BMI>= 30 -0.343    -0.295     0.037   
Age -0.030*   -0.019     0.004   
SexMen -0.236     0.090     0.020   
RaceAfrAm:PovStatBelow  9.339*    7.030    -0.155   
RaceAfrAm:tLength  1.061     0.546    -0.051   
PovStatBelow:tLength  1.677**   1.490**  -0.118   
RaceAfrAm:PovStatBelow:tLength -1.750*   -1.273     0.029   

3-way interaction of Telo x Race x Poverty Status was significant for DSF, but not for DSB or Trails B, so we backward eliminate.

bulkFormula2b= 'DSB + LgTrailB ~ tLength*Race + tLength*PovStat + Race*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR_equaln, bulkFormula2b)

Effects DSB LgTrailB
R**2  0.172***  0.188***
tLength -0.192     0.014   
RaceAfrAm -0.024     0.356   
PovStatBelow -5.139*    0.695*  
Educ -1.512***  0.144***
CRPdi33+  0.435    -0.078*  
HTNDic  0.387     0.062   
DiabDicYes -0.860*    0.020   
BMI>= 30 -0.288     0.037   
Age -0.019     0.004   
SexMen  0.073     0.021   
tLength:RaceAfrAm -0.157    -0.035   
tLength:PovStatBelow  0.850*   -0.104*  
RaceAfrAm:PovStatBelow -0.161     0.006   
bulkFormula2c= 'DSB + LgTrailB ~ tLength*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR_equaln, bulkFormula2c)

Effects DSB LgTrailB
R**2  0.171***  0.186***
tLength -0.279    -0.005   
PovStatBelow -5.324**   0.681*  
RaceAfrAm -0.986***  0.161***
Educ -1.505***  0.144***
CRPdi33+  0.430    -0.079*  
HTNDic  0.392     0.065   
DiabDicYes -0.854*    0.020   
BMI>= 30 -0.288     0.035   
Age -0.019     0.004   
SexMen  0.057     0.017   
tLength:PovStatBelow  0.869*   -0.101*  

2-way interaction of Telo x Poverty was significant for both DSB & Trails B

Create data frame with equal n’s for DSB & DSF but not for Trails B

TeloCogSPSS_unequaln <- TeloCogSPSS[which(TeloCogSPSS$MedHxAlzheimersDisease==0&TeloCogSPSS$MedHxDementiaAny==0&
                                           TeloCogSPSS$MedHxCVstroke==0&TeloCogSPSS$MedHxEpilepsy==0&
                                      TeloCogSPSS$MedHxMultipleSclerosis==0&TeloCogSPSS$MedHxParkinsonDisease==0),] 

varNames = c('tLength', 'LgTrailA', 'LgTrailB', 'DSF', 'DSB', 'TeloPov', 'TeloRace', 'RacePov', 'TeloRacePov', 'Educ', 'CRPdi3', 'HTNDic', 'DiabDic', 'BMI', 'Age', 'Sex', 'Race', 'PovStat')
zNamesCheck(TeloCogSPSS_unequaln, varNames)
TeloCogR_unequaln=TeloCogSPSS_unequaln[,varNames]

zQuick(zVsel(TeloCogSPSS_unequaln, DSF, DSB))
## Dimensions: 339 2 
## 
##       DSF              DSB        
##  Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 6.000   1st Qu.: 4.000  
##  Median : 7.000   Median : 5.000  
##  Mean   : 7.074   Mean   : 5.507  
##  3rd Qu.: 9.000   3rd Qu.: 7.000  
##  Max.   :14.000   Max.   :13.000  
##  NA's   :3        NA's   :2
TeloCogSPSS_unequaln$DSB[is.na(TeloCogSPSS_unequaln$DSF)] = NA
TeloCogSPSS_unequaln$DSF[is.na(TeloCogSPSS_unequaln$DSB)] = NA
zQuick(zVsel(TeloCogSPSS_unequaln, DSF, DSB))
## Dimensions: 339 2 
## 
##       DSF              DSB        
##  Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 6.000   1st Qu.: 4.000  
##  Median : 7.000   Median : 5.000  
##  Mean   : 7.074   Mean   : 5.506  
##  3rd Qu.: 9.000   3rd Qu.: 7.000  
##  Max.   :14.000   Max.   :13.000  
##  NA's   :3        NA's   :3

Create Regression Formulas & Tables for analyses with equal n’s for DSF & DSB, but with a different n for Trails B

bulkFormula3a= 'DSF + DSB + LgTrailB ~ Race*PovStat*tLength + tLength*Race + tLength*PovStat + Race*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR_unequaln, bulkFormula3a)

Effects DSF DSB LgTrailB
R**2  0.109**   0.160***  0.188***
RaceAfrAm -6.790*   -4.374     0.453   
PovStatBelow -9.983**  -8.782**   0.766   
tLength -0.802    -0.540     0.022   
Educ -0.725*   -1.385***  0.144***
CRPdi33+ -0.327     0.110    -0.076*  
HTNDic  0.780*    0.415     0.061   
DiabDicYes -0.595    -1.011*    0.020   
BMI>= 30 -0.268    -0.233     0.038   
Age -0.040*   -0.027     0.004   
SexMen -0.292     0.019     0.020   
RaceAfrAm:PovStatBelow  10.778*    8.139    -0.153   
RaceAfrAm:tLength  1.114     0.613    -0.052   
PovStatBelow:tLength  1.691**   1.481**  -0.117   
RaceAfrAm:PovStatBelow:tLength -1.984*   -1.460*    0.029   

Like in the original analyses, the 3-way interaction of Telo x Race x Poverty was significant for DSF & DSB when those two tests had equal n’s. This was non-significant for Trails B, but just like in the original analyses, the 2-way interaction of Telo x Poverty significant for Trails B when we backward eliminate (shown again below)

bulkFormula3b= 'LgTrailB ~ tLength*Race + tLength*PovStat + Race*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR_equaln, bulkFormula3b)

Effects LgTrailB
R**2  0.188***
tLength  0.014   
RaceAfrAm  0.356   
PovStatBelow  0.695*  
Educ  0.144***
CRPdi33+ -0.078*  
HTNDic  0.062   
DiabDicYes  0.020   
BMI>= 30  0.037   
Age  0.004   
SexMen  0.021   
tLength:RaceAfrAm -0.035   
tLength:PovStatBelow -0.104*  
RaceAfrAm:PovStatBelow  0.006   
bulkFormula3c= 'LgTrailB ~ tLength*PovStat + tLength + Race + PovStat + Educ + CRPdi3 + HTNDic + DiabDic + BMI + Age + Sex'
zBulkReg(TeloCogR_equaln, bulkFormula3c)

Effects LgTrailB
R**2  0.186***
tLength -0.005   
PovStatBelow  0.681*  
RaceAfrAm  0.161***
Educ  0.144***
CRPdi33+ -0.079*  
HTNDic  0.065   
DiabDicYes  0.020   
BMI>= 30  0.035   
Age  0.004   
SexMen  0.017   
tLength:PovStatBelow -0.101*