The dataset from the post of Emilie Bolduc

Untidy data is sorted to answer following questions:

1) Where in the US has there been the most interest in yoga?

2) When people were most interested in yoga in the last 10 years?

3) Interactive map showing the popularity of Yoga by state.

library(stringr)
library(tidyr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(ggmap)
## Google Maps API Terms of Service: http://developers.google.com/maps/terms.
## Please cite ggmap if you use it: see citation("ggmap") for details.
library(leaflet)
data <- read.csv("yoga.csv")
data <- data[-1,]
head(data)
##         X Alabama..us.al. Alaska..us.ak. Arizona..us.az. Arkansas..us.ar.
## 2 2004-01              20             23              21               24
## 3 2004-02               8             26              25               16
## 4 2004-03              10             26              22               26
## 5 2004-04              15             34              24               18
## 6 2004-05              15             14              24               11
## 7 2004-06              12             21              23               14
##   California..us.ca. Colorado..us.co. Connecticut..us.ct. Delaware..us.de.
## 2                 32               33                  27               47
## 3                 27               30                  26               28
## 4                 28               29                  30               51
## 5                 25               27                  22               27
## 6                 25               24                  25               20
## 7                 27               27                  26               22
##   District.of.Columbia..us.dc. Florida..us.fl. Georgia..us.ga.
## 2                           32              21              21
## 3                           36              17              20
## 4                           29              17              20
## 5                           29              19              15
## 6                           24              20              16
## 7                           26              18              18
##   Hawaii..us.hi. Idaho..us.id. Illinois..us.il. Indiana..us.in.
## 2             36            21               25              24
## 3             24            22               23              14
## 4             36            21               25              17
## 5             30            18               17              14
## 6             39            14               17               9
## 7             44            17               20              18
##   Iowa..us.ia. Kansas..us.ks. Kentucky..us.ky. Louisiana..us.la.
## 2           14             20               17                20
## 3           16             12               19                15
## 4           18             13               18                17
## 5           19             19               12                20
## 6           14             15               15                14
## 7           17             18               17                16
##   Maine..us.me. Maryland..us.md. Massachusetts..us.ma. Michigan..us.mi.
## 2            29               26                    41               19
## 3            29               23                    33               18
## 4            26               22                    32               17
## 5            21               17                    31               15
## 6            25               21                    27               15
## 7            22               23                    29               17
##   Minnesota..us.mn. Mississippi..us.ms. Missouri..us.mo. Montana..us.mt.
## 2                26                  16               19              44
## 3                22                  20               18              26
## 4                21                  18               15              41
## 5                17                  18               12              25
## 6                22                  13               15              24
## 7                18                  18               20              21
##   Nebraska..us.ne. Nevada..us.nv. New.Hampshire..us.nh. New.Jersey..us.nj.
## 2               15             20                    45                 27
## 3               21             25                    20                 22
## 4               16             24                    22                 23
## 5               16             17                    26                 20
## 6               14             25                    23                 22
## 7               15             23                    27                 21
##   New.Mexico..us.nm. New.York..us.ny. North.Carolina..us.nc.
## 2                 33               35                     23
## 3                 25               28                     22
## 4                 26               29                     20
## 5                 18               26                     18
## 6                 21               28                     16
## 7                 32               28                     22
##   North.Dakota..us.nd. Ohio..us.oh. Oklahoma..us.ok. Oregon..us.or.
## 2                   52           19               22             34
## 3                   45           16               19             30
## 4                   45           15               12             28
## 5                   45           13               11             22
## 6                   45           16               17             25
## 7                   45           16               17             27
##   Pennsylvania..us.pa. Rhode.Island..us.ri. South.Carolina..us.sc.
## 2                   19                   44                     24
## 3                   18                   26                     19
## 4                   20                   27                     18
## 5                   19                   31                     14
## 6                   16                   26                     11
## 7                   20                   33                     19
##   South.Dakota..us.sd. Tennessee..us.tn. Texas..us.tx. Utah..us.ut.
## 2                   25                21            24           26
## 3                   22                18            16           20
## 4                   21                16            17           10
## 5                   21                21            16           20
## 6                   28                15            17           19
## 7                   28                16            17           16
##   Vermont..us.vt. Virginia..us.va. Washington..us.wa.
## 2              42               22                 30
## 3              39               16                 29
## 4              41               19                 27
## 5              37               17                 25
## 6              31               18                 25
## 7              34               22                 27
##   West.Virginia..us.wv. Wisconsin..us.wi. Wyoming..us.wy.
## 2                    23                18               0
## 3                    17                17              37
## 4                    27                20              35
## 5                    26                17              37
## 6                    21                18              35
## 7                    28                19              35
#str(data)
colnames(data) <- c("Year","Alabama","Alaska","Arizona","Arkansas","California","Colorado","Connecticut","Delaware","DC","Florida","Georgia","Hawaii","Idaho","Illinois","Indiana","Iowa","Kansus","Kentucky","Louisiana","Maine","Maryland","Masachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana","Nebraska","Nevada","NH","New_Jersey","New_Mexico","New_York","North_Carolina","North_Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode_Island","South_Carolina","South_Dakota","Tennessse","Texas","Utah","Vermont","Virginia","Washington","West_Virginia","Wisconsin","Wyoming")
data1  <-data %>% 
            separate(Year,into = c("Year","month"),sep = "-")
data1 <- data1[,-2]
data2 <- data1 %>%
      group_by(Year)%>%
         summarise_all(funs(sum))
data2 <- data.frame(data2)
data3 <- setNames(data.frame(t(data2[,-1])),data2[,1])
for(i in 1:51) {
  data3$total[i] <- rowSums(data3[i,1:13],na.rm = TRUE)
}
head(data3)
##            2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
## Alabama     151  153  166  136  127  134  162  144  163  181  211  236
## Alaska      267  276  252  280  273  306  427  416  433  481  512  582
## Arizona     271  270  255  245  263  271  300  264  283  288  307  323
## Arkansas    204  185  176  163  139  159  209  168  189  240  259  256
## California  321  309  301  287  266  257  234  291  301  320  329  329
## Colorado    337  353  369  347  332  328  367  360  374  410  409  437
##            2016 total
## Alabama      78  2042
## Alaska      221  4726
## Arizona     113  3453
## Arkansas     77  2424
## California  114  3659
## Colorado    155  4578
max(data3$total)
## [1] 7529

Vermont(7529) had highest practice of yoga in last 10 years.

data3[52,] = c(colSums(data3[,1:14]))
max(data3[52,-14])
## [1] 18475

Year 2015 recorded highest number of yoga practisioners.

data3$Regions <- c("Alabama","Alaska","Arizona","Arkansas","California","Colorado","Connecticut","Delaware","DC","Florida","Georgia","Hawaii","Idaho","Illinois","Indiana","Iowa","Kansus","Kentucky","Louisiana","Maine","Maryland","Masachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana","Nebraska","Nevada","NH","New_Jersey","New_Mexico","New_York","North_Carolina","North_Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode_Island","South_Carolina","South_Dakota","Tennessse","Texas","Utah","Vermont","Virginia","Washington","West_Virginia","Wisconsin","Wyoming","Total1")
data3$total <- as.numeric(data3$total)
data3$Regions <- as.character(data3$Regions)

Getting latitudes and longitudes of all states in data frame.

for (i in 1:nrow(data3)) {
latlon = geocode(data3[i,15])
data3$lon[i] = as.numeric(latlon[1])
data3$lat[i] = as.numeric(latlon[2])
}
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Alabama
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Alaska
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Arizona
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Arkansas
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=California
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Colorado
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Connecticut
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Delaware
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=DC
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Florida
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Georgia
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Hawaii
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Idaho
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Illinois
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Indiana
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Iowa
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Kansus
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Kentucky
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Louisiana
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Maine
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Maryland
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Masachusetts
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Michigan
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Minnesota
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Mississippi
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Missouri
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Montana
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Nebraska
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Nevada
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=NH
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=New_Jersey
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=New_Mexico
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=New_York
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=North_Carolina
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=North_Dakota
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Ohio
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Oklahoma
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Oregon
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Pennsylvania
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Rhode_Island
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=South_Carolina
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=South_Dakota
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Tennessse
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Texas
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Utah
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Vermont
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Virginia
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Washington
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=West_Virginia
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Wisconsin
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Wyoming
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Total1

Popularity of Yoga by states

data4 <- data.frame(data3$total, data3$lon, data3$lat,data3$Regions)
colnames(data4) = c('total','lon','lat','Region')
m <- leaflet() %>%
  addTiles() %>%
  addMarkers(lng = data4$lon,lat = data4$lat,popup = paste("Total",data4$total) %>% 
                                                     paste("Region",data4$Region))
m

Clicking on pins will give the total number of yoga followers in the state.