\[ \tiny C_t= \left( \frac{C_{q_{t}}^{clv}-C_{q_{t-4}}^{clv}} {GDP_{q_{t-4}}^{clv}} \times \frac{\frac{\sum_{i=-1}^{-4} C_{q_{i}}^{nom}}{\sum_{i=-1}^{-4} C_{q_{i}}^{clv}}} {\frac{\sum_{i=-1}^{-4} C_{q_{i}}^{clv}}{\sum_{i=-1}^{-4} GDP_{q_{i}}^{clv}}} \right) + \left( \frac {\frac{\sum_{i=-1}^{-4} C_{q_{i}}^{nom}}{\sum_{i=-1}^{-4} C_{q_{i}}^{clv}}} {\frac{\sum_{i=-1}^{-4} C_{q_{i}}^{clv}}{\sum_{i=-1}^{-4} GDP_{q_{i}}^{clv}}} - \frac {\frac{\sum_{i=-5}^{-8} C_{q_{i}}^{nom}}{\sum_{i=-5}^{-8} C_{q_{i}}^{clv}}} {\frac{\sum_{i=-5}^{-8} C_{q_{i}}^{clv}}{\sum_{i=-5}^{-8} GDP_{q_{i}}^{clv}}} \right) \times \left( \frac{C_{q_{t-4}}^{clv}}{GDP_{q_{t-4}}^{clv}}- \frac {\frac{\sum_{i=-1}^{-4}C_{q_{i}}^{clv}}{\sum_{i=-1}^{-4}GDP_{q_{i}}^{clv}}} {\frac{\sum_{i=-1}^{-4}GDP_{q_{i}}^{clv}}{\sum_{i=-1}^{-4}GDP_{q_{i}}^{clv}}} \right) \]
\[\tiny C_t= \left( \frac {C_{q_{t}}^{clv}-C_{q_{t-4}}^{clv}} {GDP_{q_{t-4}}^{clv}} \times \frac {\sum_{i=-1}^{-4} C_{q_{i}}^{nom} \times \sum_{i=-1}^{-4} GDP_{q_{i}}^{clv}} {(\sum_{i=-1}^{-4} C_{q_{i}}^{clv})^2} \right) + \left( \frac {\sum_{i=-1}^{-4} C_{q_{i}}^{nom} \times \sum_{i=-1}^{-4} GDP_{q_{i}}^{clv}} {(\sum_{i=-1}^{-4} C_{q_{i}}^{clv})^2} - \frac {\sum_{i=-5}^{-8} C_{q_{i}}^{nom} \times \sum_{i=-5}^{-8} GDP_{q_{i}}^{clv}} {(\sum_{i=-5}^{-8} C_{q_{i}}^{clv})^2} \right) \times \left( \frac{C_{q_{t-4}}^{clv}}{GDP_{q_{t-4}}^{clv}}- \frac{\sum_{i=-1}^{-4}C_{q_{i}}^{clv}}{\sum_{i=-1}^{-4}GDP_{q_{i}}^{clv}} \right) \]
The following libraries are needed to reproduce the code. All data will be imported from eurostat (~8mb) and stored locally in your working directory
library(tidyverse) # brings dplyr, tidyr, ggplot
library(eurostat) # allows data import from eurostat
library(lubridate) # for date conversions
library(zoo) # for date conversions
library(knitr)In this step, data is downaloaded from the eurostat
#downlaoding GDP data from eurostat
df <- get_eurostat("namq_10_gdp")The following country abbreviations are availble from the dataset
unique(as.character(df$geo))## [1] "AT" "CH" "CY" "CZ" "FI" "FR" "HU" "IT" "LT" "LV"
## [11] "NL" "LU" "BE" "BG" "DE" "DK" "EA" "EA12" "EA18" "EA19"
## [21] "EE" "EL" "ES" "EU15" "EU28" "HR" "IE" "MK" "NO" "PL"
## [31] "PT" "RO" "RS" "SE" "SI" "SK" "TR" "UK" "IS" "MT"
## [41] "AL" "BA" "ME" "XK"
So one has to choose which country chould be used in the subsequent steps
country="LT" #<- type here the country codeSelected country code is used to reduce the working dataframe. “Not seasionally adjusted” data is selected, as well as items GDP (B1GQ), Consumption (P3), Gross fixed capital investment (P51G), gross investment (P5G), Exports(P6) and Imports (P7). Units selected are chain-linked volumes (2010) and current year prices
df <- df %>%
filter(geo==country,
s_adj=="NSA",
na_item %in% c("B1GQ","P3","P51G","P5G","P6","P7"),
unit %in% c("CLV10_MEUR", "CP_MEUR")) %>%
mutate(time=ymd(time)) %>%
select(-s_adj) %>%
mutate(year=year(time))First calculating the proportion of nominal values to real values for every year
NOM_REAL <- df %>% group_by(unit, na_item, year) %>%
summarise(sum=sum(values)) %>%
spread(unit, sum) %>%
mutate(part=CP_MEUR/CLV10_MEUR)%>%
select(year, na_item, part)%>%
spread(na_item, part) %>%
rename(B1GQ_n_r=B1GQ, P3_n_r=P3, P51G_n_r=P51G, P5G_n_r=P5G, P6_n_r=P6, P7_n_r=P7)Second calculating the proportion of real values to real GDP for every year
REAL_REAL <- df %>% filter(unit=="CLV10_MEUR") %>%
group_by(na_item, year) %>%
summarise(sum=sum(values)) %>%
spread(na_item, sum) %>%
mutate(B1GQ_r_r=B1GQ/B1GQ) %>%
mutate(P3_r_r=P3/B1GQ) %>%
mutate(P51G_r_r=P51G/B1GQ) %>%
mutate(P5G_r_r=P5G/B1GQ) %>%
mutate(P6_r_r=P6/B1GQ) %>%
mutate(P7_r_r=P7/B1GQ) %>%
select(-c(2:6))In the enxt one dataframe is being build consisinting of quarterly entries originating from the df dataframe, combined with values from NOM_REAL and REAL_REAL dataframes
DF_TOTAL <- data.frame(time=unique(df$time)) %>%
arrange(time) %>%
mutate(year=year(time))
DF_TOTAL <- merge(DF_TOTAL, NOM_REAL, by.x = "year")
DF_TOTAL <- merge(DF_TOTAL, REAL_REAL, by.x="year")
DF_TOTAL <- merge(DF_TOTAL, (df %>%
filter(unit=="CLV10_MEUR") %>%
spread(na_item, values) %>%
rename(B1GQ_clv=B1GQ,
P3_clv=P3,
P51G_clv=P51G,
P5G_clv=P5G,
P6_clv=P6,
P7_clv=P7) %>%
select(-c(year,geo,unit))), by.x="time")
DF_TOTAL <- merge(DF_TOTAL, (df %>%
filter(unit=="CP_MEUR") %>%
spread(na_item, values) %>%
rename(B1GQ_cp=B1GQ,
P3_cp=P3,
P51G_cp=P51G,
P5G_cp=P5G,
P6_cp=P6,
P7_cp=P7) %>%
select(-c(year,geo,unit))), by.x="time")In the next step, the contribution to GDP is being calculated using the FORMULA
# Contribution of GDP to GDP
DF_TOTAL <- DF_TOTAL %>% mutate(B1GQ_cont = ((B1GQ_clv - lag(B1GQ_clv, 4))/lag(B1GQ_clv,
4)) * (lag(B1GQ_n_r, 4)/lag(B1GQ_n_r, 4)) + ((lag(B1GQ_n_r, 4)/lag(B1GQ_n_r,
4) - (lag(B1GQ_n_r, 8)/lag(B1GQ_n_r, 8))) * (lag(B1GQ_clv, 4)/lag(B1GQ_clv,
4) - lag(B1GQ_r_r, 4)/lag(B1GQ_r_r, 4))))
# Contribution of Consumption to GDP
DF_TOTAL <- DF_TOTAL %>% mutate(P3_cont = ((P3_clv - lag(P3_clv, 4))/lag(B1GQ_clv,
4)) * (lag(P3_n_r, 4)/lag(B1GQ_n_r, 4)) + ((lag(P3_n_r, 4)/lag(B1GQ_n_r,
4) - (lag(P3_n_r, 8)/lag(B1GQ_n_r, 8))) * (lag(P3_clv, 4)/lag(B1GQ_clv,
4) - lag(P3_r_r, 4)/lag(B1GQ_r_r, 4))))
# Contribution of Gross Fixed Capital Formation to GDP
DF_TOTAL <- DF_TOTAL %>% mutate(P51G_cont = ((P51G_clv - lag(P51G_clv, 4))/lag(B1GQ_clv,
4)) * (lag(P51G_n_r, 4)/lag(B1GQ_n_r, 4)) + ((lag(P51G_n_r, 4)/lag(B1GQ_n_r,
4) - (lag(P51G_n_r, 8)/lag(B1GQ_n_r, 8))) * (lag(P51G_clv, 4)/lag(B1GQ_clv,
4) - lag(P51G_r_r, 4)/lag(B1GQ_r_r, 4))))
# Contribution of Gorss Investment to GDP
DF_TOTAL <- DF_TOTAL %>% mutate(P5G_cont = ((P5G_clv - lag(P5G_clv, 4))/lag(B1GQ_clv,
4)) * (lag(P5G_n_r, 4)/lag(B1GQ_n_r, 4)) + ((lag(P5G_n_r, 4)/lag(B1GQ_n_r,
4) - (lag(P5G_n_r, 8)/lag(B1GQ_n_r, 8))) * (lag(P5G_clv, 4)/lag(B1GQ_clv,
4) - lag(P5G_r_r, 4)/lag(B1GQ_r_r, 4))))
# Contribution of Exports to GDP
DF_TOTAL <- DF_TOTAL %>% mutate(P6_cont = ((P6_clv - lag(P6_clv, 4))/lag(B1GQ_clv,
4)) * (lag(P6_n_r, 4)/lag(B1GQ_n_r, 4)) + ((lag(P6_n_r, 4)/lag(B1GQ_n_r,
4) - (lag(P6_n_r, 8)/lag(B1GQ_n_r, 8))) * (lag(P6_clv, 4)/lag(B1GQ_clv,
4) - lag(P6_r_r, 4)/lag(B1GQ_r_r, 4))))
# Contribution of Imports to GDP
DF_TOTAL <- DF_TOTAL %>% mutate(P7_cont = ((P7_clv - lag(P7_clv, 4))/lag(B1GQ_clv,
4)) * (lag(P7_n_r, 4)/lag(B1GQ_n_r, 4)) + ((lag(P7_n_r, 4)/lag(B1GQ_n_r,
4) - (lag(P7_n_r, 8)/lag(B1GQ_n_r, 8))) * (lag(P7_clv, 4)/lag(B1GQ_clv,
4) - lag(P7_r_r, 4)/lag(B1GQ_r_r, 4))))In this step, Inventories are calculated as \(Inventories=\text{Gross investemnt}-\text{Gross fixed capital formation}\) and \(NX=\text{Export}-\text{Import}\)
DF_TOTAL <- DF_TOTAL %>% mutate(INV_cont = P5G_cont-P51G_cont)
DF_TOTAL <- DF_TOTAL %>% mutate(NX_cont =P6_cont-P7_cont)In the next step, the data is only processed to make it more usable for the GGPLOT package
DF_TOTAL_p1 <- DF_TOTAL %>%
gather(na_item, values, 3:35) %>%
filter(na_item %in% c("P3_cont", "P51G_cont","INV_cont", "NX_cont")) %>%
arrange(time) %>%
na.omit() %>%
mutate(values=values*100)%>%
mutate(time=as.yearqtr(time))
DF_TOTAL_p2 <- DF_TOTAL %>%
gather(na_item, values, 3:35) %>%
filter(na_item =="B1GQ_cont") %>%
arrange(time)%>% na.omit() %>%
mutate(values=values*100)%>%
mutate(time=as.yearqtr(time))And a plot is being drawn
ggplot(data=DF_TOTAL_p1, aes(x=time, y=values))+
geom_bar(aes(fill=na_item),stat="identity")+
geom_line(data=DF_TOTAL_p2, aes(x=time, y=values, group=1), colour="blue")+
labs(title=paste(country, "Contribution to annual GDP growth, NSA"), x="Date", y="Percent")+
scale_fill_discrete(name="Variables", labels=c("Inventories", "Net Exports", "Consumption", "Investment"))+
theme(axis.text.x = element_text(angle=45, hjust = 1, vjust = 1),legend.position="bottom")+
scale_x_yearqtr(n=30, format="%Y-Q%q")