IT100 Session 6: Polynomial and Rational Functions
5 Sept 2017
\[ \large 3-4\sqrt{-1} = 3-4i \]
\[ \large\begin{array}{rcl} (4 + 3i) + (2 - i) & = & (4+2) + (3-1)i= 6 +2i\\ \\ (4 + 3i) \times (2 - i) & = & 4 \times 2 + (6-4)i -3i^2 \\ &=& 8 + 2i - (-3) = 11 + 2i\\ \\ (4 + 3i) - (2 - i) & = & (4-2) + (3+1)i= 2 +4i\\ \\ {5\over 2-i} &=& {4 - i^2 \over 2-i} = {(2 - i)(2+i)\over 2-i} = 2 + i \\ \end{array} \]
\[ \large\begin{array}{rclr} (5 + 3i)(5 - 3i) &=&........ &(1)\\ \\ {10\over 3-i} &=&........ &(2)\\ \\ (5 + 3i)-(2-2i)&=&........ &(3)\\ \end{array} \]
\[ \large\begin{array}{lcr} y &=& (x+1)(x-3)\\ & =& x^2 -2x -3\\ \end{array} \]
Old CDs on satellite dish \[ \large 400^{\circ}C \hbox{ or } 720^{\circ}F \]
Formula:
\[ \large\begin{array}{rcl} 0 &=& ax^2 + bx + c\\ \\ x &=& {-b \pm \sqrt{b^2 - 4ac}\over 2a}\\ \end{array} \]
Example:
\[ \large\begin{array}{rcl} 0 &=& 6x^2 + 5x + 1\\ \\ x &=& {-5 \pm \sqrt{5^2 - 24}\over 12}\\ &=& {-5 \pm 1\over12}\\ &=& -{1\over 2}, -{1\over 3}\\ \end{array} \]
Find the roots of these equations:
\[ \large\begin{array}{rclr} 0&=&x^2-7x+10&....... (1)\\ \\ 21&=&x^2-4x&....... (2)\\ \\ -3 &=& 4x^2 + -22x +7&....... (3)\\ \end{array} \]
Identify Odd vs Even and direction
\[ \large\begin{array}{rclr} y&=&x^3-x^2-7x+10&....... (1)\\ \\ 21&=&x^4+x^3-x^2+x+yx&....... (2)\\ \\ y-3 &=& 4x^2 + -22x +7&....... (1)\\ \end{array} \]
\[ \large {2x^3 − 3x^2 + 4x + 5 \over x+2} \]
\[ \large\begin{array}{cccccccccc} \hbox{Ans:} & & 2x^2 &+& -7x &+& 18\\ \\ (x + 2)& &2x^3 &−& 3x^2 &+& 4x &+& 5\\ \\ &−(&2x^3 &+& 4x^2&)\\ && & &−7x^2 &+& 4x\\ && & −(&−7x^2& -& 14x&)\\ && & & & & 18x &+& 5\\ && & & & −(&18x &+& 36&)\\ && & & & & & & −31\\ \end{array} \]
\[ \large\begin{array}{rclr} {x^4+6x^3-12x^2+10+5\over x-1} &=& .......& (1)\\ \\ {x^4 + 4x^3 + 3x^2 -4x -4\over x^2 + 4x + 4} &=& ........ & (2)\\ \end{array} \]
Chapter 4: Exponential and Logarithmic Functions