This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

library(readxl)
library(ggplot2)
competitors <- read_excel("C:/My Work/Data Analytics/Data sets/Biocom_Comp_Ana.xlsx")
names(competitors)<-c("company_name","year","sales","sales_per_change","opm","net_profit",
                  "net_profit_per_change","npm","eps","ceps")
head(competitors)
 ggplot(competitors, aes(x=competitors$sales, y=competitors$company_name)) + geom_boxplot()

competitors<-na.omit(competitors)
competitors$sales_per_change<- substr(competitors$sales_per_change, start = 1, stop = 4)
class(competitors$sales_per_change)<-"numeric"
summary(competitors)
 company_name            year          sales          sales_per_change       opm         
 Length:193         Min.   :2013   Min.   :   14.37   Min.   :-9.8000   Min.   :-0.1143  
 Class :character   1st Qu.:2014   1st Qu.:  273.26   1st Qu.: 0.1300   1st Qu.: 0.1073  
 Mode  :character   Median :2014   Median : 1003.76   Median : 0.2100   Median : 0.1395  
                    Mean   :2015   Mean   : 2702.35   Mean   : 0.9921   Mean   : 0.1506  
                    3rd Qu.:2015   3rd Qu.: 2862.19   3rd Qu.: 0.5400   3rd Qu.: 0.1862  
                    Max.   :2016   Max.   :28487.03   Max.   :12.4000   Max.   : 0.4220  
   net_profit      net_profit_per_change      npm              eps              ceps       
 Min.   :   0.24   Min.   : -0.9896      Min.   :0.0008   Min.   : -4.95   Min.   :-20.19  
 1st Qu.:  15.93   1st Qu.: -0.0325      1st Qu.:0.0508   1st Qu.:  5.34   1st Qu.: 10.14  
 Median :  77.25   Median :  0.2113      Median :0.0905   Median : 14.21   Median : 22.48  
 Mean   : 397.94   Mean   :  0.9805      Mean   :0.1030   Mean   : 22.33   Mean   : 31.10  
 3rd Qu.: 376.15   3rd Qu.:  0.5264      3rd Qu.:0.1443   3rd Qu.: 32.16   3rd Qu.: 44.71  
 Max.   :5656.86   Max.   :100.8496      Max.   :0.3092   Max.   :145.61   Max.   :180.58  
data<-data.frame(aggregate(. ~ year, data=competitors[competitors$company_name!='Biocon',][,2:10], FUN=sum))
data[data$year=='2013',][,2:9]<-data[data$year=='2013',][,2:9]/(nrow(competitors[competitors$year=='2013',]))
data[data$year=='2014',][,2:9]<-data[data$year=='2014',][,2:9]/(nrow(competitors[competitors$year=='2014',]))
data[data$year=='2015',][,2:9]<-data[data$year=='2015',][,2:9]/(nrow(competitors[competitors$year=='2015',]))
data[data$year=='2016',][,2:9]<-data[data$year=='2016',][,2:9]/(nrow(competitors[competitors$year=='2016',]))
data<-cbind('TOTAL',data)
names(data)[1]<-"company_name"
data<-rbind(data
,competitors[competitors$company_name=="Biocon",])
data

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

LS0tDQp0aXRsZTogIkJpb2NvbiBDb21wZXRpdG9yIEFuYWx5c2lzIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCmBgYHtyfQ0KbGlicmFyeShyZWFkeGwpDQpsaWJyYXJ5KGdncGxvdDIpDQpjb21wZXRpdG9ycyA8LSByZWFkX2V4Y2VsKCJDOi9NeSBXb3JrL0RhdGEgQW5hbHl0aWNzL0RhdGEgc2V0cy9CaW9jb21fQ29tcF9BbmEueGxzeCIpDQpuYW1lcyhjb21wZXRpdG9ycyk8LWMoImNvbXBhbnlfbmFtZSIsInllYXIiLCJzYWxlcyIsInNhbGVzX3Blcl9jaGFuZ2UiLCJvcG0iLCJuZXRfcHJvZml0IiwNCiAgICAgICAgICAgICAgICAgICJuZXRfcHJvZml0X3Blcl9jaGFuZ2UiLCJucG0iLCJlcHMiLCJjZXBzIikNCmhlYWQoY29tcGV0aXRvcnMpDQpgYGANCg0KYGBge3J9DQogZ2dwbG90KGNvbXBldGl0b3JzLCBhZXMoeD1jb21wZXRpdG9ycyRzYWxlcywgeT1jb21wZXRpdG9ycyRjb21wYW55X25hbWUpKSArIGdlb21fYm94cGxvdCgpDQpgYGANCg0KYGBge3J9DQoNCmBgYA0KDQoNCmBgYHtyfQ0KY29tcGV0aXRvcnM8LW5hLm9taXQoY29tcGV0aXRvcnMpDQpjb21wZXRpdG9ycyRzYWxlc19wZXJfY2hhbmdlPC0gc3Vic3RyKGNvbXBldGl0b3JzJHNhbGVzX3Blcl9jaGFuZ2UsIHN0YXJ0ID0gMSwgc3RvcCA9IDQpDQpjbGFzcyhjb21wZXRpdG9ycyRzYWxlc19wZXJfY2hhbmdlKTwtIm51bWVyaWMiDQpzdW1tYXJ5KGNvbXBldGl0b3JzKQ0KYGBgDQoNCmBgYHtyfQ0KZGF0YTwtZGF0YS5mcmFtZShhZ2dyZWdhdGUoLiB+IHllYXIsIGRhdGE9Y29tcGV0aXRvcnNbY29tcGV0aXRvcnMkY29tcGFueV9uYW1lIT0nQmlvY29uJyxdWywyOjEwXSwgRlVOPXN1bSkpDQpgYGANCg0KYGBge3J9DQpkYXRhW2RhdGEkeWVhcj09JzIwMTMnLF1bLDI6OV08LWRhdGFbZGF0YSR5ZWFyPT0nMjAxMycsXVssMjo5XS8obnJvdyhjb21wZXRpdG9yc1tjb21wZXRpdG9ycyR5ZWFyPT0nMjAxMycsXSkpDQpgYGANCg0KYGBge3J9DQpkYXRhW2RhdGEkeWVhcj09JzIwMTQnLF1bLDI6OV08LWRhdGFbZGF0YSR5ZWFyPT0nMjAxNCcsXVssMjo5XS8obnJvdyhjb21wZXRpdG9yc1tjb21wZXRpdG9ycyR5ZWFyPT0nMjAxNCcsXSkpDQpkYXRhW2RhdGEkeWVhcj09JzIwMTUnLF1bLDI6OV08LWRhdGFbZGF0YSR5ZWFyPT0nMjAxNScsXVssMjo5XS8obnJvdyhjb21wZXRpdG9yc1tjb21wZXRpdG9ycyR5ZWFyPT0nMjAxNScsXSkpDQpkYXRhW2RhdGEkeWVhcj09JzIwMTYnLF1bLDI6OV08LWRhdGFbZGF0YSR5ZWFyPT0nMjAxNicsXVssMjo5XS8obnJvdyhjb21wZXRpdG9yc1tjb21wZXRpdG9ycyR5ZWFyPT0nMjAxNicsXSkpDQpgYGANCg0KYGBge3J9DQpkYXRhPC1jYmluZCgnVE9UQUwnLGRhdGEpDQpuYW1lcyhkYXRhKVsxXTwtImNvbXBhbnlfbmFtZSINCmRhdGE8LXJiaW5kKGRhdGENCixjb21wZXRpdG9yc1tjb21wZXRpdG9ycyRjb21wYW55X25hbWU9PSJCaW9jb24iLF0pDQpgYGANCg0KYGBge3J9DQpkYXRhDQpgYGANCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg==