Total number of marbles = 54+9+75 = 138
Probabilty of red marble = \(\frac{54}{138}\) Probabilty of blue marble = \(\frac{75}{138}\)
Probability or red or blue marble = \(\frac{54}{138} + \frac{75}{138} = \frac{43}{46}\)
Answer = 0.9348
Total number of balls = 19+20+24+17 = 80
Probabilty of red ball = \(\frac{20}{80}\)
Answer = 0.2500
Let F represent not male and NP represent not parents:
P(F or NP) = P(F) + P(NP) - P(F and NP)
P(F) = Total Non Males/Total Customers = (228+79+252+97+72)/1399 = 728/1399
P(NP) = Total Not Parents/Total Customers = (81+228+116+79+130+97+129+72)/1399 = 932/1399
P(F and NP) = (228+79+97+72)/1399 = 476/1399
P(F or NP) = 728/1399 + 932/1399 - 476/1399 = 1184/1399
Answer = 0.8463
The events are Dependent (A)
8C3 X 7C3 x 3C1
Ans <- choose(8,3) * choose(7,3) * choose(3,1)
Ans
## [1] 5880
The events are independent (B)
14P8
Ans = 121,080,960
Total possible combinations = 22C4
Probability of 1 orange = 4C1 / 22C4
Probability of 3 green = 9C3/22C4
total <- choose(22,4)
Ans = choose(4,1) * choose(9,3) / total
Ans
## [1] 0.04593301
Ans = factorial(11)/factorial(7)
Ans
## [1] 7920
33% of subscribers to a fitness magazine are 34 years or younger
Part A
Prob3 <- dbinom(3, size=4, prob=0.5)
Not3 <- 1 - Prob3
expValue = (Prob3 * 97) - (Not3 * 30)
expValue
## [1] 1.75
Part B
Ans = 559*1.75
Ans
## [1] 978.25
Part A
Prob4 <- pbinom(4, size=9, prob=0.5)
Not4 <- 1- Prob4
expvalue = (23 * Prob4) - (26*Not4)
expvalue
## [1] -1.5
Part B
Ans = 994 * -1.5
Ans
## [1] -1491