Loading libraries

library(tidyverse)
library(stringr)
library(ggthemes)
library(knitr)
opts_chunk$set(tidy.opts=list(width.cutoff=60),tidy=TRUE)

Tidying data

catfish <- read.csv("https://raw.githubusercontent.com/agCS/DATA607/master/CatfishFarm.csv", 
    skip = 1, header = TRUE, stringsAsFactors = FALSE)
catfish <- catfish[-7, ]
catfish <- catfish %>% gather(Year, Count, 2:26)
catfish <- catfish %>% spread(Size.category, Count)
# removing thousand separators
catfish <- catfish %>% mutate_all(gsub, pattern = ",", replacement = "")
for (i in 1:nrow(catfish)) {
    catfish$Year[i] <- as.numeric(str_extract_all(catfish$Year[i], 
        "[[:digit:]]{4}"))
}
colnames(catfish) <- c("Year", "Broodfish", "Fingerling/fry", 
    "Large", "Medium", "Small", "Stockers")
catfish <- lapply(catfish, as.numeric)
catfish <- as.data.frame(catfish)
catfish <- catfish %>% gather(Inventory, count, 2:7)
catfish$Inventory <- as.factor(catfish$Inventory)
levels(catfish$Inventory)
## [1] "Broodfish"      "Fingerling.fry" "Large"          "Medium"        
## [5] "Small"          "Stockers"
catfish$Inventory <- factor(catfish$Inventory, levels(catfish$Inventory)[c(1:2, 
    6, 5, 4, 3)])

Optional - ddd new variable for total inventory for the year, but could be done with summarize() adn other methods

# catfish <- mutate(catfish, total = Broodfish +
# Fingerling.fry + Large + Medium + Small + Stockers)
ggplot(data = subset(catfish, !Inventory %in% c("total")), mapping = aes(x = Year, 
    y = count, fill = Inventory)) + geom_area(color = "white", 
    size = 0.3) + theme_bw() + scale_fill_brewer()