This dataset #3 is 25 years worth of catfish stocks

library(tidyr)
## Warning: package 'tidyr' was built under R version 3.3.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3
data3 <- read.csv("CatfishFarm.csv", header=FALSE)
head(data3)
##                   V1      V2      V3      V4      V5      V6      V7
## 1   Size category    1992    1993    1994    1995    1996    1997
## 2       Broodfish 1/   1,491   1,169   1,183   1,301   1,171   1,163
## 3  Fingerling/fry 2/ 849,412 669,491 648,628 724,693 823,397 873,457
## 4        Stockers 3/ 634,353 571,254 548,207 554,342 627,834 754,816
## 5  Small foodsize 4/ 166,731 153,600 134,314 138,160 156,297 178,448
## 6 Medium foodsize 5/  70,495  61,894  48,851  59,159  64,858  84,725
##        V8      V9       V10       V11       V12     V13     V14     V15
## 1    1998    1999      2000      2001      2002    2003    2004    2005
## 2   1,187   1,155     1,377     1,327     1,171   1,303   1,113   1,053
## 3 975,542 986,368 1,053,300 1,023,533 1,066,400 990,163 745,849 712,144
## 4 607,878 678,682   790,683   845,287   676,378 775,226 890,275 660,000
## 5 178,511 182,251   200,032   239,655   287,591 254,920 261,323 243,090
## 6  62,140  63,049    77,149    87,926   106,117 127,908 109,120  95,240
##         V16     V17     V18     V19     V20     V21     V22     V23
## 1      2006    2007    2008    2009    2010    2011    2012    2013
## 2     1,091     886     801     704     536     495     562     540
## 3 1,045,266 985,620 951,910 728,340 429,590 568,990 451,100 398,510
## 4   781,958 586,320 688,844 586,069 366,090 380,660 463,485 339,260
## 5   214,848 210,340 204,750 193,870 169,030 115,560 112,970 103,520
## 6   103,591 104,080 107,800 105,610  91,790  54,130  64,740  58,015
##       V24     V25     V26
## 1    2014    2015    2016
## 2     650     577     520
## 3 420,060 449,510 328,570
## 4 289,080 248,790 204,800
## 5 102,190  96,810 100,850
## 6  50,600  48,220  45,775

Drop the first row, and tidy by using rename and gather. There was an issue with this data set regarding column names and I felt this was the best way to do it.

data3 <- data3[-c(1), ]

# tidy up: rename and gather
catfish <- data3 %>% 
  rename("Category"=V1,
         "1992"=V2,
         "1993"=V3,
         "1994"=V4,
         "1995"=V5,
         "1996"=V6,
         "1997"=V7,
         "1998"=V8,
         "1999"=V9,
         "2000"=V10,
         "2001"=V11,
         "2002"=V12,
         "2003"=V13,
         "2004"=V14,
         "2005"=V15,
         "2006"=V16,
         "2007"=V17,
         "2008"=V18,
         "2009"=V19,
         "2010"=V20,
         "2011"=V21,
         "2012"=V22,
         "2013"=V23,
         "2014"=V24,
         "2015"=V25,
         "2016"=V26) %>% 
  
  gather(-Category, key = "Year", value = "Stock")
## Warning: attributes are not identical across measure variables;
## they will be dropped
head(catfish)
##             Category Year   Stock
## 1       Broodfish 1/ 1992   1,491
## 2  Fingerling/fry 2/ 1992 849,412
## 3        Stockers 3/ 1992 634,353
## 4  Small foodsize 4/ 1992 166,731
## 5 Medium foodsize 5/ 1992  70,495
## 6  Large foodsize 6/ 1992   6,769

remove the commas from Stock so they will sum together, and compare stock by size/category

catfish$Category <- gsub("/","", catfish$Category)
catfish$Stock <- as.numeric(gsub(",", "", catfish$Stock))

Stock.by.Size <- catfish %>% 
  
  select(Category, Stock) %>% 
  
  group_by(Category) %>% 
  
  summarise(Stock.by.Category = sum(Stock))

head(Stock.by.Size)
## # A tibble: 6 x 2
##            Category Stock.by.Category
##               <chr>             <dbl>
## 1       Broodfish 1             24526
## 2   Fingerlingfry 2          18899843
## 3  Large foodsize 6            185485
## 4 Medium foodsize 5           1952982
## 5  Small foodsize 4           4399661
## 6        Stockers 3          14550571

compare stock by year

Stock.by.year <- catfish %>% 
  
  select(Year, Stock) %>% 
  
  group_by(Year) %>% 
  
  summarise(Stock = sum(Stock))

head(Stock.by.year)
## # A tibble: 6 x 2
##    Year   Stock
##   <chr>   <dbl>
## 1  1992 1729251
## 2  1993 1464106
## 3  1994 1386379
## 4  1995 1482191
## 5  1996 1680201
## 6  1997 1900419