This data set is based on 2016 Federal Transportation Authority energy consumption of various transportation agencies througout the USA.

library(tidyr)
## Warning: package 'tidyr' was built under R version 3.3.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data <- read.csv("Energy Consumption.csv")

head(data,30)
##    ï..5.Digit.NTD.ID Legacy.NTD.ID
## 1                  1          0001
## 2                  1          0001
## 3                  1          0001
## 4                  1          0001
## 5                  1          0001
## 6                  1          0001
## 7                  1          0001
## 8                  2          0002
## 9                  2          0002
## 10                 2          0002
## 11                 2          0002
## 12                 3          0003
## 13                 3          0003
## 14                 3          0003
## 15                 3          0003
## 16                 5          0005
## 17                 5          0005
## 18                 6          0006
## 19                 6          0006
## 20                 6          0006
## 21                 6          0006
## 22                 7          0007
## 23                 7          0007
## 24                 7          0007
## 25                 7          0007
## 26                 7          0007
## 27                 8          0008
## 28                 8          0008
## 29                 8          0008
## 30                 8          0008
##                                                  Agency.Name Reporter.Type
## 1                   King County Department of Transportation Full Reporter
## 2                   King County Department of Transportation Full Reporter
## 3                   King County Department of Transportation Full Reporter
## 4                   King County Department of Transportation Full Reporter
## 5                   King County Department of Transportation Full Reporter
## 6                   King County Department of Transportation Full Reporter
## 7                   King County Department of Transportation Full Reporter
## 8                                  Spokane Transit Authority Full Reporter
## 9                                  Spokane Transit Authority Full Reporter
## 10                                 Spokane Transit Authority Full Reporter
## 11                                 Spokane Transit Authority Full Reporter
## 12       Pierce County Transportation Benefit Area Authority Full Reporter
## 13       Pierce County Transportation Benefit Area Authority Full Reporter
## 14       Pierce County Transportation Benefit Area Authority Full Reporter
## 15       Pierce County Transportation Benefit Area Authority Full Reporter
## 16                                           Everett Transit Full Reporter
## 17                                           Everett Transit Full Reporter
## 18                                            Yakima Transit Full Reporter
## 19                                            Yakima Transit Full Reporter
## 20                                            Yakima Transit Full Reporter
## 21                                            Yakima Transit Full Reporter
## 22                                     Lane Transit District Full Reporter
## 23                                     Lane Transit District Full Reporter
## 24                                     Lane Transit District Full Reporter
## 25                                     Lane Transit District Full Reporter
## 26                                     Lane Transit District Full Reporter
## 27 Tri-County Metropolitan Transportation District of Oregon Full Reporter
## 28 Tri-County Metropolitan Transportation District of Oregon Full Reporter
## 29 Tri-County Metropolitan Transportation District of Oregon Full Reporter
## 30 Tri-County Metropolitan Transportation District of Oregon Full Reporter
##    Reporting.Module Mode TOS Bio.Diesel Bunker.Fuel C.Natural.Gas
## 1             Urban   VP  DO                     NA              
## 2             Urban   DR  PT          0          NA              
## 3             Urban   MB  PT          0          NA              
## 4             Urban   FB  DO    201,892          NA              
## 5             Urban   MB  DO          0          NA              
## 6             Urban   SR  DO                     NA              
## 7             Urban   TB  DO                     NA              
## 8             Urban   VP  DO                     NA              
## 9             Urban   DR  DO          0          NA              
## 10            Urban   DR  PT          0          NA              
## 11            Urban   MB  DO          0          NA              
## 12            Urban   VP  DO                     NA              
## 13            Urban   DR  PT                     NA              
## 14            Urban   DR  DO                     NA        25,162
## 15            Urban   MB  DO          0          NA     1,274,778
## 16            Urban   DR  DO          0          NA              
## 17            Urban   MB  DO          0          NA              
## 18            Urban   DR  PT                     NA              
## 19            Urban   VP  DO          0          NA              
## 20            Urban   CB  PT          0          NA              
## 21            Urban   MB  DO          0          NA              
## 22            Urban   DR  PT                     NA              
## 23            Urban   VP  PT                     NA              
## 24            Urban   MB  PT      9,764          NA              
## 25            Urban   MB  DO    510,000          NA              
## 26            Urban   RB  DO                     NA              
## 27            Urban   DR  PT    748,873          NA              
## 28            Urban   LR  DO                     NA              
## 29            Urban   MB  DO  5,380,816          NA              
## 30            Urban   YR  PT    106,645          NA              
##    Cooking.Oil Diesel.Fuel Electric.Battery Electric.Propulsion Ethanol
## 1           NA                       52,825                            
## 2           NA     439,823                                             
## 3           NA      33,976                                             
## 4           NA      20,220                                             
## 5           NA  10,151,916          226,958                            
## 6           NA                                          869,314        
## 7           NA                                       19,655,645        
## 8           NA                                                         
## 9           NA     111,563                                             
## 10          NA     137,274                                             
## 11          NA   1,133,980                                             
## 12          NA                                                         
## 13          NA                                                         
## 14          NA                                                         
## 15          NA     183,096                                             
## 16          NA      17,880                                             
## 17          NA     307,976                                             
## 18          NA                                                         
## 19          NA       1,168                                             
## 20          NA       5,308                                             
## 21          NA     169,082                                             
## 22          NA                                                         
## 23          NA                                                         
## 24          NA           0                                             
## 25          NA           0                                             
## 26          NA      97,180                                             
## 27          NA           0                                             
## 28          NA                                       55,121,881        
## 29          NA           0                                             
## 30          NA           0                                             
##    Gasoline Hydrogen Kerosene Liquified.Nat.Gas Liquified.Petroleum.Gas
## 1   919,256                NA                                          
## 2   527,723                NA                                   107,194
## 3   162,009                NA                                          
## 4                          NA                                          
## 5                          NA                                          
## 6                          NA                                          
## 7                          NA                                          
## 8    69,869                NA                                          
## 9    21,798                NA             2,726                        
## 10   20,583                NA                                          
## 11                         NA                                          
## 12  336,298                NA                                          
## 13  303,032                NA                                          
## 14   89,011                NA                                          
## 15   24,034                NA                                          
## 16  104,663                NA                                          
## 17                         NA                                          
## 18   45,779                NA                                          
## 19   19,912                NA                                          
## 20    2,427                NA                                          
## 21                         NA                                          
## 22  169,473                NA                                          
## 23   25,327                NA                                          
## 24      224                NA                                          
## 25                         NA                                          
## 26                         NA                                          
## 27   35,984                NA                                          
## 28                         NA                                          
## 29                         NA                                          
## 30                         NA                                          
##    Other.Fuel Other.Fuel.Description
## 1          NA                     NA
## 2          NA                     NA
## 3          NA                     NA
## 4          NA                     NA
## 5          NA                     NA
## 6          NA                     NA
## 7          NA                     NA
## 8          NA                     NA
## 9          NA                     NA
## 10         NA                     NA
## 11         NA                     NA
## 12         NA                     NA
## 13         NA                     NA
## 14         NA                     NA
## 15         NA                     NA
## 16         NA                     NA
## 17         NA                     NA
## 18         NA                     NA
## 19         NA                     NA
## 20         NA                     NA
## 21         NA                     NA
## 22         NA                     NA
## 23         NA                     NA
## 24         NA                     NA
## 25         NA                     NA
## 26         NA                     NA
## 27         NA                     NA
## 28         NA                     NA
## 29         NA                     NA
## 30         NA                     NA

This step took a while because I had a number of error messages when I was trying to add numbers together. The trick appeared to remove the commas from the numbers and use as.numeric(). I performed this for all the rows I wanted to use in the table.

Afterwards, I named a new variable energy where I used dplyr to pipe in steps, first by selecting the relevant variables, grouping by the agency name, and getting the summation of each of the fuel types. Since this first resulted in NAs all over the place, I substituted NA with 0. Normally a bad idea but I think it is ok with this data set.

data$Bio.Diesel              <-  as.numeric(gsub(",", "", data$Bio.Diesel))
data$C.Natural.Gas           <-  as.numeric(gsub(",", "", data$C.Natural.Gas))
data$Diesel.Fuel             <-  as.numeric(gsub(",", "", data$Diesel.Fuel))
data$Electric.Battery        <-  as.numeric(gsub(",", "", data$Electric.Battery))
data$Electric.Propulsion     <-  as.numeric(gsub(",", "", data$Electric.Propulsion))
data$Ethanol                 <-  as.numeric(gsub(",", "", data$Ethanol))
data$Gasoline                <-  as.numeric(gsub(",", "", data$Gasoline))
data$Hydrogen                <-  as.numeric(gsub(",", "", data$Hydrogen))
data$Liquified.Nat.Gas       <-  as.numeric(gsub(",", "", data$Liquified.Nat.Gas))
data$Liquified.Petroleum.Gas <-  as.numeric(gsub(",", "", data$Liquified.Petroleum.Gas))

energy <- data %>% 
  
  select(Agency.Name,
         Mode,
         TOS,
         Bio.Diesel,
         C.Natural.Gas,
         Diesel.Fuel,
         Electric.Battery,
         Electric.Propulsion,
         Ethanol,
         Gasoline,
         Hydrogen,
         Liquified.Nat.Gas,
         Liquified.Petroleum.Gas)  %>% 
             
  group_by(Agency.Name) %>% 
  
  summarise(Diesel = sum(Diesel.Fuel),
            CNG = sum(C.Natural.Gas),
            Gasoline = sum(Gasoline),
            Bio.Diesel = sum(Bio.Diesel),
            All.Electric = sum(Electric.Battery),
            Hybrid = sum(Electric.Propulsion),
            Hydrogen = sum(Hydrogen),
            LNG = sum(Liquified.Nat.Gas))

energy[is.na(energy)] <- 0

head(energy,20)
## # A tibble: 20 x 9
##                                   Agency.Name  Diesel    CNG Gasoline
##                                        <fctr>   <dbl>  <dbl>    <dbl>
##  1                        Academy Lines, Inc. 2158821      0        0
##  2                            Access Services       0 290517  2076580
##  3             Adirondack Transit Lines, Inc,  459651      0        0
##  4      Alameda-Contra Costa Transit District 5235532      0        0
##  5          Alamo Area Council of Governments    1165      0   139087
##  6                Alaska Railroad Corporation  791966      0        0
##  7                      Albany Transit System       0      0        0
##  8                  Altamont Corridor Express  481901      0        0
##  9   Alternativa de Transporte Integrado -ATI       0      0        0
## 10                      Altoona Metro Transit       0      0        0
## 11             Ames Transit Agency dba CyRide  367329      0        0
## 12             Anaheim Transportation Network       0 167320        0
## 13    Ann Arbor Area Transportation Authority  110052      0        0
## 14                        Anne Arundel County       0      0        0
## 15          Antelope Valley Transit Authority       0      0        0
## 16       Arlington Transit - Arlington County       0      0        0
## 17          ART (Asheville Redefines Transit)  255798      0        0
## 18                      Athens Transit System  260256      0        0
## 19      Audubon Area Community Services, Inc.      59      0   217436
## 20 Augusta Richmond County Transit Department  172661      0        0
## # ... with 5 more variables: Bio.Diesel <dbl>, All.Electric <dbl>,
## #   Hybrid <dbl>, Hydrogen <dbl>, LNG <dbl>

Lastly, I wanted to see the total consumpution by fuel type across all agencies countrywide. The only problem is the unit of measurement. I could not find a key on the FTA website to determine if for example the consumption in diesel was in gallons, or the batter electric in kw/hrs. The largest number was the Hybrid, which common sense would tell you it cannot be the same unit of measurement as diesel.

Total.Consumption <- energy %>% 
  summarise(Diesel = sum(Diesel),
            CNG = sum(CNG),
            Gasoline = sum(Gasoline),
            Bio.Diesel = sum(Bio.Diesel),
            All.Electric = sum(All.Electric),
            Hybrid = sum(Hybrid),
            Hydrogen = sum(Hydrogen),
            LNG = sum(LNG))

Total.Consumption
## # A tibble: 1 x 8
##      Diesel      CNG Gasoline Bio.Diesel All.Electric     Hybrid Hydrogen
##       <dbl>    <dbl>    <dbl>      <dbl>        <dbl>      <dbl>    <dbl>
## 1 215177649 33629557 30570536    7873549      1608039 1041519833        0
## # ... with 1 more variables: LNG <dbl>

This tidying felt pretty clean and I felt the need to write it to csv.

write.csv(energy, "Transit_Energy.csv", row.names = FALSE)