library("epiR")
library("FRESA.CAD")
library(network)
library(GGally)
library("e1071")
library("gplots")

error.bar <- function(x, y, upper, lower=upper, length=0.05,...){
if(length(x) != length(y) | length(y) !=length(lower) | length(lower) != length(upper))
stop("vectors must be same length")
arrows(x,y+upper, x, y-lower, angle=90, code=3, length=length, ...)
}

barPlotCiError<-  function(citable,metricname,thesets,themethod,main,...)
{
colnames(citable) <- c(metricname,"lower","upper")
rownames(citable) <- rep(thesets,length(themethod))
pander::pander(citable,caption=main,round = 3)
citable <- citable[order(rep(1:length(thesets),length(themethod))),]
barmatrix <- matrix(citable[,1],length(themethod),length(thesets))
colnames(barmatrix) <- thesets
rownames(barmatrix) <- themethod
pander::pander(barmatrix,caption=main,round = 3)
barp <- barplot(barmatrix,cex.names=0.7,las=2,ylim=c(0.0,1.0),main=main,ylab=metricname,beside=TRUE,legend = themethod,...)
error.bar(barp,citable[,1],citable[,3]-citable[,1],citable[,1]-citable[,2])
return(barp)
}


#trainLabeled <- read.delim("./Arcene/ARCENE/trainSet.txt")
#validLabeled <- read.delim("./Arcene/ARCENE/arcene_valid.txt")
#testLabeled <- read.delim("./Arcene/ARCENE/arcene_test.txt")

trainLabeled <- read.delim("trainSet.txt")
validLabeled <- read.delim("arcene_valid.txt")
testLabeled <- read.delim("arcene_test.txt")

trainLabeled$Labels <-  1*(trainLabeled$Labels>0)
validLabeled$Labels <-  1*(validLabeled$Labels>0)


arcene.norm <- rbind(trainLabeled,validLabeled)
diagTable <- NULL
citable <- NULL
errorcitable <- NULL


collectPerfomance<-  function(bswimsmodel)
{
diagTable <- NULL
citable <- NULL
errorcitable <- NULL

pr <- predict(bswimsmodel$BSWiMS.model,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),pr),main="B:SWiMS")
diagTable$BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))

pr <- predict(bswimsmodel$bagging$bagged.model,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),pr),main="Bagged")
diagTable$BagginForward <- pm$predictionTable
ci <- epi.tests(diagTable$BagginForward)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))

prm <- ensemblePredict(bswimsmodel$BSWiMS.models$formula.list,trainLabeled,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prm$ensemblePredict),main="Ensemble B:SWiMS")
diagTable$EnsembleBSwims <- pm$predictionTable
ci <- epi.tests(diagTable$EnsembleBSwims)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))


prm2 <- ensemblePredict(bswimsmodel$BSWiMS.models$forward.selection.list,trainLabeled,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prm2$ensemblePredict),main="Ensemble Forward")
diagTable$EnsembleForward <- pm$predictionTable
ci <- epi.tests(diagTable$EnsembleForward)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))


  

ds <- trainLabeled[,c("Labels",names(bswimsmodel$BSWiMS.models$bagging$frequencyTable))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: B:SWiMS Selection")
diagTable$SVM_BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))

ds <- trainLabeled[,c("Labels",rownames(bswimsmodel$univariateAnalysis[1:length(bswimsmodel$BSWiMS.models$bagging$frequencyTable),]))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Univariate Selection")
diagTable$SVM_BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))


ds <- trainLabeled[,c("Labels",names(bswimsmodel$bagging$frequencyTable))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Forward Selection")
diagTable$SVM_BaggingForward <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingForward)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))

ds <- trainLabeled[,c("Labels",rownames(bswimsmodel$univariateAnalysis[1:length(bswimsmodel$bagging$frequencyTable),]))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Univariate Forward Selection")
diagTable$SVM_BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))




ds <- trainLabeled[,c("Labels",as.character(subset(bswimsmodel$univariateAnalysis,ZUni>3.0)[,1]))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Z>3")
diagTable$SVM_3Sunivariate <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_3Sunivariate)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))


result <- list(errorcitable=errorcitable,citable=citable,diagTable=diagTable)
return(result)
}

arceneCVOne <- FRESA.Model(formula = Labels ~ 1,data = trainLabeled,bswimsCycles=5,filter.p.value = 0.01)

pm<-plot(arceneCVOne$bootstrappedModel)


pander::pander(summary(arceneCVOne$BSWiMS.model))

bg <- baggedModel(arceneCVOne$BSWiMS.models$formula.list,trainLabeled,type="LOGIT",univariate=arceneCVOne$univariateAnalysis,n_bootstrap = 30)

Num. Models: 5 To Test: 21 TopFreq: 1 Thrf: 0 Removed: 0 ******************************

pander::pander(summary(bg$bagged.model))

bv <- bootstrapValidation_Bin(model.formula=arceneCVOne$BSWiMS.model$formula,Outcome="Labels",data=trainLabeled,type="LOGIT")
pm<-plot(bv)


pc <- collectPerfomance(arceneCVOne)

citable <- rbind(citable,pc$citable)
errorcitable <- rbind(errorcitable,pc$errorcitable)


thesets <- c("BSWIMS","Forward:Bagging","BSWIMS:Ensemble","Forward:Ensemble","SVM:BSWIMS","SVM:Top(Nb)","SVM:Forward","SVM:Top(Nf)","SVM:3 Sigma")

bp <- barPlotCiError(as.matrix(citable),metricname="Accuracy",thesets=thesets,themethod=c("Validation"),main="Accuracy",args.legend = list(x = "bottomright"))

bp <- barPlotCiError(as.matrix(errorcitable),metricname="Balanced Error",thesets=thesets,themethod=c("Validation"),main="Balanced Error",args.legend = list(x = "topright"))


arceneCVTwo <- FRESA.Model(formula = Labels ~ 1,data = trainLabeled,bswimsCycles=10,filter.p.value = 0.01)

pc <- collectPerfomance(arceneCVTwo)

citable <- rbind(citable,pc$citable)
errorcitable <- rbind(errorcitable,pc$errorcitable)

bp <- barPlotCiError(as.matrix(citable),metricname="Accuracy",thesets=thesets,themethod=c("V5","V10"),main="Accuracy",args.legend = list(x = "bottomright"))

bp <- barPlotCiError(as.matrix(errorcitable),metricname="Balanced Error",thesets=thesets,themethod=c("V5","V10"),main="Balanced Error",args.legend = list(x = "topright"))


arceneCVThree <- FRESA.Model(formula = Labels ~ 1,data = trainLabeled,bswimsCycles=10,filter.p.value = 0.025)

pc <- collectPerfomance(arceneCVThree)

citable <- rbind(citable,pc$citable)
errorcitable <- rbind(errorcitable,pc$errorcitable)

bp <- barPlotCiError(as.matrix(citable),metricname="Accuracy",thesets=thesets,themethod=c("V5","V10","V10b"),main="Accuracy",args.legend = list(x = "bottomright"))


bp <- barPlotCiError(as.matrix(errorcitable),metricname="Balanced Error",thesets=thesets,themethod=c("V5","V10","V10b"),main="Balanced Error",args.legend = list(x = "topright"))


sig_ACCtable <- NULL
sig_errorcitable <- NULL
sizesig <- NULL

varlist <- as.character(subset(arceneCVOne$univariateAnalysis,ZUni>3.0)[,1])

#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#>    7 Number of features:    7 Max AUC:    0.656 AUC:    0.644 Z:    0.394 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.662 AUC:    0.662 Z:    0.501 Rdelta:  0.10000 
#>    9 Number of features:    8 Max AUC:    0.662 AUC:    0.503 Z:    0.009 Rdelta:  0.08000 
#>   10 Number of features:    8 Max AUC:    0.662 AUC:    0.623 Z:    0.353 Rdelta:  0.06400 
#>   11 Number of features:    9 Max AUC:    0.686 AUC:    0.686 Z:    0.588 Rdelta:  0.06760 
#>   12 Number of features:    9 Max AUC:    0.686 AUC:    0.585 Z:    0.118 Rdelta:  0.05408 
#>   13 Number of features:    9 Max AUC:    0.686 AUC:    0.584 Z:    0.150 Rdelta:  0.04326 
#>   14 Number of features:    9 Max AUC:    0.686 AUC:    0.587 Z:    0.048 Rdelta:  0.03461 
#>   15 Number of features:    9 Max AUC:    0.686 AUC:    0.612 Z:    0.251 Rdelta:  0.02769 
#>   16 Number of features:    9 Max AUC:    0.686 AUC:    0.585 Z:    0.136 Rdelta:  0.02215 
#>   17 Number of features:    9 Max AUC:    0.686 AUC:    0.536 Z:   -0.048 Rdelta:  0.01772 
#>   18 Number of features:    9 Max AUC:    0.686 AUC:    0.605 Z:    0.310 Rdelta:  0.01418 
#>   19 Number of features:    9 Max AUC:    0.686 AUC:    0.550 Z:    0.037 Rdelta:  0.01134 
#>   20 Number of features:    9 Max AUC:    0.686 AUC:    0.503 Z:   -0.109 Rdelta:  0.00907 
#>   21 Number of features:    9 Max AUC:    0.686 AUC:    0.533 Z:   -0.053 Rdelta:  0.00726 
#>   22 Number of features:    9 Max AUC:    0.686 AUC:    0.580 Z:    0.158 Rdelta:  0.00581 
#>   23 Number of features:    9 Max AUC:    0.686 AUC:    0.611 Z:    0.268 Rdelta:  0.00465 
#>   24 Number of features:    9 Max AUC:    0.686 AUC:    0.607 Z:    0.167 Rdelta:  0.00372 
#>   25 Number of features:   10 Max AUC:    0.695 AUC:    0.695 Z:    0.568 Rdelta:  0.01334 
#>   26 Number of features:   10 Max AUC:    0.695 AUC:    0.622 Z:    0.297 Rdelta:  0.01068 
#>   27 Number of features:   10 Max AUC:    0.695 AUC:    0.552 Z:    0.059 Rdelta:  0.00854 
#>   28 Number of features:   10 Max AUC:    0.695 AUC:    0.553 Z:    0.024 Rdelta:  0.00683 
#>   29 Number of features:   10 Max AUC:    0.695 AUC:    0.680 Z:    0.607 Rdelta:  0.00547 
#>   30 Number of features:   10 Max AUC:    0.695 AUC:    0.643 Z:    0.395 Rdelta:  0.00437 
#>   31 Number of features:   10 Max AUC:    0.695 AUC:    0.601 Z:    0.271 Rdelta:  0.00350 
#>   32 Number of features:   10 Max AUC:    0.695 AUC:    0.561 Z:    0.126 Rdelta:  0.00280 
#>   33 Number of features:   10 Max AUC:    0.695 AUC:    0.608 Z:    0.224 Rdelta:  0.00224 
#>   34 Number of features:   10 Max AUC:    0.695 AUC:    0.563 Z:    0.043 Rdelta:  0.00179 
#>   35 Number of features:   10 Max AUC:    0.695 AUC:    0.629 Z:    0.371 Rdelta:  0.00143 
#>   36 Number of features:   10 Max AUC:    0.695 AUC:    0.565 Z:    0.107 Rdelta:  0.00115 
#>   37 Number of features:   10 Max AUC:    0.695 AUC:    0.596 Z:    0.251 Rdelta:  0.00092 
#>   38 Number of features:   10 Max AUC:    0.695 AUC:    0.614 Z:    0.250 Rdelta:  0.00073 
#>   39 Number of features:   10 Max AUC:    0.695 AUC:    0.634 Z:    0.303 Rdelta:  0.00059 
#>   40 Number of features:   10 Max AUC:    0.695 AUC:    0.589 Z:    0.168 Rdelta:  0.00047 
#>   41 Number of features:   10 Max AUC:    0.695 AUC:    0.577 Z:    0.142 Rdelta:  0.00038 
#>   42 Number of features:   10 Max AUC:    0.695 AUC:    0.641 Z:    0.382 Rdelta:  0.00030 
#>   43 Number of features:   10 Max AUC:    0.695 AUC:    0.623 Z:    0.277 Rdelta:  0.00024 
#>   44 Number of features:   10 Max AUC:    0.695 AUC:    0.552 Z:    0.063 Rdelta:  0.00019 
#>   45 Number of features:   11 Max AUC:    0.697 AUC:    0.697 Z:    0.565 Rdelta:  0.01017 
#>   46 Number of features:   11 Max AUC:    0.697 AUC:    0.635 Z:    0.367 Rdelta:  0.00814 
#>   47 Number of features:   11 Max AUC:    0.697 AUC:    0.596 Z:    0.211 Rdelta:  0.00651 
#>   48 Number of features:   12 Max AUC:    0.697 AUC:    0.695 Z:    0.667 Rdelta:  0.01586 
#>   49 Number of features:   12 Max AUC:    0.697 AUC:    0.576 Z:    0.141 Rdelta:  0.01269 
#>   50 Number of features:   12 Max AUC:    0.697 AUC:    0.678 Z:    0.602 Rdelta:  0.01015 
#>   51 Number of features:   12 Max AUC:    0.697 AUC:    0.661 Z:    0.450 Rdelta:  0.00812 
#>   52 Number of features:   13 Max AUC:    0.697 AUC:    0.694 Z:    0.616 Rdelta:  0.01731 
#>   53 Number of features:   13 Max AUC:    0.697 AUC:    0.636 Z:    0.430 Rdelta:  0.01385 
#>   54 Number of features:   13 Max AUC:    0.697 AUC:    0.623 Z:    0.261 Rdelta:  0.01108 
#>   55 Number of features:   13 Max AUC:    0.697 AUC:    0.639 Z:    0.512 Rdelta:  0.00886 
#>   56 Number of features:   13 Max AUC:    0.697 AUC:    0.645 Z:    0.432 Rdelta:  0.00709 
#>   57 Number of features:   13 Max AUC:    0.697 AUC:    0.567 Z:    0.199 Rdelta:  0.00567 
#>   58 Number of features:   13 Max AUC:    0.697 AUC:    0.627 Z:    0.330 Rdelta:  0.00454 
#>   59 Number of features:   13 Max AUC:    0.697 AUC:    0.636 Z:    0.399 Rdelta:  0.00363 
#>   60 Number of features:   13 Max AUC:    0.697 AUC:    0.648 Z:    0.460 Rdelta:  0.00290 
#>   61 Number of features:   13 Max AUC:    0.697 AUC:    0.657 Z:    0.505 Rdelta:  0.00232 
#>   62 Number of features:   13 Max AUC:    0.697 AUC:    0.630 Z:    0.406 Rdelta:  0.00186 
#>   63 Number of features:   13 Max AUC:    0.697 AUC:    0.649 Z:    0.489 Rdelta:  0.00149 
#>   64 Number of features:   13 Max AUC:    0.697 AUC:    0.643 Z:    0.434 Rdelta:  0.00119 
#>   65 Number of features:   13 Max AUC:    0.697 AUC:    0.652 Z:    0.449 Rdelta:  0.00095 
#>   66 Number of features:   13 Max AUC:    0.697 AUC:    0.633 Z:    0.429 Rdelta:  0.00076 
#>   67 Number of features:   13 Max AUC:    0.697 AUC:    0.646 Z:    0.473 Rdelta:  0.00061 
#>   68 Number of features:   13 Max AUC:    0.697 AUC:    0.635 Z:    0.444 Rdelta:  0.00049 
#>   69 Number of features:   13 Max AUC:    0.697 AUC:    0.612 Z:    0.248 Rdelta:  0.00039 
#>   70 Number of features:   13 Max AUC:    0.697 AUC:    0.646 Z:    0.453 Rdelta:  0.00031 
#>   71 Number of features:   13 Max AUC:    0.697 AUC:    0.614 Z:    0.322 Rdelta:  0.00025 
#>   72 Number of features:   13 Max AUC:    0.697 AUC:    0.629 Z:    0.451 Rdelta:  0.00020 
#>   73 Number of features:   13 Max AUC:    0.697 AUC:    0.663 Z:    0.443 Rdelta:  0.00016 
#>   74 Number of features:   13 Max AUC:    0.697 AUC:    0.672 Z:    0.550 Rdelta:  0.00013 
#>   75 Number of features:   13 Max AUC:    0.697 AUC:    0.622 Z:    0.430 Rdelta:  0.00010 
#>   76 Number of features:   13 Max AUC:    0.697 AUC:    0.622 Z:    0.408 Rdelta:  0.00008
#>    user  system elapsed 
#>    19.5     0.0    19.5
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#>    7 Number of features:    7 Max AUC:    0.685 AUC:    0.685 Z:    0.834 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.685 AUC:    0.677 Z:    0.811 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.750 AUC:    0.750 Z:    1.009 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.750 AUC:    0.746 Z:    1.014 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.750 AUC:    0.750 Z:    1.115 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.762 AUC:    0.762 Z:    0.958 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.763 AUC:    0.763 Z:    0.825 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.778 AUC:    0.778 Z:    0.196 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.778 AUC:    0.777 Z:    0.436 Rdelta:  0.10000 
#>   16 Number of features:   16 Max AUC:    0.787 AUC:    0.787 Z:    0.618 Rdelta:  0.10000 
#>   17 Number of features:   17 Max AUC:    0.787 AUC:    0.781 Z:    0.757 Rdelta:  0.10000 
#>   18 Number of features:   17 Max AUC:    0.787 AUC:    0.767 Z:    0.522 Rdelta:  0.08000 
#>   19 Number of features:   18 Max AUC:    0.790 AUC:    0.790 Z:    0.648 Rdelta:  0.08200 
#>   20 Number of features:   18 Max AUC:    0.790 AUC:    0.766 Z:    0.688 Rdelta:  0.06560 
#>   21 Number of features:   18 Max AUC:    0.790 AUC:    0.765 Z:    0.659 Rdelta:  0.05248 
#>   22 Number of features:   18 Max AUC:    0.790 AUC:    0.761 Z:    0.324 Rdelta:  0.04198 
#>   23 Number of features:   18 Max AUC:    0.790 AUC:    0.783 Z:    0.173 Rdelta:  0.03359 
#>   24 Number of features:   19 Max AUC:    0.790 AUC:    0.785 Z:    0.587 Rdelta:  0.04023 
#>   25 Number of features:   19 Max AUC:    0.790 AUC:    0.770 Z:    0.682 Rdelta:  0.03218 
#>   26 Number of features:   19 Max AUC:    0.790 AUC:    0.773 Z:    0.625 Rdelta:  0.02575 
#>   27 Number of features:   19 Max AUC:    0.790 AUC:    0.773 Z:    0.616 Rdelta:  0.02060 
#>   28 Number of features:   20 Max AUC:    0.790 AUC:    0.778 Z:    0.608 Rdelta:  0.02854 
#>   29 Number of features:   20 Max AUC:    0.790 AUC:    0.771 Z:    0.584 Rdelta:  0.02283 
#>   30 Number of features:   21 Max AUC:    0.790 AUC:    0.779 Z:    0.646 Rdelta:  0.03055 
#>   31 Number of features:   22 Max AUC:    0.790 AUC:    0.785 Z:    0.598 Rdelta:  0.03749 
#>   32 Number of features:   22 Max AUC:    0.790 AUC:    0.777 Z:    0.259 Rdelta:  0.02999 
#>   33 Number of features:   23 Max AUC:    0.790 AUC:    0.777 Z:    0.696 Rdelta:  0.03699 
#>   34 Number of features:   24 Max AUC:    0.790 AUC:    0.788 Z:    0.380 Rdelta:  0.04329 
#>   35 Number of features:   24 Max AUC:    0.790 AUC:    0.778 Z:    0.266 Rdelta:  0.03464 
#>   36 Number of features:   24 Max AUC:    0.790 AUC:    0.772 Z:    0.593 Rdelta:  0.02771 
#>   37 Number of features:   24 Max AUC:    0.790 AUC:    0.769 Z:    0.260 Rdelta:  0.02217 
#>   38 Number of features:   25 Max AUC:    0.790 AUC:    0.783 Z:    0.615 Rdelta:  0.02995 
#>   39 Number of features:   26 Max AUC:    0.790 AUC:    0.786 Z:    0.676 Rdelta:  0.03696 
#>   40 Number of features:   27 Max AUC:    0.790 AUC:    0.780 Z:    0.669 Rdelta:  0.04326 
#>   41 Number of features:   28 Max AUC:    0.790 AUC:    0.786 Z:    0.695 Rdelta:  0.04893 
#>   42 Number of features:   29 Max AUC:    0.791 AUC:    0.791 Z:    0.187 Rdelta:  0.05404 
#>   43 Number of features:   30 Max AUC:    0.791 AUC:    0.787 Z:    0.580 Rdelta:  0.05864 
#>   44 Number of features:   31 Max AUC:    0.791 AUC:    0.783 Z:    0.621 Rdelta:  0.06277 
#>   45 Number of features:   32 Max AUC:    0.792 AUC:    0.792 Z:    0.770 Rdelta:  0.06650 
#>   46 Number of features:   32 Max AUC:    0.792 AUC:    0.773 Z:    0.555 Rdelta:  0.05320 
#>   47 Number of features:   32 Max AUC:    0.792 AUC:    0.778 Z:    0.476 Rdelta:  0.04256 
#>   48 Number of features:   32 Max AUC:    0.792 AUC:    0.780 Z:    0.250 Rdelta:  0.03405 
#>   49 Number of features:   32 Max AUC:    0.792 AUC:    0.777 Z:    0.260 Rdelta:  0.02724 
#>   50 Number of features:   32 Max AUC:    0.792 AUC:    0.779 Z:    0.470 Rdelta:  0.02179 
#>   51 Number of features:   32 Max AUC:    0.792 AUC:    0.784 Z:    0.690 Rdelta:  0.01743 
#>   52 Number of features:   32 Max AUC:    0.792 AUC:    0.783 Z:    0.402 Rdelta:  0.01395 
#>   53 Number of features:   32 Max AUC:    0.792 AUC:    0.778 Z:    0.149 Rdelta:  0.01116 
#>   54 Number of features:   33 Max AUC:    0.792 AUC:    0.791 Z:    0.618 Rdelta:  0.02004 
#>   55 Number of features:   34 Max AUC:    0.792 AUC:    0.784 Z:    0.564 Rdelta:  0.02804 
#>   56 Number of features:   35 Max AUC:    0.794 AUC:    0.794 Z:    0.699 Rdelta:  0.03523 
#>   57 Number of features:   35 Max AUC:    0.794 AUC:    0.781 Z:    0.422 Rdelta:  0.02819 
#>   58 Number of features:   36 Max AUC:    0.794 AUC:    0.790 Z:    0.650 Rdelta:  0.03537 
#>   59 Number of features:   37 Max AUC:    0.794 AUC:    0.792 Z:    0.639 Rdelta:  0.04183 
#>   60 Number of features:   38 Max AUC:    0.794 AUC:    0.791 Z:    0.408 Rdelta:  0.04765 
#>   61 Number of features:   39 Max AUC:    0.794 AUC:    0.794 Z:    0.112 Rdelta:  0.05288 
#>   62 Number of features:   40 Max AUC:    0.807 AUC:    0.807 Z:    0.323 Rdelta:  0.05759 
#>   63 Number of features:   40 Max AUC:    0.807 AUC:    0.794 Z:    0.067 Rdelta:  0.04608 
#>   64 Number of features:   40 Max AUC:    0.807 AUC:    0.797 Z:    0.209 Rdelta:  0.03686 
#>   65 Number of features:   40 Max AUC:    0.807 AUC:    0.791 Z:    0.251 Rdelta:  0.02949 
#>   66 Number of features:   41 Max AUC:    0.807 AUC:    0.801 Z:    0.680 Rdelta:  0.03654 
#>   67 Number of features:   41 Max AUC:    0.807 AUC:    0.786 Z:    0.087 Rdelta:  0.02923 
#>   68 Number of features:   41 Max AUC:    0.807 AUC:    0.780 Z:    0.605 Rdelta:  0.02339 
#>   69 Number of features:   42 Max AUC:    0.807 AUC:    0.798 Z:    0.547 Rdelta:  0.03105 
#>   70 Number of features:   43 Max AUC:    0.807 AUC:    0.803 Z:    0.728 Rdelta:  0.03794 
#>   71 Number of features:   43 Max AUC:    0.807 AUC:    0.786 Z:    0.596 Rdelta:  0.03035 
#>   72 Number of features:   44 Max AUC:    0.807 AUC:    0.804 Z:    0.525 Rdelta:  0.03732 
#>   73 Number of features:   45 Max AUC:    0.807 AUC:    0.807 Z:    0.398 Rdelta:  0.04359 
#>   74 Number of features:   45 Max AUC:    0.807 AUC:    0.789 Z:    0.449 Rdelta:  0.03487 
#>   75 Number of features:   46 Max AUC:    0.807 AUC:    0.805 Z:    0.589 Rdelta:  0.04138 
#>   76 Number of features:   46 Max AUC:    0.807 AUC:    0.788 Z:    0.506 Rdelta:  0.03311 
#>   77 Number of features:   47 Max AUC:    0.807 AUC:    0.798 Z:    0.792 Rdelta:  0.03980 
#>   78 Number of features:   47 Max AUC:    0.807 AUC:    0.788 Z:    0.534 Rdelta:  0.03184 
#>   79 Number of features:   48 Max AUC:    0.807 AUC:    0.806 Z:    0.549 Rdelta:  0.03865 
#>   80 Number of features:   49 Max AUC:    0.807 AUC:    0.800 Z:    0.582 Rdelta:  0.04479 
#>   81 Number of features:   50 Max AUC:    0.807 AUC:    0.800 Z:    0.446 Rdelta:  0.05031 
#>   82 Number of features:   51 Max AUC:    0.811 AUC:    0.811 Z:    0.433 Rdelta:  0.05528 
#>   83 Number of features:   51 Max AUC:    0.811 AUC:    0.797 Z:    0.699 Rdelta:  0.04422 
#>   84 Number of features:   51 Max AUC:    0.811 AUC:    0.798 Z:    0.539 Rdelta:  0.03538 
#>   85 Number of features:   51 Max AUC:    0.811 AUC:    0.801 Z:    0.238 Rdelta:  0.02830 
#>   86 Number of features:   51 Max AUC:    0.811 AUC:    0.796 Z:    0.431 Rdelta:  0.02264 
#>   87 Number of features:   51 Max AUC:    0.811 AUC:    0.792 Z:    0.350 Rdelta:  0.01811 
#>   88 Number of features:   51 Max AUC:    0.811 AUC:    0.797 Z:    0.665 Rdelta:  0.01449 
#>   89 Number of features:   52 Max AUC:    0.812 AUC:    0.812 Z:    0.684 Rdelta:  0.02304 
#>   90 Number of features:   53 Max AUC:    0.812 AUC:    0.805 Z:    0.760 Rdelta:  0.03074 
#>   91 Number of features:   54 Max AUC:    0.812 AUC:    0.807 Z:    0.437 Rdelta:  0.03766 
#>   92 Number of features:   54 Max AUC:    0.812 AUC:    0.794 Z:    0.542 Rdelta:  0.03013 
#>   93 Number of features:   55 Max AUC:    0.812 AUC:    0.807 Z:    0.388 Rdelta:  0.03712 
#>   94 Number of features:   55 Max AUC:    0.812 AUC:    0.792 Z:    0.430 Rdelta:  0.02969 
#>   95 Number of features:   55 Max AUC:    0.812 AUC:    0.802 Z:    0.440 Rdelta:  0.02376 
#>   96 Number of features:   55 Max AUC:    0.812 AUC:    0.801 Z:    0.459 Rdelta:  0.01900 
#>   97 Number of features:   56 Max AUC:    0.812 AUC:    0.811 Z:    0.355 Rdelta:  0.02710 
#>   98 Number of features:   57 Max AUC:    0.812 AUC:    0.810 Z:    0.419 Rdelta:  0.03439 
#>   99 Number of features:   57 Max AUC:    0.812 AUC:    0.801 Z:    0.346 Rdelta:  0.02751 
#>  100 Number of features:   57 Max AUC:    0.812 AUC:    0.797 Z:    0.211 Rdelta:  0.02201 
#>  101 Number of features:   58 Max AUC:    0.816 AUC:    0.816 Z:    0.367 Rdelta:  0.02981 
#>  102 Number of features:   58 Max AUC:    0.816 AUC:    0.799 Z:    0.279 Rdelta:  0.02385 
#>  103 Number of features:   58 Max AUC:    0.816 AUC:    0.803 Z:    0.358 Rdelta:  0.01908 
#>  104 Number of features:   58 Max AUC:    0.816 AUC:    0.805 Z:    0.365 Rdelta:  0.01526 
#>  105 Number of features:   58 Max AUC:    0.816 AUC:    0.800 Z:    0.334 Rdelta:  0.01221 
#>  106 Number of features:   58 Max AUC:    0.816 AUC:    0.801 Z:    0.343 Rdelta:  0.00977 
#>  107 Number of features:   58 Max AUC:    0.816 AUC:    0.805 Z:    0.282 Rdelta:  0.00781 
#>  108 Number of features:   58 Max AUC:    0.816 AUC:    0.794 Z:    0.290 Rdelta:  0.00625 
#>  109 Number of features:   58 Max AUC:    0.816 AUC:    0.802 Z:    0.305 Rdelta:  0.00500 
#>  110 Number of features:   58 Max AUC:    0.816 AUC:    0.805 Z:    0.380 Rdelta:  0.00400 
#>  111 Number of features:   58 Max AUC:    0.816 AUC:    0.803 Z:    0.345 Rdelta:  0.00320 
#>  112 Number of features:   58 Max AUC:    0.816 AUC:    0.802 Z:    0.354 Rdelta:  0.00256 
#>  113 Number of features:   58 Max AUC:    0.816 AUC:    0.800 Z:    0.385 Rdelta:  0.00205 
#>  114 Number of features:   58 Max AUC:    0.816 AUC:    0.802 Z:    0.361 Rdelta:  0.00164 
#>  115 Number of features:   58 Max AUC:    0.816 AUC:    0.800 Z:    0.364 Rdelta:  0.00131 
#>  116 Number of features:   58 Max AUC:    0.816 AUC:    0.797 Z:    0.387 Rdelta:  0.00105 
#>  117 Number of features:   59 Max AUC:    0.816 AUC:    0.812 Z:    0.407 Rdelta:  0.01094 
#>  118 Number of features:   59 Max AUC:    0.816 AUC:    0.801 Z:    0.377 Rdelta:  0.00876 
#>  119 Number of features:   60 Max AUC:    0.816 AUC:    0.807 Z:    0.355 Rdelta:  0.01788 
#>  120 Number of features:   60 Max AUC:    0.816 AUC:    0.788 Z:    0.260 Rdelta:  0.01430 
#>  121 Number of features:   60 Max AUC:    0.816 AUC:    0.804 Z:    0.366 Rdelta:  0.01144 
#>  122 Number of features:   60 Max AUC:    0.816 AUC:    0.790 Z:    0.381 Rdelta:  0.00915 
#>  123 Number of features:   61 Max AUC:    0.827 AUC:    0.827 Z:    0.325 Rdelta:  0.01824 
#>  124 Number of features:   61 Max AUC:    0.827 AUC:    0.812 Z:    0.323 Rdelta:  0.01459 
#>  125 Number of features:   61 Max AUC:    0.827 AUC:    0.816 Z:    0.338 Rdelta:  0.01167 
#>  126 Number of features:   61 Max AUC:    0.827 AUC:    0.817 Z:    0.297 Rdelta:  0.00934 
#>  127 Number of features:   61 Max AUC:    0.827 AUC:    0.800 Z:    0.249 Rdelta:  0.00747 
#>  128 Number of features:   61 Max AUC:    0.827 AUC:    0.796 Z:    0.242 Rdelta:  0.00598 
#>  129 Number of features:   61 Max AUC:    0.827 AUC:    0.816 Z:    0.426 Rdelta:  0.00478 
#>  130 Number of features:   61 Max AUC:    0.827 AUC:    0.812 Z:    0.279 Rdelta:  0.00382 
#>  131 Number of features:   61 Max AUC:    0.827 AUC:    0.804 Z:    0.350 Rdelta:  0.00306 
#>  132 Number of features:   61 Max AUC:    0.827 AUC:    0.813 Z:    0.359 Rdelta:  0.00245 
#>  133 Number of features:   61 Max AUC:    0.827 AUC:    0.813 Z:    0.345 Rdelta:  0.00196 
#>  134 Number of features:   61 Max AUC:    0.827 AUC:    0.813 Z:    0.314 Rdelta:  0.00157 
#>  135 Number of features:   61 Max AUC:    0.827 AUC:    0.818 Z:    0.249 Rdelta:  0.00125 
#>  136 Number of features:   61 Max AUC:    0.827 AUC:    0.798 Z:    0.226 Rdelta:  0.00100 
#>  137 Number of features:   61 Max AUC:    0.827 AUC:    0.809 Z:    0.371 Rdelta:  0.00080 
#>  138 Number of features:   61 Max AUC:    0.827 AUC:    0.805 Z:    0.346 Rdelta:  0.00064 
#>  139 Number of features:   61 Max AUC:    0.827 AUC:    0.805 Z:    0.342 Rdelta:  0.00051 
#>  140 Number of features:   61 Max AUC:    0.827 AUC:    0.790 Z:    0.125 Rdelta:  0.00041 
#>  141 Number of features:   61 Max AUC:    0.827 AUC:    0.795 Z:    0.282 Rdelta:  0.00033 
#>  142 Number of features:   61 Max AUC:    0.827 AUC:    0.812 Z:    0.370 Rdelta:  0.00026 
#>  143 Number of features:   61 Max AUC:    0.827 AUC:    0.813 Z:    0.372 Rdelta:  0.00021 
#>  144 Number of features:   61 Max AUC:    0.827 AUC:    0.794 Z:    0.303 Rdelta:  0.00017 
#>  145 Number of features:   62 Max AUC:    0.827 AUC:    0.822 Z:    0.387 Rdelta:  0.01015 
#>  146 Number of features:   62 Max AUC:    0.827 AUC:    0.805 Z:    0.379 Rdelta:  0.00812 
#>  147 Number of features:   63 Max AUC:    0.827 AUC:    0.819 Z:    0.354 Rdelta:  0.01731 
#>  148 Number of features:   63 Max AUC:    0.827 AUC:    0.807 Z:    0.361 Rdelta:  0.01385 
#>  149 Number of features:   63 Max AUC:    0.827 AUC:    0.818 Z:    0.347 Rdelta:  0.01108 
#>  150 Number of features:   64 Max AUC:    0.827 AUC:    0.825 Z:    0.268 Rdelta:  0.01997 
#>  151 Number of features:   64 Max AUC:    0.827 AUC:    0.816 Z:    0.388 Rdelta:  0.01598 
#>  152 Number of features:   64 Max AUC:    0.827 AUC:    0.812 Z:    0.365 Rdelta:  0.01278 
#>  153 Number of features:   65 Max AUC:    0.827 AUC:    0.818 Z:    0.407 Rdelta:  0.02150 
#>  154 Number of features:   66 Max AUC:    0.828 AUC:    0.828 Z:    0.479 Rdelta:  0.02935 
#>  155 Number of features:   66 Max AUC:    0.828 AUC:    0.804 Z:    0.291 Rdelta:  0.02348 
#>  156 Number of features:   66 Max AUC:    0.828 AUC:    0.812 Z:    0.415 Rdelta:  0.01879 
#>  157 Number of features:   66 Max AUC:    0.828 AUC:    0.813 Z:    0.351 Rdelta:  0.01503 
#>  158 Number of features:   66 Max AUC:    0.828 AUC:    0.810 Z:    0.408 Rdelta:  0.01202 
#>  159 Number of features:   66 Max AUC:    0.828 AUC:    0.785 Z:    0.363 Rdelta:  0.00962 
#>  160 Number of features:   66 Max AUC:    0.828 AUC:    0.796 Z:    0.389 Rdelta:  0.00769 
#>  161 Number of features:   66 Max AUC:    0.828 AUC:    0.800 Z:    0.372 Rdelta:  0.00616 
#>  162 Number of features:   66 Max AUC:    0.828 AUC:    0.808 Z:    0.274 Rdelta:  0.00492 
#>  163 Number of features:   66 Max AUC:    0.828 AUC:    0.815 Z:    0.283 Rdelta:  0.00394 
#>  164 Number of features:   66 Max AUC:    0.828 AUC:    0.813 Z:    0.330 Rdelta:  0.00315 
#>  165 Number of features:   66 Max AUC:    0.828 AUC:    0.814 Z:    0.329 Rdelta:  0.00252 
#>  166 Number of features:   66 Max AUC:    0.828 AUC:    0.802 Z:    0.267 Rdelta:  0.00202 
#>  167 Number of features:   67 Max AUC:    0.828 AUC:    0.824 Z:    0.421 Rdelta:  0.01182 
#>  168 Number of features:   67 Max AUC:    0.828 AUC:    0.810 Z:    0.338 Rdelta:  0.00945 
#>  169 Number of features:   67 Max AUC:    0.828 AUC:    0.816 Z:    0.348 Rdelta:  0.00756 
#>  170 Number of features:   67 Max AUC:    0.828 AUC:    0.815 Z:    0.319 Rdelta:  0.00605 
#>  171 Number of features:   67 Max AUC:    0.828 AUC:    0.808 Z:    0.346 Rdelta:  0.00484 
#>  172 Number of features:   67 Max AUC:    0.828 AUC:    0.803 Z:    0.322 Rdelta:  0.00387 
#>  173 Number of features:   67 Max AUC:    0.828 AUC:    0.804 Z:    0.367 Rdelta:  0.00310 
#>  174 Number of features:   67 Max AUC:    0.828 AUC:    0.813 Z:    0.382 Rdelta:  0.00248 
#>  175 Number of features:   67 Max AUC:    0.828 AUC:    0.797 Z:    0.414 Rdelta:  0.00198 
#>  176 Number of features:   67 Max AUC:    0.828 AUC:    0.800 Z:    0.422 Rdelta:  0.00159 
#>  177 Number of features:   67 Max AUC:    0.828 AUC:    0.801 Z:    0.245 Rdelta:  0.00127 
#>  178 Number of features:   67 Max AUC:    0.828 AUC:    0.802 Z:    0.334 Rdelta:  0.00101 
#>  179 Number of features:   67 Max AUC:    0.828 AUC:    0.804 Z:    0.426 Rdelta:  0.00081 
#>  180 Number of features:   67 Max AUC:    0.828 AUC:    0.799 Z:    0.375 Rdelta:  0.00065 
#>  181 Number of features:   67 Max AUC:    0.828 AUC:    0.809 Z:    0.370 Rdelta:  0.00052 
#>  182 Number of features:   67 Max AUC:    0.828 AUC:    0.810 Z:    0.367 Rdelta:  0.00042 
#>  183 Number of features:   67 Max AUC:    0.828 AUC:    0.809 Z:    0.282 Rdelta:  0.00033 
#>  184 Number of features:   67 Max AUC:    0.828 AUC:    0.807 Z:    0.268 Rdelta:  0.00027 
#>  185 Number of features:   67 Max AUC:    0.828 AUC:    0.810 Z:    0.323 Rdelta:  0.00021 
#>  186 Number of features:   67 Max AUC:    0.828 AUC:    0.814 Z:    0.376 Rdelta:  0.00017 
#>  187 Number of features:   67 Max AUC:    0.828 AUC:    0.791 Z:    0.403 Rdelta:  0.00014 
#>  188 Number of features:   67 Max AUC:    0.828 AUC:    0.804 Z:    0.344 Rdelta:  0.00011 
#>  189 Number of features:   67 Max AUC:    0.828 AUC:    0.790 Z:    0.353 Rdelta:  0.00009
#>    user  system elapsed 
#>  113.44    0.01  113.60
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))

testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
 
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#>    7 Number of features:    7 Max AUC:    0.736 AUC:    0.735 Z:    1.033 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.736 AUC:    0.733 Z:    1.041 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.844 AUC:    0.844 Z:    1.237 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.848 AUC:    0.848 Z:    1.220 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.849 AUC:    0.849 Z:    1.237 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.890 AUC:    0.890 Z:    0.979 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.890 AUC:    0.889 Z:    0.961 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.905 AUC:    0.905 Z:    1.025 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.905 AUC:    0.896 Z:    0.760 Rdelta:  0.10000 
#>   16 Number of features:   15 Max AUC:    0.905 AUC:    0.890 Z:    0.646 Rdelta:  0.08000 
#>   17 Number of features:   16 Max AUC:    0.905 AUC:    0.894 Z:    0.603 Rdelta:  0.08200 
#>   18 Number of features:   16 Max AUC:    0.905 AUC:    0.889 Z:    0.319 Rdelta:  0.06560 
#>   19 Number of features:   17 Max AUC:    0.905 AUC:    0.895 Z:    0.645 Rdelta:  0.06904 
#>   20 Number of features:   18 Max AUC:    0.905 AUC:    0.894 Z:    0.661 Rdelta:  0.07214 
#>   21 Number of features:   19 Max AUC:    0.905 AUC:    0.888 Z:    0.633 Rdelta:  0.07492 
#>   22 Number of features:   20 Max AUC:    0.905 AUC:    0.883 Z:    0.686 Rdelta:  0.07743 
#>   23 Number of features:   20 Max AUC:    0.905 AUC:    0.873 Z:    0.290 Rdelta:  0.06194 
#>   24 Number of features:   21 Max AUC:    0.905 AUC:    0.888 Z:    0.672 Rdelta:  0.06575 
#>   25 Number of features:   22 Max AUC:    0.905 AUC:    0.894 Z:    0.669 Rdelta:  0.06917 
#>   26 Number of features:   23 Max AUC:    0.905 AUC:    0.884 Z:    0.671 Rdelta:  0.07226 
#>   27 Number of features:   24 Max AUC:    0.905 AUC:    0.895 Z:    0.727 Rdelta:  0.07503 
#>   28 Number of features:   24 Max AUC:    0.905 AUC:    0.884 Z:    0.663 Rdelta:  0.06003 
#>   29 Number of features:   24 Max AUC:    0.905 AUC:    0.881 Z:    0.423 Rdelta:  0.04802 
#>   30 Number of features:   25 Max AUC:    0.905 AUC:    0.891 Z:    0.753 Rdelta:  0.05322 
#>   31 Number of features:   25 Max AUC:    0.905 AUC:    0.878 Z:    0.560 Rdelta:  0.04257 
#>   32 Number of features:   26 Max AUC:    0.905 AUC:    0.891 Z:    0.755 Rdelta:  0.04832 
#>   33 Number of features:   27 Max AUC:    0.905 AUC:    0.885 Z:    0.659 Rdelta:  0.05349 
#>   34 Number of features:   28 Max AUC:    0.905 AUC:    0.890 Z:    0.739 Rdelta:  0.05814 
#>   35 Number of features:   29 Max AUC:    0.905 AUC:    0.884 Z:    0.397 Rdelta:  0.06232 
#>   36 Number of features:   29 Max AUC:    0.905 AUC:    0.866 Z:    0.407 Rdelta:  0.04986 
#>   37 Number of features:   29 Max AUC:    0.905 AUC:    0.859 Z:    0.165 Rdelta:  0.03989 
#>   38 Number of features:   29 Max AUC:    0.905 AUC:    0.882 Z:    0.390 Rdelta:  0.03191 
#>   39 Number of features:   30 Max AUC:    0.905 AUC:    0.886 Z:    0.581 Rdelta:  0.03872 
#>   40 Number of features:   31 Max AUC:    0.905 AUC:    0.885 Z:    0.506 Rdelta:  0.04485 
#>   41 Number of features:   31 Max AUC:    0.905 AUC:    0.878 Z:    0.117 Rdelta:  0.03588 
#>   42 Number of features:   31 Max AUC:    0.905 AUC:    0.870 Z:    0.511 Rdelta:  0.02870 
#>   43 Number of features:   32 Max AUC:    0.905 AUC:    0.884 Z:    0.411 Rdelta:  0.03583 
#>   44 Number of features:   32 Max AUC:    0.905 AUC:    0.874 Z:    0.321 Rdelta:  0.02867 
#>   45 Number of features:   33 Max AUC:    0.905 AUC:    0.881 Z:    0.494 Rdelta:  0.03580 
#>   46 Number of features:   34 Max AUC:    0.905 AUC:    0.882 Z:    0.432 Rdelta:  0.04222 
#>   47 Number of features:   35 Max AUC:    0.905 AUC:    0.882 Z:    0.549 Rdelta:  0.04800 
#>   48 Number of features:   36 Max AUC:    0.905 AUC:    0.890 Z:    0.370 Rdelta:  0.05320 
#>   49 Number of features:   36 Max AUC:    0.905 AUC:    0.878 Z:    0.415 Rdelta:  0.04256 
#>   50 Number of features:   37 Max AUC:    0.905 AUC:    0.882 Z:    0.403 Rdelta:  0.04830 
#>   51 Number of features:   38 Max AUC:    0.905 AUC:    0.883 Z:    0.488 Rdelta:  0.05347 
#>   52 Number of features:   39 Max AUC:    0.905 AUC:    0.888 Z:    0.486 Rdelta:  0.05812 
#>   53 Number of features:   40 Max AUC:    0.905 AUC:    0.881 Z:    0.352 Rdelta:  0.06231 
#>   54 Number of features:   40 Max AUC:    0.905 AUC:    0.876 Z:    0.298 Rdelta:  0.04985 
#>   55 Number of features:   40 Max AUC:    0.905 AUC:    0.877 Z:    0.268 Rdelta:  0.03988 
#>   56 Number of features:   41 Max AUC:    0.905 AUC:    0.885 Z:    0.266 Rdelta:  0.04589 
#>   57 Number of features:   42 Max AUC:    0.905 AUC:    0.880 Z:    0.312 Rdelta:  0.05130 
#>   58 Number of features:   42 Max AUC:    0.905 AUC:    0.876 Z:    0.379 Rdelta:  0.04104 
#>   59 Number of features:   43 Max AUC:    0.905 AUC:    0.879 Z:    0.320 Rdelta:  0.04694 
#>   60 Number of features:   44 Max AUC:    0.905 AUC:    0.879 Z:    0.437 Rdelta:  0.05224 
#>   61 Number of features:   45 Max AUC:    0.905 AUC:    0.881 Z:    0.363 Rdelta:  0.05702 
#>   62 Number of features:   46 Max AUC:    0.905 AUC:    0.882 Z:    0.443 Rdelta:  0.06132 
#>   63 Number of features:   47 Max AUC:    0.905 AUC:    0.886 Z:    0.268 Rdelta:  0.06519 
#>   64 Number of features:   48 Max AUC:    0.905 AUC:    0.885 Z:    0.293 Rdelta:  0.06867 
#>   65 Number of features:   49 Max AUC:    0.905 AUC:    0.881 Z:    0.398 Rdelta:  0.07180 
#>   66 Number of features:   50 Max AUC:    0.905 AUC:    0.884 Z:    0.377 Rdelta:  0.07462 
#>   67 Number of features:   50 Max AUC:    0.905 AUC:    0.876 Z:    0.102 Rdelta:  0.05970 
#>   68 Number of features:   50 Max AUC:    0.905 AUC:    0.874 Z:    0.234 Rdelta:  0.04776 
#>   69 Number of features:   50 Max AUC:    0.905 AUC:    0.875 Z:    0.381 Rdelta:  0.03821 
#>   70 Number of features:   51 Max AUC:    0.905 AUC:    0.879 Z:    0.454 Rdelta:  0.04439 
#>   71 Number of features:   52 Max AUC:    0.905 AUC:    0.878 Z:    0.397 Rdelta:  0.04995 
#>   72 Number of features:   52 Max AUC:    0.905 AUC:    0.870 Z:    0.303 Rdelta:  0.03996 
#>   73 Number of features:   52 Max AUC:    0.905 AUC:    0.869 Z:    0.145 Rdelta:  0.03197 
#>   74 Number of features:   53 Max AUC:    0.905 AUC:    0.880 Z:    0.260 Rdelta:  0.03877 
#>   75 Number of features:   54 Max AUC:    0.905 AUC:    0.879 Z:    0.195 Rdelta:  0.04489 
#>   76 Number of features:   54 Max AUC:    0.905 AUC:    0.873 Z:    0.318 Rdelta:  0.03591 
#>   77 Number of features:   55 Max AUC:    0.905 AUC:    0.877 Z:    0.318 Rdelta:  0.04232 
#>   78 Number of features:   56 Max AUC:    0.905 AUC:    0.875 Z:    0.345 Rdelta:  0.04809 
#>   79 Number of features:   56 Max AUC:    0.905 AUC:    0.871 Z:    0.398 Rdelta:  0.03847 
#>   80 Number of features:   56 Max AUC:    0.905 AUC:    0.872 Z:    0.427 Rdelta:  0.03078 
#>   81 Number of features:   57 Max AUC:    0.905 AUC:    0.876 Z:    0.376 Rdelta:  0.03770 
#>   82 Number of features:   57 Max AUC:    0.905 AUC:    0.870 Z:    0.269 Rdelta:  0.03016 
#>   83 Number of features:   57 Max AUC:    0.905 AUC:    0.871 Z:    0.129 Rdelta:  0.02413 
#>   84 Number of features:   58 Max AUC:    0.905 AUC:    0.878 Z:    0.378 Rdelta:  0.03172 
#>   85 Number of features:   59 Max AUC:    0.905 AUC:    0.878 Z:    0.390 Rdelta:  0.03854 
#>   86 Number of features:   60 Max AUC:    0.905 AUC:    0.873 Z:    0.349 Rdelta:  0.04469 
#>   87 Number of features:   61 Max AUC:    0.905 AUC:    0.875 Z:    0.271 Rdelta:  0.05022 
#>   88 Number of features:   62 Max AUC:    0.905 AUC:    0.875 Z:    0.335 Rdelta:  0.05520 
#>   89 Number of features:   63 Max AUC:    0.905 AUC:    0.879 Z:    0.332 Rdelta:  0.05968 
#>   90 Number of features:   64 Max AUC:    0.905 AUC:    0.883 Z:    0.432 Rdelta:  0.06371 
#>   91 Number of features:   64 Max AUC:    0.905 AUC:    0.870 Z:    0.462 Rdelta:  0.05097 
#>   92 Number of features:   65 Max AUC:    0.905 AUC:    0.877 Z:    0.365 Rdelta:  0.05587 
#>   93 Number of features:   65 Max AUC:    0.905 AUC:    0.855 Z:    0.086 Rdelta:  0.04470 
#>   94 Number of features:   65 Max AUC:    0.905 AUC:    0.865 Z:    0.383 Rdelta:  0.03576 
#>   95 Number of features:   65 Max AUC:    0.905 AUC:    0.861 Z:    0.477 Rdelta:  0.02861 
#>   96 Number of features:   65 Max AUC:    0.905 AUC:    0.872 Z:    0.416 Rdelta:  0.02289 
#>   97 Number of features:   66 Max AUC:    0.905 AUC:    0.877 Z:    0.467 Rdelta:  0.03060 
#>   98 Number of features:   66 Max AUC:    0.905 AUC:    0.871 Z:    0.379 Rdelta:  0.02448 
#>   99 Number of features:   66 Max AUC:    0.905 AUC:    0.858 Z:    0.345 Rdelta:  0.01958 
#>  100 Number of features:   67 Max AUC:    0.905 AUC:    0.878 Z:    0.373 Rdelta:  0.02762 
#>  101 Number of features:   68 Max AUC:    0.905 AUC:    0.876 Z:    0.326 Rdelta:  0.03486 
#>  102 Number of features:   69 Max AUC:    0.905 AUC:    0.876 Z:    0.268 Rdelta:  0.04138 
#>  103 Number of features:   70 Max AUC:    0.905 AUC:    0.875 Z:    0.303 Rdelta:  0.04724 
#>  104 Number of features:   71 Max AUC:    0.905 AUC:    0.877 Z:    0.363 Rdelta:  0.05251 
#>  105 Number of features:   71 Max AUC:    0.905 AUC:    0.871 Z:    0.342 Rdelta:  0.04201 
#>  106 Number of features:   72 Max AUC:    0.905 AUC:    0.878 Z:    0.296 Rdelta:  0.04781 
#>  107 Number of features:   73 Max AUC:    0.905 AUC:    0.875 Z:    0.266 Rdelta:  0.05303 
#>  108 Number of features:   73 Max AUC:    0.905 AUC:    0.868 Z:    0.348 Rdelta:  0.04242 
#>  109 Number of features:   74 Max AUC:    0.905 AUC:    0.874 Z:    0.306 Rdelta:  0.04818 
#>  110 Number of features:   75 Max AUC:    0.905 AUC:    0.875 Z:    0.345 Rdelta:  0.05336 
#>  111 Number of features:   76 Max AUC:    0.905 AUC:    0.886 Z:    0.342 Rdelta:  0.05803 
#>  112 Number of features:   77 Max AUC:    0.905 AUC:    0.885 Z:    0.341 Rdelta:  0.06222 
#>  113 Number of features:   78 Max AUC:    0.905 AUC:    0.878 Z:    0.352 Rdelta:  0.06600 
#>  114 Number of features:   78 Max AUC:    0.905 AUC:    0.875 Z:    0.327 Rdelta:  0.05280 
#>  115 Number of features:   79 Max AUC:    0.905 AUC:    0.881 Z:    0.306 Rdelta:  0.05752 
#>  116 Number of features:   80 Max AUC:    0.905 AUC:    0.880 Z:    0.323 Rdelta:  0.06177 
#>  117 Number of features:   81 Max AUC:    0.905 AUC:    0.879 Z:    0.304 Rdelta:  0.06559 
#>  118 Number of features:   82 Max AUC:    0.905 AUC:    0.879 Z:    0.354 Rdelta:  0.06903 
#>  119 Number of features:   83 Max AUC:    0.905 AUC:    0.882 Z:    0.353 Rdelta:  0.07213 
#>  120 Number of features:   83 Max AUC:    0.905 AUC:    0.869 Z:    0.262 Rdelta:  0.05770 
#>  121 Number of features:   83 Max AUC:    0.905 AUC:    0.868 Z:    0.345 Rdelta:  0.04616 
#>  122 Number of features:   83 Max AUC:    0.905 AUC:    0.862 Z:    0.191 Rdelta:  0.03693 
#>  123 Number of features:   84 Max AUC:    0.905 AUC:    0.882 Z:    0.357 Rdelta:  0.04324 
#>  124 Number of features:   84 Max AUC:    0.905 AUC:    0.876 Z:    0.355 Rdelta:  0.03459 
#>  125 Number of features:   85 Max AUC:    0.905 AUC:    0.882 Z:    0.373 Rdelta:  0.04113 
#>  126 Number of features:   86 Max AUC:    0.905 AUC:    0.877 Z:    0.248 Rdelta:  0.04702 
#>  127 Number of features:   86 Max AUC:    0.905 AUC:    0.872 Z:    0.332 Rdelta:  0.03761 
#>  128 Number of features:   87 Max AUC:    0.905 AUC:    0.877 Z:    0.271 Rdelta:  0.04385 
#>  129 Number of features:   88 Max AUC:    0.905 AUC:    0.885 Z:    0.287 Rdelta:  0.04947 
#>  130 Number of features:   89 Max AUC:    0.905 AUC:    0.883 Z:    0.350 Rdelta:  0.05452 
#>  131 Number of features:   89 Max AUC:    0.905 AUC:    0.874 Z:    0.280 Rdelta:  0.04362 
#>  132 Number of features:   90 Max AUC:    0.905 AUC:    0.885 Z:    0.359 Rdelta:  0.04925 
#>  133 Number of features:   91 Max AUC:    0.905 AUC:    0.884 Z:    0.319 Rdelta:  0.05433 
#>  134 Number of features:   92 Max AUC:    0.905 AUC:    0.887 Z:    0.336 Rdelta:  0.05890 
#>  135 Number of features:   93 Max AUC:    0.905 AUC:    0.882 Z:    0.287 Rdelta:  0.06301 
#>  136 Number of features:   94 Max AUC:    0.905 AUC:    0.884 Z:    0.326 Rdelta:  0.06671 
#>  137 Number of features:   95 Max AUC:    0.905 AUC:    0.882 Z:    0.314 Rdelta:  0.07004 
#>  138 Number of features:   95 Max AUC:    0.905 AUC:    0.873 Z:    0.281 Rdelta:  0.05603 
#>  139 Number of features:   95 Max AUC:    0.905 AUC:    0.873 Z:    0.309 Rdelta:  0.04482 
#>  140 Number of features:   96 Max AUC:    0.905 AUC:    0.884 Z:    0.342 Rdelta:  0.05034 
#>  141 Number of features:   96 Max AUC:    0.905 AUC:    0.855 Z:    0.230 Rdelta:  0.04027 
#>  142 Number of features:   96 Max AUC:    0.905 AUC:    0.876 Z:    0.172 Rdelta:  0.03222 
#>  143 Number of features:   97 Max AUC:    0.905 AUC:    0.881 Z:    0.313 Rdelta:  0.03900 
#>  144 Number of features:   98 Max AUC:    0.905 AUC:    0.878 Z:    0.346 Rdelta:  0.04510 
#>  145 Number of features:   98 Max AUC:    0.905 AUC:    0.876 Z:    0.304 Rdelta:  0.03608 
#>  146 Number of features:   98 Max AUC:    0.905 AUC:    0.872 Z:    0.351 Rdelta:  0.02886 
#>  147 Number of features:   98 Max AUC:    0.905 AUC:    0.872 Z:    0.326 Rdelta:  0.02309 
#>  148 Number of features:   99 Max AUC:    0.905 AUC:    0.882 Z:    0.353 Rdelta:  0.03078 
#>  149 Number of features:   99 Max AUC:    0.905 AUC:    0.875 Z:    0.305 Rdelta:  0.02462 
#>  150 Number of features:   99 Max AUC:    0.905 AUC:    0.876 Z:    0.333 Rdelta:  0.01970 
#>  151 Number of features:   99 Max AUC:    0.905 AUC:    0.875 Z:    0.362 Rdelta:  0.01576 
#>  152 Number of features:  100 Max AUC:    0.905 AUC:    0.882 Z:    0.351 Rdelta:  0.02418 
#>  153 Number of features:  100 Max AUC:    0.905 AUC:    0.876 Z:    0.373 Rdelta:  0.01935 
#>  154 Number of features:  101 Max AUC:    0.905 AUC:    0.881 Z:    0.385 Rdelta:  0.02741 
#>  155 Number of features:  101 Max AUC:    0.905 AUC:    0.870 Z:    0.300 Rdelta:  0.02193 
#>  156 Number of features:  101 Max AUC:    0.905 AUC:    0.873 Z:    0.271 Rdelta:  0.01754 
#>  157 Number of features:  102 Max AUC:    0.905 AUC:    0.881 Z:    0.281 Rdelta:  0.02579 
#>  158 Number of features:  102 Max AUC:    0.905 AUC:    0.874 Z:    0.335 Rdelta:  0.02063 
#>  159 Number of features:  102 Max AUC:    0.905 AUC:    0.832 Z:    0.343 Rdelta:  0.01651 
#>  160 Number of features:  102 Max AUC:    0.905 AUC:    0.864 Z:    0.309 Rdelta:  0.01320 
#>  161 Number of features:  102 Max AUC:    0.905 AUC:    0.875 Z:    0.396 Rdelta:  0.01056 
#>  162 Number of features:  102 Max AUC:    0.905 AUC:    0.867 Z:    0.297 Rdelta:  0.00845 
#>  163 Number of features:  103 Max AUC:    0.905 AUC:    0.877 Z:    0.367 Rdelta:  0.01761 
#>  164 Number of features:  104 Max AUC:    0.905 AUC:    0.878 Z:    0.307 Rdelta:  0.02585 
#>  165 Number of features:  104 Max AUC:    0.905 AUC:    0.865 Z:    0.366 Rdelta:  0.02068 
#>  166 Number of features:  104 Max AUC:    0.905 AUC:    0.875 Z:    0.312 Rdelta:  0.01654 
#>  167 Number of features:  104 Max AUC:    0.905 AUC:    0.876 Z:    0.357 Rdelta:  0.01323 
#>  168 Number of features:  105 Max AUC:    0.905 AUC:    0.877 Z:    0.359 Rdelta:  0.02191 
#>  169 Number of features:  105 Max AUC:    0.905 AUC:    0.872 Z:    0.335 Rdelta:  0.01753 
#>  170 Number of features:  105 Max AUC:    0.905 AUC:    0.870 Z:    0.322 Rdelta:  0.01402 
#>  171 Number of features:  105 Max AUC:    0.905 AUC:    0.869 Z:    0.344 Rdelta:  0.01122 
#>  172 Number of features:  105 Max AUC:    0.905 AUC:    0.871 Z:    0.295 Rdelta:  0.00897 
#>  173 Number of features:  105 Max AUC:    0.905 AUC:    0.876 Z:    0.243 Rdelta:  0.00718 
#>  174 Number of features:  106 Max AUC:    0.905 AUC:    0.877 Z:    0.322 Rdelta:  0.01646 
#>  175 Number of features:  106 Max AUC:    0.905 AUC:    0.876 Z:    0.279 Rdelta:  0.01317 
#>  176 Number of features:  106 Max AUC:    0.905 AUC:    0.867 Z:    0.307 Rdelta:  0.01054 
#>  177 Number of features:  106 Max AUC:    0.905 AUC:    0.870 Z:    0.383 Rdelta:  0.00843 
#>  178 Number of features:  106 Max AUC:    0.905 AUC:    0.870 Z:    0.355 Rdelta:  0.00674 
#>  179 Number of features:  106 Max AUC:    0.905 AUC:    0.869 Z:    0.276 Rdelta:  0.00539 
#>  180 Number of features:  106 Max AUC:    0.905 AUC:    0.865 Z:    0.295 Rdelta:  0.00432 
#>  181 Number of features:  106 Max AUC:    0.905 AUC:    0.874 Z:    0.328 Rdelta:  0.00345 
#>  182 Number of features:  107 Max AUC:    0.905 AUC:    0.880 Z:    0.278 Rdelta:  0.01311 
#>  183 Number of features:  107 Max AUC:    0.905 AUC:    0.873 Z:    0.408 Rdelta:  0.01049 
#>  184 Number of features:  107 Max AUC:    0.905 AUC:    0.874 Z:    0.313 Rdelta:  0.00839 
#>  185 Number of features:  108 Max AUC:    0.905 AUC:    0.877 Z:    0.362 Rdelta:  0.01755 
#>  186 Number of features:  109 Max AUC:    0.905 AUC:    0.878 Z:    0.343 Rdelta:  0.02579 
#>  187 Number of features:  110 Max AUC:    0.905 AUC:    0.879 Z:    0.354 Rdelta:  0.03322 
#>  188 Number of features:  110 Max AUC:    0.905 AUC:    0.871 Z:    0.335 Rdelta:  0.02657 
#>  189 Number of features:  111 Max AUC:    0.905 AUC:    0.876 Z:    0.347 Rdelta:  0.03391 
#>  190 Number of features:  111 Max AUC:    0.905 AUC:    0.870 Z:    0.290 Rdelta:  0.02713 
#>  191 Number of features:  111 Max AUC:    0.905 AUC:    0.874 Z:    0.318 Rdelta:  0.02171 
#>  192 Number of features:  112 Max AUC:    0.905 AUC:    0.881 Z:    0.310 Rdelta:  0.02954 
#>  193 Number of features:  112 Max AUC:    0.905 AUC:    0.873 Z:    0.323 Rdelta:  0.02363 
#>  194 Number of features:  112 Max AUC:    0.905 AUC:    0.872 Z:    0.289 Rdelta:  0.01890 
#>  195 Number of features:  112 Max AUC:    0.905 AUC:    0.874 Z:    0.281 Rdelta:  0.01512 
#>  196 Number of features:  113 Max AUC:    0.905 AUC:    0.876 Z:    0.323 Rdelta:  0.02361 
#>  197 Number of features:  113 Max AUC:    0.905 AUC:    0.875 Z:    0.321 Rdelta:  0.01889 
#>  198 Number of features:  113 Max AUC:    0.905 AUC:    0.860 Z:    0.386 Rdelta:  0.01511 
#>  199 Number of features:  113 Max AUC:    0.905 AUC:    0.837 Z:    0.344 Rdelta:  0.01209 
#>  200 Number of features:  113 Max AUC:    0.905 AUC:    0.859 Z:    0.239 Rdelta:  0.00967 
#>  201 Number of features:  114 Max AUC:    0.905 AUC:    0.876 Z:    0.300 Rdelta:  0.01870 
#>  202 Number of features:  114 Max AUC:    0.905 AUC:    0.872 Z:    0.336 Rdelta:  0.01496 
#>  203 Number of features:  114 Max AUC:    0.905 AUC:    0.868 Z:    0.307 Rdelta:  0.01197 
#>  204 Number of features:  114 Max AUC:    0.905 AUC:    0.873 Z:    0.315 Rdelta:  0.00958 
#>  205 Number of features:  114 Max AUC:    0.905 AUC:    0.863 Z:    0.243 Rdelta:  0.00766 
#>  206 Number of features:  114 Max AUC:    0.905 AUC:    0.868 Z:    0.303 Rdelta:  0.00613 
#>  207 Number of features:  114 Max AUC:    0.905 AUC:    0.876 Z:    0.268 Rdelta:  0.00490 
#>  208 Number of features:  115 Max AUC:    0.905 AUC:    0.881 Z:    0.278 Rdelta:  0.01441 
#>  209 Number of features:  115 Max AUC:    0.905 AUC:    0.871 Z:    0.274 Rdelta:  0.01153 
#>  210 Number of features:  115 Max AUC:    0.905 AUC:    0.854 Z:    0.402 Rdelta:  0.00922 
#>  211 Number of features:  116 Max AUC:    0.905 AUC:    0.880 Z:    0.357 Rdelta:  0.01830 
#>  212 Number of features:  116 Max AUC:    0.905 AUC:    0.864 Z:    0.329 Rdelta:  0.01464 
#>  213 Number of features:  117 Max AUC:    0.905 AUC:    0.879 Z:    0.339 Rdelta:  0.02318 
#>  214 Number of features:  117 Max AUC:    0.905 AUC:    0.875 Z:    0.314 Rdelta:  0.01854 
#>  215 Number of features:  117 Max AUC:    0.905 AUC:    0.873 Z:    0.286 Rdelta:  0.01483 
#>  216 Number of features:  117 Max AUC:    0.905 AUC:    0.858 Z:    0.372 Rdelta:  0.01187 
#>  217 Number of features:  117 Max AUC:    0.905 AUC:    0.856 Z:    0.356 Rdelta:  0.00949 
#>  218 Number of features:  117 Max AUC:    0.905 AUC:    0.873 Z:    0.332 Rdelta:  0.00759 
#>  219 Number of features:  117 Max AUC:    0.905 AUC:    0.860 Z:    0.301 Rdelta:  0.00608 
#>  220 Number of features:  117 Max AUC:    0.905 AUC:    0.831 Z:    0.267 Rdelta:  0.00486 
#>  221 Number of features:  117 Max AUC:    0.905 AUC:    0.875 Z:    0.312 Rdelta:  0.00389 
#>  222 Number of features:  117 Max AUC:    0.905 AUC:    0.868 Z:    0.313 Rdelta:  0.00311 
#>  223 Number of features:  117 Max AUC:    0.905 AUC:    0.865 Z:    0.340 Rdelta:  0.00249 
#>  224 Number of features:  117 Max AUC:    0.905 AUC:    0.873 Z:    0.326 Rdelta:  0.00199 
#>  225 Number of features:  117 Max AUC:    0.905 AUC:    0.867 Z:    0.244 Rdelta:  0.00159 
#>  226 Number of features:  117 Max AUC:    0.905 AUC:    0.875 Z:    0.304 Rdelta:  0.00127 
#>  227 Number of features:  117 Max AUC:    0.905 AUC:    0.875 Z:    0.295 Rdelta:  0.00102 
#>  228 Number of features:  117 Max AUC:    0.905 AUC:    0.864 Z:    0.329 Rdelta:  0.00082 
#>  229 Number of features:  118 Max AUC:    0.905 AUC:    0.879 Z:    0.347 Rdelta:  0.01073 
#>  230 Number of features:  118 Max AUC:    0.905 AUC:    0.871 Z:    0.337 Rdelta:  0.00859 
#>  231 Number of features:  118 Max AUC:    0.905 AUC:    0.862 Z:    0.194 Rdelta:  0.00687 
#>  232 Number of features:  118 Max AUC:    0.905 AUC:    0.869 Z:    0.382 Rdelta:  0.00550 
#>  233 Number of features:  118 Max AUC:    0.905 AUC:    0.868 Z:    0.311 Rdelta:  0.00440 
#>  234 Number of features:  118 Max AUC:    0.905 AUC:    0.867 Z:    0.333 Rdelta:  0.00352 
#>  235 Number of features:  118 Max AUC:    0.905 AUC:    0.870 Z:    0.331 Rdelta:  0.00281 
#>  236 Number of features:  118 Max AUC:    0.905 AUC:    0.866 Z:    0.304 Rdelta:  0.00225 
#>  237 Number of features:  118 Max AUC:    0.905 AUC:    0.869 Z:    0.312 Rdelta:  0.00180 
#>  238 Number of features:  118 Max AUC:    0.905 AUC:    0.873 Z:    0.317 Rdelta:  0.00144 
#>  239 Number of features:  118 Max AUC:    0.905 AUC:    0.872 Z:    0.320 Rdelta:  0.00115 
#>  240 Number of features:  118 Max AUC:    0.905 AUC:    0.874 Z:    0.269 Rdelta:  0.00092 
#>  241 Number of features:  118 Max AUC:    0.905 AUC:    0.858 Z:    0.295 Rdelta:  0.00074 
#>  242 Number of features:  118 Max AUC:    0.905 AUC:    0.869 Z:    0.314 Rdelta:  0.00059 
#>  243 Number of features:  118 Max AUC:    0.905 AUC:    0.865 Z:    0.363 Rdelta:  0.00047 
#>  244 Number of features:  119 Max AUC:    0.905 AUC:    0.879 Z:    0.346 Rdelta:  0.01042 
#>  245 Number of features:  119 Max AUC:    0.905 AUC:    0.870 Z:    0.336 Rdelta:  0.00834 
#>  246 Number of features:  119 Max AUC:    0.905 AUC:    0.873 Z:    0.361 Rdelta:  0.00667 
#>  247 Number of features:  119 Max AUC:    0.905 AUC:    0.874 Z:    0.316 Rdelta:  0.00534 
#>  248 Number of features:  119 Max AUC:    0.905 AUC:    0.872 Z:    0.367 Rdelta:  0.00427 
#>  249 Number of features:  119 Max AUC:    0.905 AUC:    0.869 Z:    0.267 Rdelta:  0.00342 
#>  250 Number of features:  119 Max AUC:    0.905 AUC:    0.864 Z:    0.366 Rdelta:  0.00273 
#>  251 Number of features:  119 Max AUC:    0.905 AUC:    0.871 Z:    0.358 Rdelta:  0.00219 
#>  252 Number of features:  119 Max AUC:    0.905 AUC:    0.862 Z:    0.289 Rdelta:  0.00175 
#>  253 Number of features:  119 Max AUC:    0.905 AUC:    0.868 Z:    0.348 Rdelta:  0.00140 
#>  254 Number of features:  119 Max AUC:    0.905 AUC:    0.864 Z:    0.348 Rdelta:  0.00112 
#>  255 Number of features:  119 Max AUC:    0.905 AUC:    0.863 Z:    0.297 Rdelta:  0.00090 
#>  256 Number of features:  119 Max AUC:    0.905 AUC:    0.865 Z:    0.331 Rdelta:  0.00072 
#>  257 Number of features:  119 Max AUC:    0.905 AUC:    0.864 Z:    0.328 Rdelta:  0.00057 
#>  258 Number of features:  119 Max AUC:    0.905 AUC:    0.873 Z:    0.333 Rdelta:  0.00046 
#>  259 Number of features:  119 Max AUC:    0.905 AUC:    0.872 Z:    0.332 Rdelta:  0.00037 
#>  260 Number of features:  119 Max AUC:    0.905 AUC:    0.868 Z:    0.328 Rdelta:  0.00029 
#>  261 Number of features:  119 Max AUC:    0.905 AUC:    0.862 Z:    0.327 Rdelta:  0.00023 
#>  262 Number of features:  119 Max AUC:    0.905 AUC:    0.870 Z:    0.326 Rdelta:  0.00019 
#>  263 Number of features:  119 Max AUC:    0.905 AUC:    0.867 Z:    0.274 Rdelta:  0.00015 
#>  264 Number of features:  119 Max AUC:    0.905 AUC:    0.874 Z:    0.300 Rdelta:  0.00012 
#>  265 Number of features:  119 Max AUC:    0.905 AUC:    0.856 Z:    0.359 Rdelta:  0.00010
#>    user  system elapsed 
#>  246.61    0.00  246.91
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))


system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#>    7 Number of features:    7 Max AUC:    0.410 AUC:    0.410 Z:   -0.281 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.410 AUC:    0.401 Z:   -0.349 Rdelta:  0.10000 
#>    9 Number of features:    8 Max AUC:    0.410 AUC:    0.381 Z:   -0.321 Rdelta:  0.08000 
#>   10 Number of features:    9 Max AUC:    0.410 AUC:    0.396 Z:   -0.340 Rdelta:  0.08200 
#>   11 Number of features:   10 Max AUC:    0.410 AUC:    0.395 Z:   -0.333 Rdelta:  0.08380 
#>   12 Number of features:   10 Max AUC:    0.410 AUC:    0.367 Z:   -0.332 Rdelta:  0.06704 
#>   13 Number of features:   10 Max AUC:    0.410 AUC:    0.361 Z:   -0.363 Rdelta:  0.05363 
#>   14 Number of features:   11 Max AUC:    0.410 AUC:    0.396 Z:   -0.352 Rdelta:  0.05827 
#>   15 Number of features:   11 Max AUC:    0.410 AUC:    0.362 Z:   -0.415 Rdelta:  0.04662 
#>   16 Number of features:   11 Max AUC:    0.410 AUC:    0.370 Z:   -0.445 Rdelta:  0.03729 
#>   17 Number of features:   11 Max AUC:    0.410 AUC:    0.360 Z:   -0.435 Rdelta:  0.02983 
#>   18 Number of features:   11 Max AUC:    0.410 AUC:    0.360 Z:   -0.360 Rdelta:  0.02387 
#>   19 Number of features:   11 Max AUC:    0.410 AUC:    0.361 Z:   -0.412 Rdelta:  0.01909 
#>   20 Number of features:   11 Max AUC:    0.410 AUC:    0.364 Z:   -0.386 Rdelta:  0.01527 
#>   21 Number of features:   11 Max AUC:    0.410 AUC:    0.354 Z:   -0.361 Rdelta:  0.01222 
#>   22 Number of features:   11 Max AUC:    0.410 AUC:    0.366 Z:   -0.349 Rdelta:  0.00978 
#>   23 Number of features:   11 Max AUC:    0.410 AUC:    0.359 Z:   -0.327 Rdelta:  0.00782 
#>   24 Number of features:   12 Max AUC:    0.410 AUC:    0.403 Z:   -0.263 Rdelta:  0.01704 
#>   25 Number of features:   12 Max AUC:    0.410 AUC:    0.387 Z:   -0.352 Rdelta:  0.01363 
#>   26 Number of features:   13 Max AUC:    0.410 AUC:    0.403 Z:   -0.321 Rdelta:  0.02227 
#>   27 Number of features:   13 Max AUC:    0.410 AUC:    0.357 Z:   -0.419 Rdelta:  0.01781 
#>   28 Number of features:   13 Max AUC:    0.410 AUC:    0.359 Z:   -0.418 Rdelta:  0.01425 
#>   29 Number of features:   14 Max AUC:    0.410 AUC:    0.399 Z:   -0.358 Rdelta:  0.02283 
#>   30 Number of features:   14 Max AUC:    0.410 AUC:    0.388 Z:   -0.385 Rdelta:  0.01826 
#>   31 Number of features:   14 Max AUC:    0.410 AUC:    0.373 Z:   -0.416 Rdelta:  0.01461 
#>   32 Number of features:   14 Max AUC:    0.410 AUC:    0.361 Z:   -0.416 Rdelta:  0.01169 
#>   33 Number of features:   14 Max AUC:    0.410 AUC:    0.367 Z:   -0.358 Rdelta:  0.00935 
#>   34 Number of features:   14 Max AUC:    0.410 AUC:    0.367 Z:   -0.388 Rdelta:  0.00748 
#>   35 Number of features:   14 Max AUC:    0.410 AUC:    0.359 Z:   -0.429 Rdelta:  0.00598 
#>   36 Number of features:   14 Max AUC:    0.410 AUC:    0.363 Z:   -0.476 Rdelta:  0.00479 
#>   37 Number of features:   14 Max AUC:    0.410 AUC:    0.367 Z:   -0.462 Rdelta:  0.00383 
#>   38 Number of features:   14 Max AUC:    0.410 AUC:    0.369 Z:   -0.395 Rdelta:  0.00306 
#>   39 Number of features:   15 Max AUC:    0.410 AUC:    0.398 Z:   -0.350 Rdelta:  0.01276 
#>   40 Number of features:   15 Max AUC:    0.410 AUC:    0.367 Z:   -0.385 Rdelta:  0.01021 
#>   41 Number of features:   15 Max AUC:    0.410 AUC:    0.353 Z:   -0.368 Rdelta:  0.00816 
#>   42 Number of features:   15 Max AUC:    0.410 AUC:    0.386 Z:   -0.380 Rdelta:  0.00653 
#>   43 Number of features:   15 Max AUC:    0.410 AUC:    0.363 Z:   -0.416 Rdelta:  0.00523 
#>   44 Number of features:   15 Max AUC:    0.410 AUC:    0.356 Z:   -0.365 Rdelta:  0.00418 
#>   45 Number of features:   15 Max AUC:    0.410 AUC:    0.392 Z:   -0.401 Rdelta:  0.00334 
#>   46 Number of features:   15 Max AUC:    0.410 AUC:    0.374 Z:   -0.231 Rdelta:  0.00268 
#>   47 Number of features:   15 Max AUC:    0.410 AUC:    0.378 Z:   -0.435 Rdelta:  0.00214 
#>   48 Number of features:   16 Max AUC:    0.413 AUC:    0.413 Z:   -0.062 Rdelta:  0.01193 
#>   49 Number of features:   16 Max AUC:    0.413 AUC:    0.370 Z:   -0.339 Rdelta:  0.00954 
#>   50 Number of features:   16 Max AUC:    0.413 AUC:    0.382 Z:   -0.390 Rdelta:  0.00763 
#>   51 Number of features:   16 Max AUC:    0.413 AUC:    0.372 Z:   -0.399 Rdelta:  0.00611 
#>   52 Number of features:   16 Max AUC:    0.413 AUC:    0.380 Z:   -0.375 Rdelta:  0.00489 
#>   53 Number of features:   16 Max AUC:    0.413 AUC:    0.360 Z:   -0.393 Rdelta:  0.00391 
#>   54 Number of features:   16 Max AUC:    0.413 AUC:    0.362 Z:   -0.424 Rdelta:  0.00313 
#>   55 Number of features:   16 Max AUC:    0.413 AUC:    0.392 Z:   -0.329 Rdelta:  0.00250 
#>   56 Number of features:   16 Max AUC:    0.413 AUC:    0.390 Z:   -0.389 Rdelta:  0.00200 
#>   57 Number of features:   16 Max AUC:    0.413 AUC:    0.367 Z:   -0.299 Rdelta:  0.00160 
#>   58 Number of features:   16 Max AUC:    0.413 AUC:    0.355 Z:   -0.403 Rdelta:  0.00128 
#>   59 Number of features:   16 Max AUC:    0.413 AUC:    0.394 Z:   -0.144 Rdelta:  0.00102 
#>   60 Number of features:   16 Max AUC:    0.413 AUC:    0.377 Z:   -0.293 Rdelta:  0.00082 
#>   61 Number of features:   16 Max AUC:    0.413 AUC:    0.397 Z:   -0.326 Rdelta:  0.00066 
#>   62 Number of features:   16 Max AUC:    0.413 AUC:    0.362 Z:   -0.398 Rdelta:  0.00052 
#>   63 Number of features:   16 Max AUC:    0.413 AUC:    0.390 Z:   -0.369 Rdelta:  0.00042 
#>   64 Number of features:   16 Max AUC:    0.413 AUC:    0.400 Z:   -0.334 Rdelta:  0.00034 
#>   65 Number of features:   16 Max AUC:    0.413 AUC:    0.376 Z:   -0.373 Rdelta:  0.00027 
#>   66 Number of features:   16 Max AUC:    0.413 AUC:    0.400 Z:   -0.352 Rdelta:  0.00021 
#>   67 Number of features:   16 Max AUC:    0.413 AUC:    0.368 Z:   -0.398 Rdelta:  0.00017 
#>   68 Number of features:   16 Max AUC:    0.413 AUC:    0.373 Z:   -0.377 Rdelta:  0.00014 
#>   69 Number of features:   16 Max AUC:    0.413 AUC:    0.372 Z:   -0.380 Rdelta:  0.00011 
#>   70 Number of features:   16 Max AUC:    0.413 AUC:    0.397 Z:   -0.361 Rdelta:  0.00009
#>    user  system elapsed 
#>   16.97    0.00   16.99
testDistance_control  <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#>    7 Number of features:    7 Max AUC:    0.684 AUC:    0.683 Z:    0.895 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.687 AUC:    0.687 Z:    0.918 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.741 AUC:    0.741 Z:    1.340 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.751 AUC:    0.751 Z:    1.283 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.751 AUC:    0.745 Z:    1.336 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.756 AUC:    0.756 Z:    1.485 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.756 AUC:    0.753 Z:    1.100 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.761 AUC:    0.761 Z:    1.367 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.763 AUC:    0.763 Z:    0.931 Rdelta:  0.10000 
#>   16 Number of features:   16 Max AUC:    0.765 AUC:    0.765 Z:    0.539 Rdelta:  0.10000 
#>   17 Number of features:   17 Max AUC:    0.765 AUC:    0.765 Z:    0.833 Rdelta:  0.10000 
#>   18 Number of features:   18 Max AUC:    0.765 AUC:    0.765 Z:    0.780 Rdelta:  0.10000 
#>   19 Number of features:   18 Max AUC:    0.765 AUC:    0.755 Z:    0.684 Rdelta:  0.08000 
#>   20 Number of features:   18 Max AUC:    0.765 AUC:    0.755 Z:    0.535 Rdelta:  0.06400 
#>   21 Number of features:   18 Max AUC:    0.765 AUC:    0.754 Z:    0.636 Rdelta:  0.05120 
#>   22 Number of features:   19 Max AUC:    0.765 AUC:    0.764 Z:    0.476 Rdelta:  0.05608 
#>   23 Number of features:   20 Max AUC:    0.765 AUC:    0.765 Z:    0.254 Rdelta:  0.06047 
#>   24 Number of features:   21 Max AUC:    0.765 AUC:    0.765 Z:    0.239 Rdelta:  0.06442 
#>   25 Number of features:   22 Max AUC:    0.767 AUC:    0.767 Z:    0.591 Rdelta:  0.06798 
#>   26 Number of features:   23 Max AUC:    0.778 AUC:    0.778 Z:    0.572 Rdelta:  0.07118 
#>   27 Number of features:   23 Max AUC:    0.778 AUC:    0.767 Z:    0.542 Rdelta:  0.05695 
#>   28 Number of features:   24 Max AUC:    0.778 AUC:    0.777 Z:    0.223 Rdelta:  0.06125 
#>   29 Number of features:   24 Max AUC:    0.778 AUC:    0.755 Z:    0.221 Rdelta:  0.04900 
#>   30 Number of features:   24 Max AUC:    0.778 AUC:    0.769 Z:    0.361 Rdelta:  0.03920 
#>   31 Number of features:   24 Max AUC:    0.778 AUC:    0.766 Z:    0.463 Rdelta:  0.03136 
#>   32 Number of features:   24 Max AUC:    0.778 AUC:    0.767 Z:    0.291 Rdelta:  0.02509 
#>   33 Number of features:   24 Max AUC:    0.778 AUC:    0.761 Z:    0.099 Rdelta:  0.02007 
#>   34 Number of features:   24 Max AUC:    0.778 AUC:    0.766 Z:    0.249 Rdelta:  0.01606 
#>   35 Number of features:   24 Max AUC:    0.778 AUC:    0.766 Z:    0.492 Rdelta:  0.01285 
#>   36 Number of features:   24 Max AUC:    0.778 AUC:    0.760 Z:    0.292 Rdelta:  0.01028 
#>   37 Number of features:   25 Max AUC:    0.778 AUC:    0.771 Z:    0.341 Rdelta:  0.01925 
#>   38 Number of features:   25 Max AUC:    0.778 AUC:    0.769 Z:    0.161 Rdelta:  0.01540 
#>   39 Number of features:   25 Max AUC:    0.778 AUC:    0.768 Z:    0.264 Rdelta:  0.01232 
#>   40 Number of features:   25 Max AUC:    0.778 AUC:    0.762 Z:    0.284 Rdelta:  0.00986 
#>   41 Number of features:   26 Max AUC:    0.778 AUC:    0.767 Z:    0.455 Rdelta:  0.01887 
#>   42 Number of features:   27 Max AUC:    0.778 AUC:    0.773 Z:    0.656 Rdelta:  0.02698 
#>   43 Number of features:   28 Max AUC:    0.778 AUC:    0.777 Z:    0.578 Rdelta:  0.03428 
#>   44 Number of features:   28 Max AUC:    0.778 AUC:    0.769 Z:    0.285 Rdelta:  0.02743 
#>   45 Number of features:   29 Max AUC:    0.778 AUC:    0.777 Z:    0.322 Rdelta:  0.03468 
#>   46 Number of features:   30 Max AUC:    0.778 AUC:    0.771 Z:    0.295 Rdelta:  0.04122 
#>   47 Number of features:   31 Max AUC:    0.778 AUC:    0.775 Z:    0.256 Rdelta:  0.04709 
#>   48 Number of features:   31 Max AUC:    0.778 AUC:    0.764 Z:    0.279 Rdelta:  0.03768 
#>   49 Number of features:   32 Max AUC:    0.780 AUC:    0.780 Z:    0.285 Rdelta:  0.04391 
#>   50 Number of features:   32 Max AUC:    0.780 AUC:    0.768 Z:    0.253 Rdelta:  0.03513 
#>   51 Number of features:   33 Max AUC:    0.780 AUC:    0.776 Z:    0.321 Rdelta:  0.04161 
#>   52 Number of features:   34 Max AUC:    0.780 AUC:    0.774 Z:    0.255 Rdelta:  0.04745 
#>   53 Number of features:   34 Max AUC:    0.780 AUC:    0.766 Z:    0.431 Rdelta:  0.03796 
#>   54 Number of features:   35 Max AUC:    0.780 AUC:    0.777 Z:    0.668 Rdelta:  0.04417 
#>   55 Number of features:   36 Max AUC:    0.780 AUC:    0.780 Z:    0.333 Rdelta:  0.04975 
#>   56 Number of features:   37 Max AUC:    0.780 AUC:    0.777 Z:    0.484 Rdelta:  0.05477 
#>   57 Number of features:   37 Max AUC:    0.780 AUC:    0.767 Z:    0.432 Rdelta:  0.04382 
#>   58 Number of features:   38 Max AUC:    0.780 AUC:    0.773 Z:    0.558 Rdelta:  0.04944 
#>   59 Number of features:   39 Max AUC:    0.780 AUC:    0.780 Z:    0.391 Rdelta:  0.05449 
#>   60 Number of features:   39 Max AUC:    0.780 AUC:    0.766 Z:    0.489 Rdelta:  0.04360 
#>   61 Number of features:   40 Max AUC:    0.782 AUC:    0.782 Z:    0.289 Rdelta:  0.04924 
#>   62 Number of features:   41 Max AUC:    0.782 AUC:    0.780 Z:    0.572 Rdelta:  0.05431 
#>   63 Number of features:   42 Max AUC:    0.782 AUC:    0.780 Z:    0.467 Rdelta:  0.05888 
#>   64 Number of features:   42 Max AUC:    0.782 AUC:    0.773 Z:    0.299 Rdelta:  0.04710 
#>   65 Number of features:   43 Max AUC:    0.782 AUC:    0.773 Z:    0.479 Rdelta:  0.05239 
#>   66 Number of features:   43 Max AUC:    0.782 AUC:    0.769 Z:    0.473 Rdelta:  0.04192 
#>   67 Number of features:   43 Max AUC:    0.782 AUC:    0.766 Z:    0.270 Rdelta:  0.03353 
#>   68 Number of features:   43 Max AUC:    0.782 AUC:    0.765 Z:    0.444 Rdelta:  0.02683 
#>   69 Number of features:   44 Max AUC:    0.782 AUC:    0.775 Z:    0.451 Rdelta:  0.03414 
#>   70 Number of features:   45 Max AUC:    0.782 AUC:    0.779 Z:    0.435 Rdelta:  0.04073 
#>   71 Number of features:   46 Max AUC:    0.782 AUC:    0.776 Z:    0.284 Rdelta:  0.04666 
#>   72 Number of features:   46 Max AUC:    0.782 AUC:    0.770 Z:    0.374 Rdelta:  0.03732 
#>   73 Number of features:   46 Max AUC:    0.782 AUC:    0.766 Z:    0.363 Rdelta:  0.02986 
#>   74 Number of features:   47 Max AUC:    0.782 AUC:    0.773 Z:    0.305 Rdelta:  0.03687 
#>   75 Number of features:   47 Max AUC:    0.782 AUC:    0.770 Z:    0.414 Rdelta:  0.02950 
#>   76 Number of features:   48 Max AUC:    0.782 AUC:    0.775 Z:    0.289 Rdelta:  0.03655 
#>   77 Number of features:   49 Max AUC:    0.782 AUC:    0.776 Z:    0.383 Rdelta:  0.04289 
#>   78 Number of features:   50 Max AUC:    0.782 AUC:    0.771 Z:    0.432 Rdelta:  0.04860 
#>   79 Number of features:   51 Max AUC:    0.782 AUC:    0.772 Z:    0.466 Rdelta:  0.05374 
#>   80 Number of features:   51 Max AUC:    0.782 AUC:    0.764 Z:    0.552 Rdelta:  0.04300 
#>   81 Number of features:   51 Max AUC:    0.782 AUC:    0.769 Z:    0.384 Rdelta:  0.03440 
#>   82 Number of features:   51 Max AUC:    0.782 AUC:    0.768 Z:    0.463 Rdelta:  0.02752 
#>   83 Number of features:   52 Max AUC:    0.782 AUC:    0.780 Z:    0.460 Rdelta:  0.03477 
#>   84 Number of features:   52 Max AUC:    0.782 AUC:    0.768 Z:    0.411 Rdelta:  0.02781 
#>   85 Number of features:   52 Max AUC:    0.782 AUC:    0.764 Z:    0.375 Rdelta:  0.02225 
#>   86 Number of features:   52 Max AUC:    0.782 AUC:    0.765 Z:    0.153 Rdelta:  0.01780 
#>   87 Number of features:   52 Max AUC:    0.782 AUC:    0.767 Z:    0.237 Rdelta:  0.01424 
#>   88 Number of features:   53 Max AUC:    0.782 AUC:    0.775 Z:    0.259 Rdelta:  0.02282 
#>   89 Number of features:   53 Max AUC:    0.782 AUC:    0.764 Z:    0.308 Rdelta:  0.01825 
#>   90 Number of features:   53 Max AUC:    0.782 AUC:    0.772 Z:    0.415 Rdelta:  0.01460 
#>   91 Number of features:   53 Max AUC:    0.782 AUC:    0.764 Z:    0.287 Rdelta:  0.01168 
#>   92 Number of features:   53 Max AUC:    0.782 AUC:    0.757 Z:    0.356 Rdelta:  0.00935 
#>   93 Number of features:   54 Max AUC:    0.782 AUC:    0.774 Z:    0.490 Rdelta:  0.01841 
#>   94 Number of features:   54 Max AUC:    0.782 AUC:    0.768 Z:    0.393 Rdelta:  0.01473 
#>   95 Number of features:   54 Max AUC:    0.782 AUC:    0.768 Z:    0.269 Rdelta:  0.01178 
#>   96 Number of features:   54 Max AUC:    0.782 AUC:    0.756 Z:    0.493 Rdelta:  0.00943 
#>   97 Number of features:   54 Max AUC:    0.782 AUC:    0.758 Z:    0.588 Rdelta:  0.00754 
#>   98 Number of features:   55 Max AUC:    0.782 AUC:    0.774 Z:    0.303 Rdelta:  0.01679 
#>   99 Number of features:   55 Max AUC:    0.782 AUC:    0.757 Z:    0.390 Rdelta:  0.01343 
#>  100 Number of features:   56 Max AUC:    0.782 AUC:    0.777 Z:    0.399 Rdelta:  0.02209 
#>  101 Number of features:   56 Max AUC:    0.782 AUC:    0.760 Z:    0.426 Rdelta:  0.01767 
#>  102 Number of features:   57 Max AUC:    0.782 AUC:    0.776 Z:    0.322 Rdelta:  0.02590 
#>  103 Number of features:   58 Max AUC:    0.782 AUC:    0.776 Z:    0.468 Rdelta:  0.03331 
#>  104 Number of features:   58 Max AUC:    0.782 AUC:    0.771 Z:    0.402 Rdelta:  0.02665 
#>  105 Number of features:   59 Max AUC:    0.782 AUC:    0.773 Z:    0.307 Rdelta:  0.03398 
#>  106 Number of features:   59 Max AUC:    0.782 AUC:    0.764 Z:    0.283 Rdelta:  0.02719 
#>  107 Number of features:   59 Max AUC:    0.782 AUC:    0.763 Z:    0.350 Rdelta:  0.02175 
#>  108 Number of features:   59 Max AUC:    0.782 AUC:    0.762 Z:    0.350 Rdelta:  0.01740 
#>  109 Number of features:   59 Max AUC:    0.782 AUC:    0.760 Z:    0.305 Rdelta:  0.01392 
#>  110 Number of features:   59 Max AUC:    0.782 AUC:    0.763 Z:    0.253 Rdelta:  0.01114 
#>  111 Number of features:   59 Max AUC:    0.782 AUC:    0.768 Z:    0.399 Rdelta:  0.00891 
#>  112 Number of features:   59 Max AUC:    0.782 AUC:    0.771 Z:    0.307 Rdelta:  0.00713 
#>  113 Number of features:   59 Max AUC:    0.782 AUC:    0.768 Z:    0.438 Rdelta:  0.00570 
#>  114 Number of features:   59 Max AUC:    0.782 AUC:    0.755 Z:    0.385 Rdelta:  0.00456 
#>  115 Number of features:   59 Max AUC:    0.782 AUC:    0.767 Z:    0.422 Rdelta:  0.00365 
#>  116 Number of features:   59 Max AUC:    0.782 AUC:    0.760 Z:    0.383 Rdelta:  0.00292 
#>  117 Number of features:   59 Max AUC:    0.782 AUC:    0.752 Z:    0.386 Rdelta:  0.00234 
#>  118 Number of features:   59 Max AUC:    0.782 AUC:    0.752 Z:    0.448 Rdelta:  0.00187 
#>  119 Number of features:   59 Max AUC:    0.782 AUC:    0.766 Z:    0.373 Rdelta:  0.00149 
#>  120 Number of features:   59 Max AUC:    0.782 AUC:    0.765 Z:    0.315 Rdelta:  0.00120 
#>  121 Number of features:   59 Max AUC:    0.782 AUC:    0.759 Z:    0.301 Rdelta:  0.00096 
#>  122 Number of features:   59 Max AUC:    0.782 AUC:    0.765 Z:    0.323 Rdelta:  0.00077 
#>  123 Number of features:   60 Max AUC:    0.782 AUC:    0.778 Z:    0.473 Rdelta:  0.01069 
#>  124 Number of features:   60 Max AUC:    0.782 AUC:    0.766 Z:    0.331 Rdelta:  0.00855 
#>  125 Number of features:   60 Max AUC:    0.782 AUC:    0.770 Z:    0.378 Rdelta:  0.00684 
#>  126 Number of features:   61 Max AUC:    0.782 AUC:    0.778 Z:    0.307 Rdelta:  0.01616 
#>  127 Number of features:   62 Max AUC:    0.782 AUC:    0.773 Z:    0.307 Rdelta:  0.02454 
#>  128 Number of features:   63 Max AUC:    0.782 AUC:    0.779 Z:    0.273 Rdelta:  0.03209 
#>  129 Number of features:   63 Max AUC:    0.782 AUC:    0.768 Z:    0.272 Rdelta:  0.02567 
#>  130 Number of features:   63 Max AUC:    0.782 AUC:    0.771 Z:    0.365 Rdelta:  0.02054 
#>  131 Number of features:   64 Max AUC:    0.782 AUC:    0.777 Z:    0.499 Rdelta:  0.02848 
#>  132 Number of features:   64 Max AUC:    0.782 AUC:    0.762 Z:    0.414 Rdelta:  0.02279 
#>  133 Number of features:   64 Max AUC:    0.782 AUC:    0.763 Z:    0.354 Rdelta:  0.01823 
#>  134 Number of features:   64 Max AUC:    0.782 AUC:    0.764 Z:    0.320 Rdelta:  0.01458 
#>  135 Number of features:   64 Max AUC:    0.782 AUC:    0.759 Z:    0.479 Rdelta:  0.01167 
#>  136 Number of features:   64 Max AUC:    0.782 AUC:    0.760 Z:    0.223 Rdelta:  0.00933 
#>  137 Number of features:   64 Max AUC:    0.782 AUC:    0.767 Z:    0.502 Rdelta:  0.00747 
#>  138 Number of features:   64 Max AUC:    0.782 AUC:    0.764 Z:    0.369 Rdelta:  0.00597 
#>  139 Number of features:   64 Max AUC:    0.782 AUC:    0.766 Z:    0.358 Rdelta:  0.00478 
#>  140 Number of features:   64 Max AUC:    0.782 AUC:    0.757 Z:    0.318 Rdelta:  0.00382 
#>  141 Number of features:   64 Max AUC:    0.782 AUC:    0.770 Z:    0.256 Rdelta:  0.00306 
#>  142 Number of features:   64 Max AUC:    0.782 AUC:    0.761 Z:    0.309 Rdelta:  0.00245 
#>  143 Number of features:   64 Max AUC:    0.782 AUC:    0.764 Z:    0.527 Rdelta:  0.00196 
#>  144 Number of features:   64 Max AUC:    0.782 AUC:    0.766 Z:    0.429 Rdelta:  0.00157 
#>  145 Number of features:   64 Max AUC:    0.782 AUC:    0.769 Z:    0.365 Rdelta:  0.00125 
#>  146 Number of features:   64 Max AUC:    0.782 AUC:    0.761 Z:    0.136 Rdelta:  0.00100 
#>  147 Number of features:   64 Max AUC:    0.782 AUC:    0.763 Z:    0.404 Rdelta:  0.00080 
#>  148 Number of features:   64 Max AUC:    0.782 AUC:    0.763 Z:    0.413 Rdelta:  0.00064 
#>  149 Number of features:   64 Max AUC:    0.782 AUC:    0.756 Z:    0.332 Rdelta:  0.00051 
#>  150 Number of features:   64 Max AUC:    0.782 AUC:    0.762 Z:    0.311 Rdelta:  0.00041 
#>  151 Number of features:   64 Max AUC:    0.782 AUC:    0.761 Z:    0.432 Rdelta:  0.00033 
#>  152 Number of features:   64 Max AUC:    0.782 AUC:    0.767 Z:    0.386 Rdelta:  0.00026 
#>  153 Number of features:   65 Max AUC:    0.782 AUC:    0.773 Z:    0.418 Rdelta:  0.01024 
#>  154 Number of features:   65 Max AUC:    0.782 AUC:    0.765 Z:    0.452 Rdelta:  0.00819 
#>  155 Number of features:   65 Max AUC:    0.782 AUC:    0.761 Z:    0.343 Rdelta:  0.00655 
#>  156 Number of features:   65 Max AUC:    0.782 AUC:    0.770 Z:    0.361 Rdelta:  0.00524 
#>  157 Number of features:   65 Max AUC:    0.782 AUC:    0.766 Z:    0.407 Rdelta:  0.00419 
#>  158 Number of features:   65 Max AUC:    0.782 AUC:    0.758 Z:    0.438 Rdelta:  0.00335 
#>  159 Number of features:   66 Max AUC:    0.782 AUC:    0.771 Z:    0.337 Rdelta:  0.01302 
#>  160 Number of features:   66 Max AUC:    0.782 AUC:    0.750 Z:    0.476 Rdelta:  0.01042 
#>  161 Number of features:   66 Max AUC:    0.782 AUC:    0.758 Z:    0.372 Rdelta:  0.00833 
#>  162 Number of features:   66 Max AUC:    0.782 AUC:    0.750 Z:    0.374 Rdelta:  0.00667 
#>  163 Number of features:   66 Max AUC:    0.782 AUC:    0.756 Z:    0.345 Rdelta:  0.00533 
#>  164 Number of features:   66 Max AUC:    0.782 AUC:    0.762 Z:    0.443 Rdelta:  0.00427 
#>  165 Number of features:   66 Max AUC:    0.782 AUC:    0.742 Z:    0.297 Rdelta:  0.00341 
#>  166 Number of features:   66 Max AUC:    0.782 AUC:    0.763 Z:    0.499 Rdelta:  0.00273 
#>  167 Number of features:   67 Max AUC:    0.782 AUC:    0.774 Z:    0.364 Rdelta:  0.01246 
#>  168 Number of features:   67 Max AUC:    0.782 AUC:    0.757 Z:    0.474 Rdelta:  0.00997 
#>  169 Number of features:   67 Max AUC:    0.782 AUC:    0.758 Z:    0.400 Rdelta:  0.00797 
#>  170 Number of features:   67 Max AUC:    0.782 AUC:    0.762 Z:    0.337 Rdelta:  0.00638 
#>  171 Number of features:   68 Max AUC:    0.782 AUC:    0.770 Z:    0.370 Rdelta:  0.01574 
#>  172 Number of features:   68 Max AUC:    0.782 AUC:    0.763 Z:    0.309 Rdelta:  0.01259 
#>  173 Number of features:   68 Max AUC:    0.782 AUC:    0.753 Z:    0.136 Rdelta:  0.01007 
#>  174 Number of features:   68 Max AUC:    0.782 AUC:    0.737 Z:    0.278 Rdelta:  0.00806 
#>  175 Number of features:   68 Max AUC:    0.782 AUC:    0.769 Z:    0.328 Rdelta:  0.00645 
#>  176 Number of features:   68 Max AUC:    0.782 AUC:    0.766 Z:    0.242 Rdelta:  0.00516 
#>  177 Number of features:   68 Max AUC:    0.782 AUC:    0.766 Z:    0.395 Rdelta:  0.00413 
#>  178 Number of features:   68 Max AUC:    0.782 AUC:    0.744 Z:    0.357 Rdelta:  0.00330 
#>  179 Number of features:   68 Max AUC:    0.782 AUC:    0.761 Z:    0.277 Rdelta:  0.00264 
#>  180 Number of features:   68 Max AUC:    0.782 AUC:    0.764 Z:    0.341 Rdelta:  0.00211 
#>  181 Number of features:   68 Max AUC:    0.782 AUC:    0.746 Z:    0.285 Rdelta:  0.00169 
#>  182 Number of features:   68 Max AUC:    0.782 AUC:    0.742 Z:    0.191 Rdelta:  0.00135 
#>  183 Number of features:   68 Max AUC:    0.782 AUC:    0.753 Z:    0.227 Rdelta:  0.00108 
#>  184 Number of features:   68 Max AUC:    0.782 AUC:    0.763 Z:    0.316 Rdelta:  0.00087 
#>  185 Number of features:   68 Max AUC:    0.782 AUC:    0.735 Z:    0.305 Rdelta:  0.00069 
#>  186 Number of features:   68 Max AUC:    0.782 AUC:    0.740 Z:    0.459 Rdelta:  0.00055 
#>  187 Number of features:   69 Max AUC:    0.782 AUC:    0.776 Z:    0.516 Rdelta:  0.01050 
#>  188 Number of features:   69 Max AUC:    0.782 AUC:    0.751 Z:    0.398 Rdelta:  0.00840 
#>  189 Number of features:   69 Max AUC:    0.782 AUC:    0.762 Z:    0.635 Rdelta:  0.00672 
#>  190 Number of features:   69 Max AUC:    0.782 AUC:    0.758 Z:    0.360 Rdelta:  0.00538 
#>  191 Number of features:   69 Max AUC:    0.782 AUC:    0.752 Z:    0.343 Rdelta:  0.00430 
#>  192 Number of features:   69 Max AUC:    0.782 AUC:    0.753 Z:    0.319 Rdelta:  0.00344 
#>  193 Number of features:   69 Max AUC:    0.782 AUC:    0.754 Z:    0.571 Rdelta:  0.00275 
#>  194 Number of features:   69 Max AUC:    0.782 AUC:    0.762 Z:    0.352 Rdelta:  0.00220 
#>  195 Number of features:   69 Max AUC:    0.782 AUC:    0.761 Z:    0.342 Rdelta:  0.00176 
#>  196 Number of features:   69 Max AUC:    0.782 AUC:    0.754 Z:    0.393 Rdelta:  0.00141 
#>  197 Number of features:   69 Max AUC:    0.782 AUC:    0.749 Z:    0.307 Rdelta:  0.00113 
#>  198 Number of features:   69 Max AUC:    0.782 AUC:    0.739 Z:    0.555 Rdelta:  0.00090 
#>  199 Number of features:   69 Max AUC:    0.782 AUC:    0.758 Z:    0.344 Rdelta:  0.00072 
#>  200 Number of features:   69 Max AUC:    0.782 AUC:    0.752 Z:    0.422 Rdelta:  0.00058 
#>  201 Number of features:   69 Max AUC:    0.782 AUC:    0.757 Z:    0.283 Rdelta:  0.00046 
#>  202 Number of features:   69 Max AUC:    0.782 AUC:    0.742 Z:    0.316 Rdelta:  0.00037 
#>  203 Number of features:   69 Max AUC:    0.782 AUC:    0.758 Z:    0.341 Rdelta:  0.00030 
#>  204 Number of features:   69 Max AUC:    0.782 AUC:    0.755 Z:    0.414 Rdelta:  0.00024 
#>  205 Number of features:   69 Max AUC:    0.782 AUC:    0.761 Z:    0.493 Rdelta:  0.00019 
#>  206 Number of features:   69 Max AUC:    0.782 AUC:    0.752 Z:    0.259 Rdelta:  0.00015 
#>  207 Number of features:   69 Max AUC:    0.782 AUC:    0.726 Z:    0.336 Rdelta:  0.00012 
#>  208 Number of features:   69 Max AUC:    0.782 AUC:    0.745 Z:    0.427 Rdelta:  0.00010
#>    user  system elapsed 
#>  130.24    0.00  130.35
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################
 

varlist <- names(arceneCVOne$bagging$frequencyTable)

#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#>    7 Number of features:    7 Max AUC:    0.519 AUC:    0.519 Z:    0.048 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.538 AUC:    0.538 Z:    0.132 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.541 AUC:    0.541 Z:    0.167 Rdelta:  0.10000 
#>   10 Number of features:    9 Max AUC:    0.541 AUC:    0.500 Z:    0.010 Rdelta:  0.08000 
#>   11 Number of features:   10 Max AUC:    0.547 AUC:    0.547 Z:    0.113 Rdelta:  0.08200 
#>   12 Number of features:   10 Max AUC:    0.547 AUC:    0.516 Z:    0.058 Rdelta:  0.06560 
#>   13 Number of features:   10 Max AUC:    0.547 AUC:    0.522 Z:    0.056 Rdelta:  0.05248 
#>   14 Number of features:   10 Max AUC:    0.547 AUC:    0.533 Z:    0.066 Rdelta:  0.04198 
#>   15 Number of features:   10 Max AUC:    0.547 AUC:    0.489 Z:   -0.015 Rdelta:  0.03359 
#>   16 Number of features:   10 Max AUC:    0.547 AUC:    0.528 Z:    0.073 Rdelta:  0.02687 
#>   17 Number of features:   10 Max AUC:    0.547 AUC:    0.489 Z:    0.024 Rdelta:  0.02150 
#>   18 Number of features:   11 Max AUC:    0.547 AUC:    0.546 Z:    0.102 Rdelta:  0.02935 
#>   19 Number of features:   11 Max AUC:    0.547 AUC:    0.522 Z:   -0.002 Rdelta:  0.02348 
#>   20 Number of features:   11 Max AUC:    0.547 AUC:    0.529 Z:    0.074 Rdelta:  0.01878 
#>   21 Number of features:   12 Max AUC:    0.552 AUC:    0.552 Z:    0.174 Rdelta:  0.02690 
#>   22 Number of features:   12 Max AUC:    0.552 AUC:    0.517 Z:    0.079 Rdelta:  0.02152 
#>   23 Number of features:   12 Max AUC:    0.552 AUC:    0.522 Z:    0.108 Rdelta:  0.01722 
#>   24 Number of features:   12 Max AUC:    0.552 AUC:    0.537 Z:    0.145 Rdelta:  0.01377 
#>   25 Number of features:   12 Max AUC:    0.552 AUC:    0.524 Z:    0.066 Rdelta:  0.01102 
#>   26 Number of features:   12 Max AUC:    0.552 AUC:    0.540 Z:    0.148 Rdelta:  0.00882 
#>   27 Number of features:   13 Max AUC:    0.552 AUC:    0.543 Z:    0.194 Rdelta:  0.01793 
#>   28 Number of features:   14 Max AUC:    0.552 AUC:    0.541 Z:    0.093 Rdelta:  0.02614 
#>   29 Number of features:   14 Max AUC:    0.552 AUC:    0.535 Z:    0.113 Rdelta:  0.02091 
#>   30 Number of features:   14 Max AUC:    0.552 AUC:    0.533 Z:    0.056 Rdelta:  0.01673 
#>   31 Number of features:   15 Max AUC:    0.611 AUC:    0.611 Z:    0.458 Rdelta:  0.02506 
#>   32 Number of features:   16 Max AUC:    0.625 AUC:    0.625 Z:    0.530 Rdelta:  0.03255 
#>   33 Number of features:   16 Max AUC:    0.625 AUC:    0.589 Z:    0.463 Rdelta:  0.02604 
#>   34 Number of features:   16 Max AUC:    0.625 AUC:    0.610 Z:    0.481 Rdelta:  0.02083 
#>   35 Number of features:   16 Max AUC:    0.625 AUC:    0.599 Z:    0.494 Rdelta:  0.01667 
#>   36 Number of features:   17 Max AUC:    0.625 AUC:    0.618 Z:    0.544 Rdelta:  0.02500 
#>   37 Number of features:   17 Max AUC:    0.625 AUC:    0.591 Z:    0.456 Rdelta:  0.02000 
#>   38 Number of features:   18 Max AUC:    0.625 AUC:    0.625 Z:    0.627 Rdelta:  0.02800 
#>   39 Number of features:   18 Max AUC:    0.625 AUC:    0.596 Z:    0.374 Rdelta:  0.02240 
#>   40 Number of features:   19 Max AUC:    0.625 AUC:    0.621 Z:    0.545 Rdelta:  0.03016 
#>   41 Number of features:   20 Max AUC:    0.632 AUC:    0.632 Z:    0.518 Rdelta:  0.03714 
#>   42 Number of features:   21 Max AUC:    0.634 AUC:    0.634 Z:    0.508 Rdelta:  0.04343 
#>   43 Number of features:   22 Max AUC:    0.759 AUC:    0.759 Z:    0.832 Rdelta:  0.04909 
#>   44 Number of features:   22 Max AUC:    0.759 AUC:    0.742 Z:    0.814 Rdelta:  0.03927 
#>   45 Number of features:   23 Max AUC:    0.759 AUC:    0.752 Z:    0.800 Rdelta:  0.04534 
#>   46 Number of features:   23 Max AUC:    0.759 AUC:    0.681 Z:    0.694 Rdelta:  0.03627 
#>   47 Number of features:   24 Max AUC:    0.759 AUC:    0.749 Z:    0.831 Rdelta:  0.04265 
#>   48 Number of features:   24 Max AUC:    0.759 AUC:    0.731 Z:    0.833 Rdelta:  0.03412 
#>   49 Number of features:   24 Max AUC:    0.759 AUC:    0.743 Z:    0.768 Rdelta:  0.02729 
#>   50 Number of features:   25 Max AUC:    0.759 AUC:    0.755 Z:    0.832 Rdelta:  0.03456 
#>   51 Number of features:   26 Max AUC:    0.759 AUC:    0.758 Z:    0.800 Rdelta:  0.04111 
#>   52 Number of features:   27 Max AUC:    0.759 AUC:    0.756 Z:    0.731 Rdelta:  0.04700 
#>   53 Number of features:   27 Max AUC:    0.759 AUC:    0.737 Z:    0.731 Rdelta:  0.03760 
#>   54 Number of features:   28 Max AUC:    0.759 AUC:    0.758 Z:    0.821 Rdelta:  0.04384 
#>   55 Number of features:   29 Max AUC:    0.759 AUC:    0.755 Z:    0.838 Rdelta:  0.04945 
#>   56 Number of features:   30 Max AUC:    0.759 AUC:    0.755 Z:    0.862 Rdelta:  0.05451 
#>   57 Number of features:   30 Max AUC:    0.759 AUC:    0.741 Z:    0.802 Rdelta:  0.04361 
#>   58 Number of features:   30 Max AUC:    0.759 AUC:    0.687 Z:    0.646 Rdelta:  0.03489 
#>   59 Number of features:   31 Max AUC:    0.759 AUC:    0.754 Z:    0.842 Rdelta:  0.04140 
#>   60 Number of features:   31 Max AUC:    0.759 AUC:    0.744 Z:    0.808 Rdelta:  0.03312 
#>   61 Number of features:   32 Max AUC:    0.759 AUC:    0.752 Z:    0.829 Rdelta:  0.03981 
#>   62 Number of features:   32 Max AUC:    0.759 AUC:    0.723 Z:    0.836 Rdelta:  0.03184 
#>   63 Number of features:   33 Max AUC:    0.764 AUC:    0.764 Z:    0.833 Rdelta:  0.03866 
#>   64 Number of features:   34 Max AUC:    0.764 AUC:    0.761 Z:    0.826 Rdelta:  0.04479 
#>   65 Number of features:   35 Max AUC:    0.765 AUC:    0.765 Z:    0.961 Rdelta:  0.05031 
#>   66 Number of features:   35 Max AUC:    0.765 AUC:    0.756 Z:    0.911 Rdelta:  0.04025 
#>   67 Number of features:   36 Max AUC:    0.765 AUC:    0.763 Z:    0.919 Rdelta:  0.04623 
#>   68 Number of features:   37 Max AUC:    0.766 AUC:    0.766 Z:    0.963 Rdelta:  0.05160 
#>   69 Number of features:   37 Max AUC:    0.766 AUC:    0.734 Z:    0.840 Rdelta:  0.04128 
#>   70 Number of features:   37 Max AUC:    0.766 AUC:    0.734 Z:    0.877 Rdelta:  0.03303 
#>   71 Number of features:   37 Max AUC:    0.766 AUC:    0.745 Z:    0.886 Rdelta:  0.02642 
#>   72 Number of features:   37 Max AUC:    0.766 AUC:    0.751 Z:    0.867 Rdelta:  0.02114 
#>   73 Number of features:   37 Max AUC:    0.766 AUC:    0.729 Z:    0.825 Rdelta:  0.01691 
#>   74 Number of features:   38 Max AUC:    0.773 AUC:    0.773 Z:    0.934 Rdelta:  0.02522 
#>   75 Number of features:   38 Max AUC:    0.773 AUC:    0.755 Z:    0.909 Rdelta:  0.02017 
#>   76 Number of features:   38 Max AUC:    0.773 AUC:    0.749 Z:    0.929 Rdelta:  0.01614 
#>   77 Number of features:   39 Max AUC:    0.773 AUC:    0.767 Z:    0.979 Rdelta:  0.02453 
#>   78 Number of features:   39 Max AUC:    0.773 AUC:    0.748 Z:    0.952 Rdelta:  0.01962 
#>   79 Number of features:   40 Max AUC:    0.778 AUC:    0.778 Z:    0.927 Rdelta:  0.02766 
#>   80 Number of features:   41 Max AUC:    0.778 AUC:    0.772 Z:    0.957 Rdelta:  0.03489 
#>   81 Number of features:   41 Max AUC:    0.778 AUC:    0.755 Z:    0.884 Rdelta:  0.02791 
#>   82 Number of features:   41 Max AUC:    0.778 AUC:    0.768 Z:    0.944 Rdelta:  0.02233 
#>   83 Number of features:   41 Max AUC:    0.778 AUC:    0.764 Z:    1.000 Rdelta:  0.01787 
#>   84 Number of features:   42 Max AUC:    0.778 AUC:    0.772 Z:    0.962 Rdelta:  0.02608 
#>   85 Number of features:   42 Max AUC:    0.778 AUC:    0.721 Z:    0.980 Rdelta:  0.02086 
#>   86 Number of features:   42 Max AUC:    0.778 AUC:    0.732 Z:    0.870 Rdelta:  0.01669 
#>   87 Number of features:   43 Max AUC:    0.778 AUC:    0.776 Z:    1.012 Rdelta:  0.02502 
#>   88 Number of features:   43 Max AUC:    0.778 AUC:    0.720 Z:    0.947 Rdelta:  0.02002 
#>   89 Number of features:   43 Max AUC:    0.778 AUC:    0.721 Z:    0.791 Rdelta:  0.01601 
#>   90 Number of features:   43 Max AUC:    0.778 AUC:    0.747 Z:    0.935 Rdelta:  0.01281 
#>   91 Number of features:   43 Max AUC:    0.778 AUC:    0.766 Z:    0.931 Rdelta:  0.01025 
#>   92 Number of features:   43 Max AUC:    0.778 AUC:    0.647 Z:    0.744 Rdelta:  0.00820 
#>   93 Number of features:   43 Max AUC:    0.778 AUC:    0.714 Z:    1.038 Rdelta:  0.00656 
#>   94 Number of features:   43 Max AUC:    0.778 AUC:    0.765 Z:    1.016 Rdelta:  0.00525 
#>   95 Number of features:   44 Max AUC:    0.778 AUC:    0.775 Z:    1.041 Rdelta:  0.01472 
#>   96 Number of features:   44 Max AUC:    0.778 AUC:    0.725 Z:    0.887 Rdelta:  0.01178 
#>   97 Number of features:   44 Max AUC:    0.778 AUC:    0.698 Z:    1.008 Rdelta:  0.00942 
#>   98 Number of features:   45 Max AUC:    0.778 AUC:    0.773 Z:    1.000 Rdelta:  0.01848 
#>   99 Number of features:   45 Max AUC:    0.778 AUC:    0.701 Z:    1.050 Rdelta:  0.01478 
#>  100 Number of features:   46 Max AUC:    0.778 AUC:    0.773 Z:    1.042 Rdelta:  0.02331 
#>  101 Number of features:   46 Max AUC:    0.778 AUC:    0.755 Z:    0.978 Rdelta:  0.01864 
#>  102 Number of features:   47 Max AUC:    0.778 AUC:    0.773 Z:    1.004 Rdelta:  0.02678 
#>  103 Number of features:   48 Max AUC:    0.778 AUC:    0.775 Z:    1.039 Rdelta:  0.03410 
#>  104 Number of features:   48 Max AUC:    0.778 AUC:    0.701 Z:    0.853 Rdelta:  0.02728 
#>  105 Number of features:   48 Max AUC:    0.778 AUC:    0.759 Z:    0.961 Rdelta:  0.02183 
#>  106 Number of features:   48 Max AUC:    0.778 AUC:    0.765 Z:    1.031 Rdelta:  0.01746 
#>  107 Number of features:   48 Max AUC:    0.778 AUC:    0.714 Z:    0.918 Rdelta:  0.01397 
#>  108 Number of features:   48 Max AUC:    0.778 AUC:    0.707 Z:    1.072 Rdelta:  0.01117 
#>  109 Number of features:   48 Max AUC:    0.778 AUC:    0.702 Z:    1.027 Rdelta:  0.00894 
#>  110 Number of features:   48 Max AUC:    0.778 AUC:    0.753 Z:    0.982 Rdelta:  0.00715 
#>  111 Number of features:   48 Max AUC:    0.778 AUC:    0.766 Z:    1.047 Rdelta:  0.00572 
#>  112 Number of features:   48 Max AUC:    0.778 AUC:    0.697 Z:    1.025 Rdelta:  0.00458 
#>  113 Number of features:   49 Max AUC:    0.778 AUC:    0.768 Z:    0.994 Rdelta:  0.01412 
#>  114 Number of features:   49 Max AUC:    0.778 AUC:    0.765 Z:    1.020 Rdelta:  0.01130 
#>  115 Number of features:   49 Max AUC:    0.778 AUC:    0.752 Z:    1.002 Rdelta:  0.00904 
#>  116 Number of features:   49 Max AUC:    0.778 AUC:    0.745 Z:    0.960 Rdelta:  0.00723 
#>  117 Number of features:   49 Max AUC:    0.778 AUC:    0.750 Z:    0.958 Rdelta:  0.00578 
#>  118 Number of features:   49 Max AUC:    0.778 AUC:    0.678 Z:    0.858 Rdelta:  0.00463 
#>  119 Number of features:   49 Max AUC:    0.778 AUC:    0.761 Z:    0.974 Rdelta:  0.00370 
#>  120 Number of features:   49 Max AUC:    0.778 AUC:    0.712 Z:    0.842 Rdelta:  0.00296 
#>  121 Number of features:   50 Max AUC:    0.780 AUC:    0.780 Z:    1.025 Rdelta:  0.01266 
#>  122 Number of features:   50 Max AUC:    0.780 AUC:    0.754 Z:    0.955 Rdelta:  0.01013 
#>  123 Number of features:   50 Max AUC:    0.780 AUC:    0.760 Z:    1.031 Rdelta:  0.00811 
#>  124 Number of features:   50 Max AUC:    0.780 AUC:    0.718 Z:    1.056 Rdelta:  0.00648 
#>  125 Number of features:   50 Max AUC:    0.780 AUC:    0.759 Z:    1.008 Rdelta:  0.00519 
#>  126 Number of features:   50 Max AUC:    0.780 AUC:    0.711 Z:    0.969 Rdelta:  0.00415 
#>  127 Number of features:   50 Max AUC:    0.780 AUC:    0.732 Z:    0.955 Rdelta:  0.00332 
#>  128 Number of features:   50 Max AUC:    0.780 AUC:    0.696 Z:    0.969 Rdelta:  0.00266 
#>  129 Number of features:   50 Max AUC:    0.780 AUC:    0.764 Z:    0.986 Rdelta:  0.00212 
#>  130 Number of features:   51 Max AUC:    0.780 AUC:    0.780 Z:    1.055 Rdelta:  0.01191 
#>  131 Number of features:   51 Max AUC:    0.780 AUC:    0.732 Z:    0.955 Rdelta:  0.00953 
#>  132 Number of features:   51 Max AUC:    0.780 AUC:    0.750 Z:    0.934 Rdelta:  0.00762 
#>  133 Number of features:   51 Max AUC:    0.780 AUC:    0.728 Z:    0.918 Rdelta:  0.00610 
#>  134 Number of features:   51 Max AUC:    0.780 AUC:    0.709 Z:    1.043 Rdelta:  0.00488 
#>  135 Number of features:   51 Max AUC:    0.780 AUC:    0.758 Z:    1.025 Rdelta:  0.00390 
#>  136 Number of features:   51 Max AUC:    0.780 AUC:    0.729 Z:    0.992 Rdelta:  0.00312 
#>  137 Number of features:   51 Max AUC:    0.780 AUC:    0.760 Z:    0.989 Rdelta:  0.00250 
#>  138 Number of features:   51 Max AUC:    0.780 AUC:    0.656 Z:    0.742 Rdelta:  0.00200 
#>  139 Number of features:   51 Max AUC:    0.780 AUC:    0.757 Z:    1.014 Rdelta:  0.00160 
#>  140 Number of features:   51 Max AUC:    0.780 AUC:    0.705 Z:    1.000 Rdelta:  0.00128 
#>  141 Number of features:   51 Max AUC:    0.780 AUC:    0.708 Z:    1.057 Rdelta:  0.00102 
#>  142 Number of features:   51 Max AUC:    0.780 AUC:    0.743 Z:    1.027 Rdelta:  0.00082 
#>  143 Number of features:   51 Max AUC:    0.780 AUC:    0.770 Z:    1.009 Rdelta:  0.00065 
#>  144 Number of features:   51 Max AUC:    0.780 AUC:    0.765 Z:    0.964 Rdelta:  0.00052 
#>  145 Number of features:   51 Max AUC:    0.780 AUC:    0.769 Z:    1.117 Rdelta:  0.00042 
#>  146 Number of features:   51 Max AUC:    0.780 AUC:    0.762 Z:    1.038 Rdelta:  0.00034 
#>  147 Number of features:   51 Max AUC:    0.780 AUC:    0.705 Z:    0.797 Rdelta:  0.00027 
#>  148 Number of features:   52 Max AUC:    0.780 AUC:    0.772 Z:    1.121 Rdelta:  0.01024 
#>  149 Number of features:   52 Max AUC:    0.780 AUC:    0.686 Z:    0.936 Rdelta:  0.00819 
#>  150 Number of features:   52 Max AUC:    0.780 AUC:    0.733 Z:    0.906 Rdelta:  0.00655 
#>  151 Number of features:   52 Max AUC:    0.780 AUC:    0.712 Z:    0.937 Rdelta:  0.00524 
#>  152 Number of features:   52 Max AUC:    0.780 AUC:    0.680 Z:    0.822 Rdelta:  0.00419 
#>  153 Number of features:   52 Max AUC:    0.780 AUC:    0.769 Z:    1.042 Rdelta:  0.00336 
#>  154 Number of features:   52 Max AUC:    0.780 AUC:    0.647 Z:    0.728 Rdelta:  0.00268 
#>  155 Number of features:   52 Max AUC:    0.780 AUC:    0.694 Z:    0.853 Rdelta:  0.00215 
#>  156 Number of features:   52 Max AUC:    0.780 AUC:    0.684 Z:    0.625 Rdelta:  0.00172 
#>  157 Number of features:   52 Max AUC:    0.780 AUC:    0.759 Z:    1.003 Rdelta:  0.00137 
#>  158 Number of features:   52 Max AUC:    0.780 AUC:    0.717 Z:    1.069 Rdelta:  0.00110 
#>  159 Number of features:   52 Max AUC:    0.780 AUC:    0.712 Z:    1.005 Rdelta:  0.00088 
#>  160 Number of features:   52 Max AUC:    0.780 AUC:    0.754 Z:    0.996 Rdelta:  0.00070 
#>  161 Number of features:   52 Max AUC:    0.780 AUC:    0.750 Z:    0.990 Rdelta:  0.00056 
#>  162 Number of features:   52 Max AUC:    0.780 AUC:    0.748 Z:    1.007 Rdelta:  0.00045 
#>  163 Number of features:   52 Max AUC:    0.780 AUC:    0.760 Z:    1.084 Rdelta:  0.00036 
#>  164 Number of features:   52 Max AUC:    0.780 AUC:    0.765 Z:    1.065 Rdelta:  0.00029 
#>  165 Number of features:   52 Max AUC:    0.780 AUC:    0.702 Z:    1.050 Rdelta:  0.00023 
#>  166 Number of features:   52 Max AUC:    0.780 AUC:    0.752 Z:    1.045 Rdelta:  0.00018 
#>  167 Number of features:   52 Max AUC:    0.780 AUC:    0.737 Z:    0.992 Rdelta:  0.00015 
#>  168 Number of features:   52 Max AUC:    0.780 AUC:    0.704 Z:    1.100 Rdelta:  0.00012 
#>  169 Number of features:   52 Max AUC:    0.780 AUC:    0.755 Z:    0.911 Rdelta:  0.00009
#>    user  system elapsed 
#>   83.74    0.00   83.80
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#>    7 Number of features:    7 Max AUC:    0.729 AUC:    0.729 Z:    0.995 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.733 AUC:    0.733 Z:    1.091 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.733 AUC:    0.733 Z:    1.063 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.733 AUC:    0.733 Z:    1.186 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.736 AUC:    0.736 Z:    1.229 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.736 AUC:    0.724 Z:    1.417 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.736 AUC:    0.736 Z:    1.439 Rdelta:  0.10000 
#>   14 Number of features:   13 Max AUC:    0.736 AUC:    0.719 Z:    1.102 Rdelta:  0.08000 
#>   15 Number of features:   14 Max AUC:    0.736 AUC:    0.736 Z:    1.278 Rdelta:  0.08200 
#>   16 Number of features:   15 Max AUC:    0.736 AUC:    0.731 Z:    1.445 Rdelta:  0.08380 
#>   17 Number of features:   15 Max AUC:    0.736 AUC:    0.709 Z:    1.291 Rdelta:  0.06704 
#>   18 Number of features:   16 Max AUC:    0.736 AUC:    0.732 Z:    0.361 Rdelta:  0.07034 
#>   19 Number of features:   16 Max AUC:    0.736 AUC:    0.730 Z:    0.216 Rdelta:  0.05627 
#>   20 Number of features:   16 Max AUC:    0.736 AUC:    0.724 Z:    0.468 Rdelta:  0.04502 
#>   21 Number of features:   16 Max AUC:    0.736 AUC:    0.724 Z:    0.436 Rdelta:  0.03601 
#>   22 Number of features:   17 Max AUC:    0.743 AUC:    0.743 Z:    0.395 Rdelta:  0.04241 
#>   23 Number of features:   17 Max AUC:    0.743 AUC:    0.726 Z:    0.409 Rdelta:  0.03393 
#>   24 Number of features:   18 Max AUC:    0.746 AUC:    0.746 Z:    0.460 Rdelta:  0.04054 
#>   25 Number of features:   18 Max AUC:    0.746 AUC:    0.729 Z:    0.582 Rdelta:  0.03243 
#>   26 Number of features:   19 Max AUC:    0.746 AUC:    0.742 Z:    0.394 Rdelta:  0.03919 
#>   27 Number of features:   19 Max AUC:    0.746 AUC:    0.722 Z:    0.516 Rdelta:  0.03135 
#>   28 Number of features:   19 Max AUC:    0.746 AUC:    0.730 Z:    0.442 Rdelta:  0.02508 
#>   29 Number of features:   20 Max AUC:    0.746 AUC:    0.739 Z:    0.397 Rdelta:  0.03257 
#>   30 Number of features:   20 Max AUC:    0.746 AUC:    0.703 Z:    0.475 Rdelta:  0.02606 
#>   31 Number of features:   20 Max AUC:    0.746 AUC:    0.714 Z:    0.379 Rdelta:  0.02085 
#>   32 Number of features:   20 Max AUC:    0.746 AUC:    0.731 Z:    0.398 Rdelta:  0.01668 
#>   33 Number of features:   21 Max AUC:    0.746 AUC:    0.746 Z:    0.414 Rdelta:  0.02501 
#>   34 Number of features:   21 Max AUC:    0.746 AUC:    0.736 Z:    0.379 Rdelta:  0.02001 
#>   35 Number of features:   21 Max AUC:    0.746 AUC:    0.728 Z:    0.449 Rdelta:  0.01601 
#>   36 Number of features:   21 Max AUC:    0.746 AUC:    0.720 Z:    0.473 Rdelta:  0.01280 
#>   37 Number of features:   21 Max AUC:    0.746 AUC:    0.712 Z:    0.471 Rdelta:  0.01024 
#>   38 Number of features:   22 Max AUC:    0.747 AUC:    0.747 Z:    0.471 Rdelta:  0.01922 
#>   39 Number of features:   23 Max AUC:    0.747 AUC:    0.742 Z:    0.446 Rdelta:  0.02730 
#>   40 Number of features:   23 Max AUC:    0.747 AUC:    0.704 Z:    0.459 Rdelta:  0.02184 
#>   41 Number of features:   23 Max AUC:    0.747 AUC:    0.727 Z:    0.451 Rdelta:  0.01747 
#>   42 Number of features:   23 Max AUC:    0.747 AUC:    0.708 Z:    0.499 Rdelta:  0.01398 
#>   43 Number of features:   24 Max AUC:    0.747 AUC:    0.741 Z:    0.522 Rdelta:  0.02258 
#>   44 Number of features:   25 Max AUC:    0.759 AUC:    0.759 Z:    0.453 Rdelta:  0.03032 
#>   45 Number of features:   25 Max AUC:    0.759 AUC:    0.727 Z:    0.234 Rdelta:  0.02426 
#>   46 Number of features:   25 Max AUC:    0.759 AUC:    0.738 Z:    0.125 Rdelta:  0.01941 
#>   47 Number of features:   26 Max AUC:    0.759 AUC:    0.757 Z:    0.542 Rdelta:  0.02746 
#>   48 Number of features:   27 Max AUC:    0.779 AUC:    0.779 Z:    0.119 Rdelta:  0.03472 
#>   49 Number of features:   27 Max AUC:    0.779 AUC:    0.760 Z:    0.516 Rdelta:  0.02777 
#>   50 Number of features:   27 Max AUC:    0.779 AUC:    0.743 Z:    0.154 Rdelta:  0.02222 
#>   51 Number of features:   27 Max AUC:    0.779 AUC:    0.765 Z:    0.286 Rdelta:  0.01778 
#>   52 Number of features:   27 Max AUC:    0.779 AUC:    0.754 Z:    0.397 Rdelta:  0.01422 
#>   53 Number of features:   27 Max AUC:    0.779 AUC:    0.742 Z:    0.490 Rdelta:  0.01138 
#>   54 Number of features:   28 Max AUC:    0.779 AUC:    0.770 Z:    0.163 Rdelta:  0.02024 
#>   55 Number of features:   28 Max AUC:    0.779 AUC:    0.738 Z:    0.318 Rdelta:  0.01619 
#>   56 Number of features:   29 Max AUC:    0.779 AUC:    0.774 Z:    0.578 Rdelta:  0.02457 
#>   57 Number of features:   29 Max AUC:    0.779 AUC:    0.745 Z:    0.380 Rdelta:  0.01966 
#>   58 Number of features:   29 Max AUC:    0.779 AUC:    0.708 Z:    0.296 Rdelta:  0.01573 
#>   59 Number of features:   30 Max AUC:    0.781 AUC:    0.781 Z:    0.528 Rdelta:  0.02415 
#>   60 Number of features:   30 Max AUC:    0.781 AUC:    0.762 Z:    0.513 Rdelta:  0.01932 
#>   61 Number of features:   30 Max AUC:    0.781 AUC:    0.770 Z:    0.471 Rdelta:  0.01546 
#>   62 Number of features:   30 Max AUC:    0.781 AUC:    0.676 Z:    0.229 Rdelta:  0.01237 
#>   63 Number of features:   30 Max AUC:    0.781 AUC:    0.755 Z:    0.404 Rdelta:  0.00989 
#>   64 Number of features:   30 Max AUC:    0.781 AUC:    0.746 Z:    0.336 Rdelta:  0.00791 
#>   65 Number of features:   30 Max AUC:    0.781 AUC:    0.767 Z:    0.511 Rdelta:  0.00633 
#>   66 Number of features:   30 Max AUC:    0.781 AUC:    0.762 Z:    0.564 Rdelta:  0.00507 
#>   67 Number of features:   30 Max AUC:    0.781 AUC:    0.742 Z:    0.193 Rdelta:  0.00405 
#>   68 Number of features:   30 Max AUC:    0.781 AUC:    0.729 Z:    0.276 Rdelta:  0.00324 
#>   69 Number of features:   30 Max AUC:    0.781 AUC:    0.748 Z:    0.500 Rdelta:  0.00259 
#>   70 Number of features:   30 Max AUC:    0.781 AUC:    0.747 Z:    0.288 Rdelta:  0.00207 
#>   71 Number of features:   30 Max AUC:    0.781 AUC:    0.722 Z:    0.209 Rdelta:  0.00166 
#>   72 Number of features:   30 Max AUC:    0.781 AUC:    0.744 Z:    0.463 Rdelta:  0.00133 
#>   73 Number of features:   30 Max AUC:    0.781 AUC:    0.748 Z:    0.450 Rdelta:  0.00106 
#>   74 Number of features:   30 Max AUC:    0.781 AUC:    0.748 Z:    0.351 Rdelta:  0.00085 
#>   75 Number of features:   30 Max AUC:    0.781 AUC:    0.765 Z:    0.477 Rdelta:  0.00068 
#>   76 Number of features:   30 Max AUC:    0.781 AUC:    0.723 Z:    0.544 Rdelta:  0.00054 
#>   77 Number of features:   30 Max AUC:    0.781 AUC:    0.754 Z:    0.380 Rdelta:  0.00044 
#>   78 Number of features:   30 Max AUC:    0.781 AUC:    0.768 Z:    0.439 Rdelta:  0.00035 
#>   79 Number of features:   30 Max AUC:    0.781 AUC:    0.758 Z:    0.199 Rdelta:  0.00028 
#>   80 Number of features:   31 Max AUC:    0.781 AUC:    0.775 Z:    0.305 Rdelta:  0.01025 
#>   81 Number of features:   31 Max AUC:    0.781 AUC:    0.758 Z:    0.285 Rdelta:  0.00820 
#>   82 Number of features:   32 Max AUC:    0.785 AUC:    0.785 Z:    0.400 Rdelta:  0.01738 
#>   83 Number of features:   32 Max AUC:    0.785 AUC:    0.745 Z:    0.274 Rdelta:  0.01390 
#>   84 Number of features:   32 Max AUC:    0.785 AUC:    0.775 Z:    0.411 Rdelta:  0.01112 
#>   85 Number of features:   32 Max AUC:    0.785 AUC:    0.733 Z:    0.419 Rdelta:  0.00890 
#>   86 Number of features:   32 Max AUC:    0.785 AUC:    0.748 Z:    0.524 Rdelta:  0.00712 
#>   87 Number of features:   32 Max AUC:    0.785 AUC:    0.745 Z:    0.309 Rdelta:  0.00570 
#>   88 Number of features:   32 Max AUC:    0.785 AUC:    0.731 Z:    0.349 Rdelta:  0.00456 
#>   89 Number of features:   32 Max AUC:    0.785 AUC:    0.748 Z:    0.336 Rdelta:  0.00364 
#>   90 Number of features:   32 Max AUC:    0.785 AUC:    0.758 Z:    0.372 Rdelta:  0.00292 
#>   91 Number of features:   32 Max AUC:    0.785 AUC:    0.738 Z:    0.408 Rdelta:  0.00233 
#>   92 Number of features:   32 Max AUC:    0.785 AUC:    0.747 Z:    0.434 Rdelta:  0.00187 
#>   93 Number of features:   32 Max AUC:    0.785 AUC:    0.750 Z:    0.481 Rdelta:  0.00149 
#>   94 Number of features:   32 Max AUC:    0.785 AUC:    0.773 Z:    0.387 Rdelta:  0.00119 
#>   95 Number of features:   32 Max AUC:    0.785 AUC:    0.759 Z:    0.331 Rdelta:  0.00096 
#>   96 Number of features:   32 Max AUC:    0.785 AUC:    0.690 Z:    0.186 Rdelta:  0.00076 
#>   97 Number of features:   32 Max AUC:    0.785 AUC:    0.768 Z:    0.376 Rdelta:  0.00061 
#>   98 Number of features:   32 Max AUC:    0.785 AUC:    0.754 Z:    0.380 Rdelta:  0.00049 
#>   99 Number of features:   32 Max AUC:    0.785 AUC:    0.775 Z:    0.395 Rdelta:  0.00039 
#>  100 Number of features:   32 Max AUC:    0.785 AUC:    0.751 Z:    0.479 Rdelta:  0.00031 
#>  101 Number of features:   32 Max AUC:    0.785 AUC:    0.753 Z:    0.464 Rdelta:  0.00025 
#>  102 Number of features:   32 Max AUC:    0.785 AUC:    0.756 Z:    0.465 Rdelta:  0.00020 
#>  103 Number of features:   32 Max AUC:    0.785 AUC:    0.729 Z:    0.330 Rdelta:  0.00016 
#>  104 Number of features:   32 Max AUC:    0.785 AUC:    0.748 Z:    0.380 Rdelta:  0.00013 
#>  105 Number of features:   32 Max AUC:    0.785 AUC:    0.775 Z:    0.450 Rdelta:  0.00010 
#>  106 Number of features:   32 Max AUC:    0.785 AUC:    0.762 Z:    0.231 Rdelta:  0.00008
#>    user  system elapsed 
#>   38.93    0.00   38.96
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))

testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
 
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#>    7 Number of features:    7 Max AUC:    0.922 AUC:    0.917 Z:    1.057 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.922 AUC:    0.908 Z:    0.797 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.932 AUC:    0.932 Z:    1.210 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.932 AUC:    0.931 Z:    1.115 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.932 AUC:    0.929 Z:    1.291 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.942 AUC:    0.942 Z:    1.472 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.942 AUC:    0.941 Z:    1.641 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.949 AUC:    0.949 Z:    1.446 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.949 AUC:    0.940 Z:    1.304 Rdelta:  0.10000 
#>   16 Number of features:   16 Max AUC:    0.949 AUC:    0.948 Z:    1.683 Rdelta:  0.10000 
#>   17 Number of features:   17 Max AUC:    0.949 AUC:    0.946 Z:    1.030 Rdelta:  0.10000 
#>   18 Number of features:   18 Max AUC:    0.961 AUC:    0.961 Z:    0.466 Rdelta:  0.10000 
#>   19 Number of features:   19 Max AUC:    0.961 AUC:    0.954 Z:    0.269 Rdelta:  0.10000 
#>   20 Number of features:   20 Max AUC:    0.961 AUC:    0.956 Z:    0.349 Rdelta:  0.10000 
#>   21 Number of features:   20 Max AUC:    0.961 AUC:    0.943 Z:    0.371 Rdelta:  0.08000 
#>   22 Number of features:   21 Max AUC:    0.963 AUC:    0.963 Z:    0.287 Rdelta:  0.08200 
#>   23 Number of features:   22 Max AUC:    0.963 AUC:    0.952 Z:    0.330 Rdelta:  0.08380 
#>   24 Number of features:   22 Max AUC:    0.963 AUC:    0.948 Z:    0.350 Rdelta:  0.06704 
#>   25 Number of features:   23 Max AUC:    0.963 AUC:    0.953 Z:    0.341 Rdelta:  0.07034 
#>   26 Number of features:   24 Max AUC:    0.963 AUC:    0.959 Z:    0.334 Rdelta:  0.07330 
#>   27 Number of features:   25 Max AUC:    0.963 AUC:    0.949 Z:    0.398 Rdelta:  0.07597 
#>   28 Number of features:   25 Max AUC:    0.963 AUC:    0.942 Z:    0.349 Rdelta:  0.06078 
#>   29 Number of features:   25 Max AUC:    0.963 AUC:    0.941 Z:    0.367 Rdelta:  0.04862 
#>   30 Number of features:   25 Max AUC:    0.963 AUC:    0.944 Z:    0.411 Rdelta:  0.03890 
#>   31 Number of features:   25 Max AUC:    0.963 AUC:    0.940 Z:    0.395 Rdelta:  0.03112 
#>   32 Number of features:   25 Max AUC:    0.963 AUC:    0.934 Z:    0.327 Rdelta:  0.02489 
#>   33 Number of features:   25 Max AUC:    0.963 AUC:    0.934 Z:    0.401 Rdelta:  0.01992 
#>   34 Number of features:   25 Max AUC:    0.963 AUC:    0.936 Z:    0.368 Rdelta:  0.01593 
#>   35 Number of features:   25 Max AUC:    0.963 AUC:    0.936 Z:    0.340 Rdelta:  0.01275 
#>   36 Number of features:   25 Max AUC:    0.963 AUC:    0.940 Z:    0.408 Rdelta:  0.01020 
#>   37 Number of features:   25 Max AUC:    0.963 AUC:    0.931 Z:    0.313 Rdelta:  0.00816 
#>   38 Number of features:   25 Max AUC:    0.963 AUC:    0.933 Z:    0.275 Rdelta:  0.00653 
#>   39 Number of features:   25 Max AUC:    0.963 AUC:    0.935 Z:    0.346 Rdelta:  0.00522 
#>   40 Number of features:   25 Max AUC:    0.963 AUC:    0.936 Z:    0.304 Rdelta:  0.00418 
#>   41 Number of features:   25 Max AUC:    0.963 AUC:    0.942 Z:    0.474 Rdelta:  0.00334 
#>   42 Number of features:   25 Max AUC:    0.963 AUC:    0.943 Z:    0.393 Rdelta:  0.00267 
#>   43 Number of features:   25 Max AUC:    0.963 AUC:    0.932 Z:    0.352 Rdelta:  0.00214 
#>   44 Number of features:   25 Max AUC:    0.963 AUC:    0.874 Z:    0.218 Rdelta:  0.00171 
#>   45 Number of features:   26 Max AUC:    0.963 AUC:    0.948 Z:    0.387 Rdelta:  0.01154 
#>   46 Number of features:   26 Max AUC:    0.963 AUC:    0.890 Z:    0.372 Rdelta:  0.00923 
#>   47 Number of features:   26 Max AUC:    0.963 AUC:    0.942 Z:    0.349 Rdelta:  0.00739 
#>   48 Number of features:   26 Max AUC:    0.963 AUC:    0.921 Z:    0.405 Rdelta:  0.00591 
#>   49 Number of features:   26 Max AUC:    0.963 AUC:    0.941 Z:    0.388 Rdelta:  0.00473 
#>   50 Number of features:   26 Max AUC:    0.963 AUC:    0.934 Z:    0.345 Rdelta:  0.00378 
#>   51 Number of features:   26 Max AUC:    0.963 AUC:    0.933 Z:    0.451 Rdelta:  0.00303 
#>   52 Number of features:   27 Max AUC:    0.963 AUC:    0.945 Z:    0.364 Rdelta:  0.01272 
#>   53 Number of features:   27 Max AUC:    0.963 AUC:    0.942 Z:    0.443 Rdelta:  0.01018 
#>   54 Number of features:   27 Max AUC:    0.963 AUC:    0.936 Z:    0.398 Rdelta:  0.00814 
#>   55 Number of features:   27 Max AUC:    0.963 AUC:    0.937 Z:    0.383 Rdelta:  0.00651 
#>   56 Number of features:   27 Max AUC:    0.963 AUC:    0.934 Z:    0.358 Rdelta:  0.00521 
#>   57 Number of features:   28 Max AUC:    0.963 AUC:    0.948 Z:    0.394 Rdelta:  0.01469 
#>   58 Number of features:   28 Max AUC:    0.963 AUC:    0.850 Z:    0.374 Rdelta:  0.01175 
#>   59 Number of features:   28 Max AUC:    0.963 AUC:    0.939 Z:    0.336 Rdelta:  0.00940 
#>   60 Number of features:   28 Max AUC:    0.963 AUC:    0.940 Z:    0.392 Rdelta:  0.00752 
#>   61 Number of features:   28 Max AUC:    0.963 AUC:    0.927 Z:    0.347 Rdelta:  0.00602 
#>   62 Number of features:   28 Max AUC:    0.963 AUC:    0.858 Z:    0.375 Rdelta:  0.00481 
#>   63 Number of features:   28 Max AUC:    0.963 AUC:    0.933 Z:    0.363 Rdelta:  0.00385 
#>   64 Number of features:   28 Max AUC:    0.963 AUC:    0.933 Z:    0.395 Rdelta:  0.00308 
#>   65 Number of features:   29 Max AUC:    0.963 AUC:    0.943 Z:    0.395 Rdelta:  0.01277 
#>   66 Number of features:   30 Max AUC:    0.963 AUC:    0.942 Z:    0.414 Rdelta:  0.02150 
#>   67 Number of features:   31 Max AUC:    0.963 AUC:    0.944 Z:    0.355 Rdelta:  0.02935 
#>   68 Number of features:   31 Max AUC:    0.963 AUC:    0.934 Z:    0.361 Rdelta:  0.02348 
#>   69 Number of features:   31 Max AUC:    0.963 AUC:    0.925 Z:    0.332 Rdelta:  0.01878 
#>   70 Number of features:   31 Max AUC:    0.963 AUC:    0.937 Z:    0.403 Rdelta:  0.01503 
#>   71 Number of features:   31 Max AUC:    0.963 AUC:    0.934 Z:    0.437 Rdelta:  0.01202 
#>   72 Number of features:   32 Max AUC:    0.963 AUC:    0.945 Z:    0.429 Rdelta:  0.02082 
#>   73 Number of features:   32 Max AUC:    0.963 AUC:    0.930 Z:    0.420 Rdelta:  0.01665 
#>   74 Number of features:   32 Max AUC:    0.963 AUC:    0.937 Z:    0.382 Rdelta:  0.01332 
#>   75 Number of features:   32 Max AUC:    0.963 AUC:    0.932 Z:    0.475 Rdelta:  0.01066 
#>   76 Number of features:   33 Max AUC:    0.963 AUC:    0.940 Z:    0.376 Rdelta:  0.01959 
#>   77 Number of features:   33 Max AUC:    0.963 AUC:    0.926 Z:    0.302 Rdelta:  0.01567 
#>   78 Number of features:   34 Max AUC:    0.963 AUC:    0.942 Z:    0.350 Rdelta:  0.02411 
#>   79 Number of features:   34 Max AUC:    0.963 AUC:    0.930 Z:    0.336 Rdelta:  0.01929 
#>   80 Number of features:   34 Max AUC:    0.963 AUC:    0.930 Z:    0.362 Rdelta:  0.01543 
#>   81 Number of features:   34 Max AUC:    0.963 AUC:    0.936 Z:    0.406 Rdelta:  0.01234 
#>   82 Number of features:   35 Max AUC:    0.963 AUC:    0.945 Z:    0.408 Rdelta:  0.02111 
#>   83 Number of features:   35 Max AUC:    0.963 AUC:    0.934 Z:    0.321 Rdelta:  0.01689 
#>   84 Number of features:   35 Max AUC:    0.963 AUC:    0.926 Z:    0.348 Rdelta:  0.01351 
#>   85 Number of features:   36 Max AUC:    0.963 AUC:    0.937 Z:    0.386 Rdelta:  0.02216 
#>   86 Number of features:   36 Max AUC:    0.963 AUC:    0.917 Z:    0.536 Rdelta:  0.01773 
#>   87 Number of features:   37 Max AUC:    0.963 AUC:    0.943 Z:    0.353 Rdelta:  0.02595 
#>   88 Number of features:   37 Max AUC:    0.963 AUC:    0.888 Z:    0.406 Rdelta:  0.02076 
#>   89 Number of features:   37 Max AUC:    0.963 AUC:    0.932 Z:    0.400 Rdelta:  0.01661 
#>   90 Number of features:   38 Max AUC:    0.963 AUC:    0.940 Z:    0.404 Rdelta:  0.02495 
#>   91 Number of features:   38 Max AUC:    0.963 AUC:    0.930 Z:    0.396 Rdelta:  0.01996 
#>   92 Number of features:   39 Max AUC:    0.963 AUC:    0.936 Z:    0.391 Rdelta:  0.02796 
#>   93 Number of features:   39 Max AUC:    0.963 AUC:    0.928 Z:    0.342 Rdelta:  0.02237 
#>   94 Number of features:   40 Max AUC:    0.963 AUC:    0.939 Z:    0.314 Rdelta:  0.03013 
#>   95 Number of features:   40 Max AUC:    0.963 AUC:    0.931 Z:    0.360 Rdelta:  0.02411 
#>   96 Number of features:   40 Max AUC:    0.963 AUC:    0.888 Z:    0.337 Rdelta:  0.01929 
#>   97 Number of features:   41 Max AUC:    0.963 AUC:    0.939 Z:    0.326 Rdelta:  0.02736 
#>   98 Number of features:   42 Max AUC:    0.963 AUC:    0.936 Z:    0.317 Rdelta:  0.03462 
#>   99 Number of features:   43 Max AUC:    0.963 AUC:    0.937 Z:    0.420 Rdelta:  0.04116 
#>  100 Number of features:   43 Max AUC:    0.963 AUC:    0.928 Z:    0.338 Rdelta:  0.03293 
#>  101 Number of features:   43 Max AUC:    0.963 AUC:    0.927 Z:    0.303 Rdelta:  0.02634 
#>  102 Number of features:   43 Max AUC:    0.963 AUC:    0.930 Z:    0.339 Rdelta:  0.02107 
#>  103 Number of features:   43 Max AUC:    0.963 AUC:    0.923 Z:    0.361 Rdelta:  0.01686 
#>  104 Number of features:   44 Max AUC:    0.963 AUC:    0.936 Z:    0.363 Rdelta:  0.02517 
#>  105 Number of features:   44 Max AUC:    0.963 AUC:    0.922 Z:    0.412 Rdelta:  0.02014 
#>  106 Number of features:   45 Max AUC:    0.963 AUC:    0.933 Z:    0.310 Rdelta:  0.02812 
#>  107 Number of features:   46 Max AUC:    0.963 AUC:    0.936 Z:    0.304 Rdelta:  0.03531 
#>  108 Number of features:   47 Max AUC:    0.963 AUC:    0.934 Z:    0.328 Rdelta:  0.04178 
#>  109 Number of features:   48 Max AUC:    0.963 AUC:    0.937 Z:    0.339 Rdelta:  0.04760 
#>  110 Number of features:   49 Max AUC:    0.963 AUC:    0.933 Z:    0.318 Rdelta:  0.05284 
#>  111 Number of features:   50 Max AUC:    0.963 AUC:    0.941 Z:    0.322 Rdelta:  0.05756 
#>  112 Number of features:   51 Max AUC:    0.963 AUC:    0.936 Z:    0.364 Rdelta:  0.06180 
#>  113 Number of features:   51 Max AUC:    0.963 AUC:    0.924 Z:    0.213 Rdelta:  0.04944 
#>  114 Number of features:   51 Max AUC:    0.963 AUC:    0.930 Z:    0.327 Rdelta:  0.03955 
#>  115 Number of features:   52 Max AUC:    0.963 AUC:    0.936 Z:    0.318 Rdelta:  0.04560 
#>  116 Number of features:   53 Max AUC:    0.963 AUC:    0.937 Z:    0.360 Rdelta:  0.05104 
#>  117 Number of features:   54 Max AUC:    0.963 AUC:    0.933 Z:    0.342 Rdelta:  0.05593 
#>  118 Number of features:   55 Max AUC:    0.963 AUC:    0.935 Z:    0.342 Rdelta:  0.06034 
#>  119 Number of features:   56 Max AUC:    0.963 AUC:    0.936 Z:    0.348 Rdelta:  0.06431 
#>  120 Number of features:   56 Max AUC:    0.963 AUC:    0.903 Z:    0.360 Rdelta:  0.05145 
#>  121 Number of features:   56 Max AUC:    0.963 AUC:    0.923 Z:    0.441 Rdelta:  0.04116 
#>  122 Number of features:   56 Max AUC:    0.963 AUC:    0.924 Z:    0.362 Rdelta:  0.03293 
#>  123 Number of features:   57 Max AUC:    0.963 AUC:    0.931 Z:    0.313 Rdelta:  0.03963 
#>  124 Number of features:   57 Max AUC:    0.963 AUC:    0.892 Z:    0.396 Rdelta:  0.03171 
#>  125 Number of features:   57 Max AUC:    0.963 AUC:    0.919 Z:    0.287 Rdelta:  0.02536 
#>  126 Number of features:   57 Max AUC:    0.963 AUC:    0.849 Z:    0.323 Rdelta:  0.02029 
#>  127 Number of features:   57 Max AUC:    0.963 AUC:    0.923 Z:    0.355 Rdelta:  0.01623 
#>  128 Number of features:   57 Max AUC:    0.963 AUC:    0.891 Z:    0.347 Rdelta:  0.01299 
#>  129 Number of features:   58 Max AUC:    0.963 AUC:    0.930 Z:    0.354 Rdelta:  0.02169 
#>  130 Number of features:   59 Max AUC:    0.963 AUC:    0.939 Z:    0.352 Rdelta:  0.02952 
#>  131 Number of features:   59 Max AUC:    0.963 AUC:    0.869 Z:    0.410 Rdelta:  0.02362 
#>  132 Number of features:   59 Max AUC:    0.963 AUC:    0.920 Z:    0.377 Rdelta:  0.01889 
#>  133 Number of features:   59 Max AUC:    0.963 AUC:    0.921 Z:    0.407 Rdelta:  0.01511 
#>  134 Number of features:   59 Max AUC:    0.963 AUC:    0.921 Z:    0.364 Rdelta:  0.01209 
#>  135 Number of features:   60 Max AUC:    0.963 AUC:    0.929 Z:    0.349 Rdelta:  0.02088 
#>  136 Number of features:   60 Max AUC:    0.963 AUC:    0.924 Z:    0.341 Rdelta:  0.01671 
#>  137 Number of features:   60 Max AUC:    0.963 AUC:    0.923 Z:    0.307 Rdelta:  0.01336 
#>  138 Number of features:   60 Max AUC:    0.963 AUC:    0.927 Z:    0.307 Rdelta:  0.01069 
#>  139 Number of features:   60 Max AUC:    0.963 AUC:    0.924 Z:    0.312 Rdelta:  0.00855 
#>  140 Number of features:   60 Max AUC:    0.963 AUC:    0.885 Z:    0.310 Rdelta:  0.00684 
#>  141 Number of features:   61 Max AUC:    0.963 AUC:    0.932 Z:    0.327 Rdelta:  0.01616 
#>  142 Number of features:   61 Max AUC:    0.963 AUC:    0.924 Z:    0.342 Rdelta:  0.01293 
#>  143 Number of features:   62 Max AUC:    0.963 AUC:    0.933 Z:    0.429 Rdelta:  0.02163 
#>  144 Number of features:   62 Max AUC:    0.963 AUC:    0.922 Z:    0.344 Rdelta:  0.01731 
#>  145 Number of features:   62 Max AUC:    0.963 AUC:    0.924 Z:    0.418 Rdelta:  0.01385 
#>  146 Number of features:   63 Max AUC:    0.963 AUC:    0.930 Z:    0.501 Rdelta:  0.02246 
#>  147 Number of features:   63 Max AUC:    0.963 AUC:    0.857 Z:    0.378 Rdelta:  0.01797 
#>  148 Number of features:   63 Max AUC:    0.963 AUC:    0.923 Z:    0.391 Rdelta:  0.01438 
#>  149 Number of features:   63 Max AUC:    0.963 AUC:    0.915 Z:    0.417 Rdelta:  0.01150 
#>  150 Number of features:   63 Max AUC:    0.963 AUC:    0.925 Z:    0.408 Rdelta:  0.00920 
#>  151 Number of features:   63 Max AUC:    0.963 AUC:    0.922 Z:    0.360 Rdelta:  0.00736 
#>  152 Number of features:   64 Max AUC:    0.963 AUC:    0.928 Z:    0.416 Rdelta:  0.01662 
#>  153 Number of features:   64 Max AUC:    0.963 AUC:    0.916 Z:    0.438 Rdelta:  0.01330 
#>  154 Number of features:   64 Max AUC:    0.963 AUC:    0.916 Z:    0.382 Rdelta:  0.01064 
#>  155 Number of features:   64 Max AUC:    0.963 AUC:    0.862 Z:    0.374 Rdelta:  0.00851 
#>  156 Number of features:   64 Max AUC:    0.963 AUC:    0.920 Z:    0.422 Rdelta:  0.00681 
#>  157 Number of features:   65 Max AUC:    0.963 AUC:    0.929 Z:    0.370 Rdelta:  0.01613 
#>  158 Number of features:   65 Max AUC:    0.963 AUC:    0.926 Z:    0.362 Rdelta:  0.01290 
#>  159 Number of features:   65 Max AUC:    0.963 AUC:    0.925 Z:    0.396 Rdelta:  0.01032 
#>  160 Number of features:   66 Max AUC:    0.963 AUC:    0.929 Z:    0.442 Rdelta:  0.01929 
#>  161 Number of features:   66 Max AUC:    0.963 AUC:    0.921 Z:    0.427 Rdelta:  0.01543 
#>  162 Number of features:   66 Max AUC:    0.963 AUC:    0.925 Z:    0.393 Rdelta:  0.01235 
#>  163 Number of features:   67 Max AUC:    0.963 AUC:    0.934 Z:    0.448 Rdelta:  0.02111 
#>  164 Number of features:   67 Max AUC:    0.963 AUC:    0.924 Z:    0.420 Rdelta:  0.01689 
#>  165 Number of features:   68 Max AUC:    0.963 AUC:    0.929 Z:    0.418 Rdelta:  0.02520 
#>  166 Number of features:   68 Max AUC:    0.963 AUC:    0.924 Z:    0.432 Rdelta:  0.02016 
#>  167 Number of features:   69 Max AUC:    0.963 AUC:    0.933 Z:    0.447 Rdelta:  0.02814 
#>  168 Number of features:   69 Max AUC:    0.963 AUC:    0.924 Z:    0.341 Rdelta:  0.02252 
#>  169 Number of features:   69 Max AUC:    0.963 AUC:    0.921 Z:    0.370 Rdelta:  0.01801 
#>  170 Number of features:   69 Max AUC:    0.963 AUC:    0.922 Z:    0.338 Rdelta:  0.01441 
#>  171 Number of features:   70 Max AUC:    0.963 AUC:    0.928 Z:    0.479 Rdelta:  0.02297 
#>  172 Number of features:   71 Max AUC:    0.963 AUC:    0.929 Z:    0.396 Rdelta:  0.03067 
#>  173 Number of features:   72 Max AUC:    0.963 AUC:    0.926 Z:    0.448 Rdelta:  0.03760 
#>  174 Number of features:   72 Max AUC:    0.963 AUC:    0.925 Z:    0.408 Rdelta:  0.03008 
#>  175 Number of features:   72 Max AUC:    0.963 AUC:    0.923 Z:    0.451 Rdelta:  0.02407 
#>  176 Number of features:   72 Max AUC:    0.963 AUC:    0.921 Z:    0.485 Rdelta:  0.01925 
#>  177 Number of features:   72 Max AUC:    0.963 AUC:    0.922 Z:    0.441 Rdelta:  0.01540 
#>  178 Number of features:   72 Max AUC:    0.963 AUC:    0.920 Z:    0.379 Rdelta:  0.01232 
#>  179 Number of features:   72 Max AUC:    0.963 AUC:    0.919 Z:    0.368 Rdelta:  0.00986 
#>  180 Number of features:   72 Max AUC:    0.963 AUC:    0.923 Z:    0.426 Rdelta:  0.00789 
#>  181 Number of features:   73 Max AUC:    0.963 AUC:    0.929 Z:    0.368 Rdelta:  0.01710 
#>  182 Number of features:   74 Max AUC:    0.963 AUC:    0.931 Z:    0.459 Rdelta:  0.02539 
#>  183 Number of features:   75 Max AUC:    0.963 AUC:    0.930 Z:    0.414 Rdelta:  0.03285 
#>  184 Number of features:   76 Max AUC:    0.963 AUC:    0.927 Z:    0.363 Rdelta:  0.03956 
#>  185 Number of features:   77 Max AUC:    0.963 AUC:    0.929 Z:    0.432 Rdelta:  0.04561 
#>  186 Number of features:   77 Max AUC:    0.963 AUC:    0.894 Z:    0.348 Rdelta:  0.03649 
#>  187 Number of features:   77 Max AUC:    0.963 AUC:    0.910 Z:    0.325 Rdelta:  0.02919 
#>  188 Number of features:   77 Max AUC:    0.963 AUC:    0.917 Z:    0.336 Rdelta:  0.02335 
#>  189 Number of features:   77 Max AUC:    0.963 AUC:    0.917 Z:    0.332 Rdelta:  0.01868 
#>  190 Number of features:   77 Max AUC:    0.963 AUC:    0.924 Z:    0.443 Rdelta:  0.01494 
#>  191 Number of features:   78 Max AUC:    0.963 AUC:    0.928 Z:    0.473 Rdelta:  0.02345 
#>  192 Number of features:   78 Max AUC:    0.963 AUC:    0.922 Z:    0.365 Rdelta:  0.01876 
#>  193 Number of features:   78 Max AUC:    0.963 AUC:    0.915 Z:    0.356 Rdelta:  0.01501 
#>  194 Number of features:   78 Max AUC:    0.963 AUC:    0.860 Z:    0.444 Rdelta:  0.01201 
#>  195 Number of features:   78 Max AUC:    0.963 AUC:    0.916 Z:    0.401 Rdelta:  0.00961 
#>  196 Number of features:   78 Max AUC:    0.963 AUC:    0.920 Z:    0.362 Rdelta:  0.00768 
#>  197 Number of features:   78 Max AUC:    0.963 AUC:    0.912 Z:    0.408 Rdelta:  0.00615 
#>  198 Number of features:   79 Max AUC:    0.963 AUC:    0.927 Z:    0.414 Rdelta:  0.01553 
#>  199 Number of features:   79 Max AUC:    0.963 AUC:    0.924 Z:    0.453 Rdelta:  0.01243 
#>  200 Number of features:   79 Max AUC:    0.963 AUC:    0.905 Z:    0.259 Rdelta:  0.00994 
#>  201 Number of features:   79 Max AUC:    0.963 AUC:    0.909 Z:    0.356 Rdelta:  0.00795 
#>  202 Number of features:   79 Max AUC:    0.963 AUC:    0.919 Z:    0.427 Rdelta:  0.00636 
#>  203 Number of features:   79 Max AUC:    0.963 AUC:    0.904 Z:    0.292 Rdelta:  0.00509 
#>  204 Number of features:   79 Max AUC:    0.963 AUC:    0.924 Z:    0.386 Rdelta:  0.00407 
#>  205 Number of features:   79 Max AUC:    0.963 AUC:    0.915 Z:    0.459 Rdelta:  0.00326 
#>  206 Number of features:   79 Max AUC:    0.963 AUC:    0.919 Z:    0.400 Rdelta:  0.00261 
#>  207 Number of features:   79 Max AUC:    0.963 AUC:    0.902 Z:    0.396 Rdelta:  0.00208 
#>  208 Number of features:   80 Max AUC:    0.963 AUC:    0.925 Z:    0.459 Rdelta:  0.01188 
#>  209 Number of features:   80 Max AUC:    0.963 AUC:    0.916 Z:    0.373 Rdelta:  0.00950 
#>  210 Number of features:   80 Max AUC:    0.963 AUC:    0.911 Z:    0.391 Rdelta:  0.00760 
#>  211 Number of features:   80 Max AUC:    0.963 AUC:    0.910 Z:    0.386 Rdelta:  0.00608 
#>  212 Number of features:   80 Max AUC:    0.963 AUC:    0.917 Z:    0.336 Rdelta:  0.00486 
#>  213 Number of features:   80 Max AUC:    0.963 AUC:    0.909 Z:    0.354 Rdelta:  0.00389 
#>  214 Number of features:   80 Max AUC:    0.963 AUC:    0.924 Z:    0.370 Rdelta:  0.00311 
#>  215 Number of features:   80 Max AUC:    0.963 AUC:    0.915 Z:    0.373 Rdelta:  0.00249 
#>  216 Number of features:   80 Max AUC:    0.963 AUC:    0.916 Z:    0.367 Rdelta:  0.00199 
#>  217 Number of features:   80 Max AUC:    0.963 AUC:    0.919 Z:    0.396 Rdelta:  0.00159 
#>  218 Number of features:   80 Max AUC:    0.963 AUC:    0.912 Z:    0.436 Rdelta:  0.00128 
#>  219 Number of features:   80 Max AUC:    0.963 AUC:    0.916 Z:    0.409 Rdelta:  0.00102 
#>  220 Number of features:   80 Max AUC:    0.963 AUC:    0.891 Z:    0.037 Rdelta:  0.00082 
#>  221 Number of features:   80 Max AUC:    0.963 AUC:    0.914 Z:    0.395 Rdelta:  0.00065 
#>  222 Number of features:   80 Max AUC:    0.963 AUC:    0.921 Z:    0.406 Rdelta:  0.00052 
#>  223 Number of features:   80 Max AUC:    0.963 AUC:    0.918 Z:    0.391 Rdelta:  0.00042 
#>  224 Number of features:   80 Max AUC:    0.963 AUC:    0.914 Z:    0.427 Rdelta:  0.00033 
#>  225 Number of features:   80 Max AUC:    0.963 AUC:    0.918 Z:    0.341 Rdelta:  0.00027 
#>  226 Number of features:   80 Max AUC:    0.963 AUC:    0.920 Z:    0.436 Rdelta:  0.00021 
#>  227 Number of features:   80 Max AUC:    0.963 AUC:    0.915 Z:    0.387 Rdelta:  0.00017 
#>  228 Number of features:   80 Max AUC:    0.963 AUC:    0.912 Z:    0.393 Rdelta:  0.00014 
#>  229 Number of features:   80 Max AUC:    0.963 AUC:    0.918 Z:    0.358 Rdelta:  0.00011 
#>  230 Number of features:   80 Max AUC:    0.963 AUC:    0.923 Z:    0.423 Rdelta:  0.00009
#>    user  system elapsed 
#>  144.41    0.00  144.54
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))


system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#>    7 Number of features:    7 Max AUC:    0.301 AUC:    0.296 Z:   -0.619 Rdelta:  0.10000 
#>    8 Number of features:    7 Max AUC:    0.301 AUC:    0.282 Z:   -0.705 Rdelta:  0.08000 
#>    9 Number of features:    7 Max AUC:    0.301 AUC:    0.285 Z:   -0.699 Rdelta:  0.06400 
#>   10 Number of features:    7 Max AUC:    0.301 AUC:    0.280 Z:   -0.675 Rdelta:  0.05120 
#>   11 Number of features:    7 Max AUC:    0.301 AUC:    0.281 Z:   -0.755 Rdelta:  0.04096 
#>   12 Number of features:    7 Max AUC:    0.301 AUC:    0.253 Z:   -0.818 Rdelta:  0.03277 
#>   13 Number of features:    8 Max AUC:    0.301 AUC:    0.290 Z:   -0.488 Rdelta:  0.03949 
#>   14 Number of features:    9 Max AUC:    0.301 AUC:    0.294 Z:   -0.665 Rdelta:  0.04554 
#>   15 Number of features:    9 Max AUC:    0.301 AUC:    0.267 Z:   -0.716 Rdelta:  0.03643 
#>   16 Number of features:    9 Max AUC:    0.301 AUC:    0.281 Z:   -0.747 Rdelta:  0.02915 
#>   17 Number of features:    9 Max AUC:    0.301 AUC:    0.282 Z:   -0.739 Rdelta:  0.02332 
#>   18 Number of features:    9 Max AUC:    0.301 AUC:    0.271 Z:   -0.653 Rdelta:  0.01865 
#>   19 Number of features:    9 Max AUC:    0.301 AUC:    0.276 Z:   -0.700 Rdelta:  0.01492 
#>   20 Number of features:    9 Max AUC:    0.301 AUC:    0.240 Z:   -0.752 Rdelta:  0.01194 
#>   21 Number of features:    9 Max AUC:    0.301 AUC:    0.281 Z:   -0.691 Rdelta:  0.00955 
#>   22 Number of features:    9 Max AUC:    0.301 AUC:    0.271 Z:   -0.741 Rdelta:  0.00764 
#>   23 Number of features:    9 Max AUC:    0.301 AUC:    0.268 Z:   -0.738 Rdelta:  0.00611 
#>   24 Number of features:    9 Max AUC:    0.301 AUC:    0.250 Z:   -0.744 Rdelta:  0.00489 
#>   25 Number of features:    9 Max AUC:    0.301 AUC:    0.259 Z:   -0.773 Rdelta:  0.00391 
#>   26 Number of features:    9 Max AUC:    0.301 AUC:    0.261 Z:   -0.705 Rdelta:  0.00313 
#>   27 Number of features:    9 Max AUC:    0.301 AUC:    0.265 Z:   -0.805 Rdelta:  0.00250 
#>   28 Number of features:    9 Max AUC:    0.301 AUC:    0.269 Z:   -0.670 Rdelta:  0.00200 
#>   29 Number of features:   10 Max AUC:    0.301 AUC:    0.292 Z:   -0.724 Rdelta:  0.01180 
#>   30 Number of features:   10 Max AUC:    0.301 AUC:    0.244 Z:   -0.689 Rdelta:  0.00944 
#>   31 Number of features:   10 Max AUC:    0.301 AUC:    0.264 Z:   -0.703 Rdelta:  0.00755 
#>   32 Number of features:   11 Max AUC:    0.301 AUC:    0.285 Z:   -0.634 Rdelta:  0.01680 
#>   33 Number of features:   12 Max AUC:    0.301 AUC:    0.289 Z:   -0.709 Rdelta:  0.02512 
#>   34 Number of features:   13 Max AUC:    0.301 AUC:    0.290 Z:   -0.658 Rdelta:  0.03261 
#>   35 Number of features:   13 Max AUC:    0.301 AUC:    0.263 Z:   -0.736 Rdelta:  0.02609 
#>   36 Number of features:   13 Max AUC:    0.301 AUC:    0.274 Z:   -0.635 Rdelta:  0.02087 
#>   37 Number of features:   13 Max AUC:    0.301 AUC:    0.274 Z:   -0.642 Rdelta:  0.01669 
#>   38 Number of features:   13 Max AUC:    0.301 AUC:    0.274 Z:   -0.717 Rdelta:  0.01336 
#>   39 Number of features:   13 Max AUC:    0.301 AUC:    0.266 Z:   -0.727 Rdelta:  0.01068 
#>   40 Number of features:   13 Max AUC:    0.301 AUC:    0.241 Z:   -0.742 Rdelta:  0.00855 
#>   41 Number of features:   13 Max AUC:    0.301 AUC:    0.268 Z:   -0.653 Rdelta:  0.00684 
#>   42 Number of features:   13 Max AUC:    0.301 AUC:    0.243 Z:   -0.793 Rdelta:  0.00547 
#>   43 Number of features:   14 Max AUC:    0.413 AUC:    0.413 Z:   -0.376 Rdelta:  0.01492 
#>   44 Number of features:   15 Max AUC:    0.489 AUC:    0.489 Z:   -0.045 Rdelta:  0.02343 
#>   45 Number of features:   16 Max AUC:    0.493 AUC:    0.493 Z:    0.002 Rdelta:  0.03109 
#>   46 Number of features:   16 Max AUC:    0.493 AUC:    0.485 Z:   -0.048 Rdelta:  0.02487 
#>   47 Number of features:   16 Max AUC:    0.493 AUC:    0.476 Z:   -0.030 Rdelta:  0.01990 
#>   48 Number of features:   17 Max AUC:    0.535 AUC:    0.535 Z:    0.081 Rdelta:  0.02791 
#>   49 Number of features:   17 Max AUC:    0.535 AUC:    0.520 Z:    0.050 Rdelta:  0.02233 
#>   50 Number of features:   17 Max AUC:    0.535 AUC:    0.519 Z:    0.006 Rdelta:  0.01786 
#>   51 Number of features:   18 Max AUC:    0.536 AUC:    0.536 Z:    0.047 Rdelta:  0.02607 
#>   52 Number of features:   19 Max AUC:    0.575 AUC:    0.575 Z:    0.145 Rdelta:  0.03347 
#>   53 Number of features:   19 Max AUC:    0.575 AUC:    0.528 Z:    0.008 Rdelta:  0.02677 
#>   54 Number of features:   19 Max AUC:    0.575 AUC:    0.537 Z:   -0.006 Rdelta:  0.02142 
#>   55 Number of features:   19 Max AUC:    0.575 AUC:    0.497 Z:   -0.045 Rdelta:  0.01714 
#>   56 Number of features:   19 Max AUC:    0.575 AUC:    0.555 Z:    0.138 Rdelta:  0.01371 
#>   57 Number of features:   19 Max AUC:    0.575 AUC:    0.557 Z:    0.178 Rdelta:  0.01097 
#>   58 Number of features:   19 Max AUC:    0.575 AUC:    0.491 Z:    0.031 Rdelta:  0.00877 
#>   59 Number of features:   19 Max AUC:    0.575 AUC:    0.536 Z:    0.026 Rdelta:  0.00702 
#>   60 Number of features:   19 Max AUC:    0.575 AUC:    0.514 Z:   -0.003 Rdelta:  0.00561 
#>   61 Number of features:   19 Max AUC:    0.575 AUC:    0.543 Z:    0.015 Rdelta:  0.00449 
#>   62 Number of features:   19 Max AUC:    0.575 AUC:    0.547 Z:    0.017 Rdelta:  0.00359 
#>   63 Number of features:   19 Max AUC:    0.575 AUC:    0.551 Z:    0.007 Rdelta:  0.00287 
#>   64 Number of features:   19 Max AUC:    0.575 AUC:    0.565 Z:    0.133 Rdelta:  0.00230 
#>   65 Number of features:   19 Max AUC:    0.575 AUC:    0.541 Z:    0.076 Rdelta:  0.00184 
#>   66 Number of features:   19 Max AUC:    0.575 AUC:    0.557 Z:    0.097 Rdelta:  0.00147 
#>   67 Number of features:   19 Max AUC:    0.575 AUC:    0.537 Z:    0.033 Rdelta:  0.00118 
#>   68 Number of features:   19 Max AUC:    0.575 AUC:    0.532 Z:    0.028 Rdelta:  0.00094 
#>   69 Number of features:   19 Max AUC:    0.575 AUC:    0.562 Z:    0.115 Rdelta:  0.00075 
#>   70 Number of features:   19 Max AUC:    0.575 AUC:    0.536 Z:    0.061 Rdelta:  0.00060 
#>   71 Number of features:   19 Max AUC:    0.575 AUC:    0.541 Z:    0.074 Rdelta:  0.00048 
#>   72 Number of features:   19 Max AUC:    0.575 AUC:    0.550 Z:    0.150 Rdelta:  0.00039 
#>   73 Number of features:   19 Max AUC:    0.575 AUC:    0.565 Z:    0.112 Rdelta:  0.00031 
#>   74 Number of features:   19 Max AUC:    0.575 AUC:    0.553 Z:    0.026 Rdelta:  0.00025 
#>   75 Number of features:   19 Max AUC:    0.575 AUC:    0.537 Z:    0.034 Rdelta:  0.00020 
#>   76 Number of features:   19 Max AUC:    0.575 AUC:    0.541 Z:    0.036 Rdelta:  0.00016 
#>   77 Number of features:   20 Max AUC:    0.575 AUC:    0.570 Z:    0.103 Rdelta:  0.01014 
#>   78 Number of features:   20 Max AUC:    0.575 AUC:    0.544 Z:    0.074 Rdelta:  0.00811 
#>   79 Number of features:   20 Max AUC:    0.575 AUC:    0.530 Z:    0.002 Rdelta:  0.00649 
#>   80 Number of features:   20 Max AUC:    0.575 AUC:    0.533 Z:    0.006 Rdelta:  0.00519 
#>   81 Number of features:   20 Max AUC:    0.575 AUC:    0.504 Z:    0.030 Rdelta:  0.00415 
#>   82 Number of features:   20 Max AUC:    0.575 AUC:    0.549 Z:    0.086 Rdelta:  0.00332 
#>   83 Number of features:   20 Max AUC:    0.575 AUC:    0.541 Z:    0.087 Rdelta:  0.00266 
#>   84 Number of features:   20 Max AUC:    0.575 AUC:    0.526 Z:    0.036 Rdelta:  0.00213 
#>   85 Number of features:   21 Max AUC:    0.575 AUC:    0.570 Z:    0.008 Rdelta:  0.01191 
#>   86 Number of features:   21 Max AUC:    0.575 AUC:    0.558 Z:    0.007 Rdelta:  0.00953 
#>   87 Number of features:   21 Max AUC:    0.575 AUC:    0.555 Z:    0.068 Rdelta:  0.00763 
#>   88 Number of features:   22 Max AUC:    0.575 AUC:    0.566 Z:    0.170 Rdelta:  0.01686 
#>   89 Number of features:   23 Max AUC:    0.575 AUC:    0.570 Z:    0.032 Rdelta:  0.02518 
#>   90 Number of features:   23 Max AUC:    0.575 AUC:    0.517 Z:    0.008 Rdelta:  0.02014 
#>   91 Number of features:   23 Max AUC:    0.575 AUC:    0.535 Z:    0.009 Rdelta:  0.01611 
#>   92 Number of features:   23 Max AUC:    0.575 AUC:    0.550 Z:    0.104 Rdelta:  0.01289 
#>   93 Number of features:   23 Max AUC:    0.575 AUC:    0.536 Z:    0.051 Rdelta:  0.01031 
#>   94 Number of features:   23 Max AUC:    0.575 AUC:    0.546 Z:    0.119 Rdelta:  0.00825 
#>   95 Number of features:   23 Max AUC:    0.575 AUC:    0.527 Z:   -0.003 Rdelta:  0.00660 
#>   96 Number of features:   24 Max AUC:    0.601 AUC:    0.601 Z:    0.085 Rdelta:  0.01594 
#>   97 Number of features:   25 Max AUC:    0.601 AUC:    0.596 Z:    0.167 Rdelta:  0.02435 
#>   98 Number of features:   25 Max AUC:    0.601 AUC:    0.553 Z:    0.024 Rdelta:  0.01948 
#>   99 Number of features:   25 Max AUC:    0.601 AUC:    0.592 Z:    0.009 Rdelta:  0.01558 
#>  100 Number of features:   25 Max AUC:    0.601 AUC:    0.555 Z:    0.111 Rdelta:  0.01247 
#>  101 Number of features:   25 Max AUC:    0.601 AUC:    0.582 Z:    0.145 Rdelta:  0.00997 
#>  102 Number of features:   25 Max AUC:    0.601 AUC:    0.581 Z:    0.040 Rdelta:  0.00798 
#>  103 Number of features:   25 Max AUC:    0.601 AUC:    0.588 Z:    0.265 Rdelta:  0.00638 
#>  104 Number of features:   26 Max AUC:    0.608 AUC:    0.608 Z:    0.196 Rdelta:  0.01574 
#>  105 Number of features:   26 Max AUC:    0.608 AUC:    0.602 Z:    0.148 Rdelta:  0.01260 
#>  106 Number of features:   26 Max AUC:    0.608 AUC:    0.556 Z:    0.040 Rdelta:  0.01008 
#>  107 Number of features:   26 Max AUC:    0.608 AUC:    0.572 Z:    0.085 Rdelta:  0.00806 
#>  108 Number of features:   26 Max AUC:    0.608 AUC:    0.572 Z:    0.130 Rdelta:  0.00645 
#>  109 Number of features:   26 Max AUC:    0.608 AUC:    0.566 Z:    0.083 Rdelta:  0.00516 
#>  110 Number of features:   26 Max AUC:    0.608 AUC:    0.574 Z:    0.095 Rdelta:  0.00413 
#>  111 Number of features:   26 Max AUC:    0.608 AUC:    0.590 Z:    0.119 Rdelta:  0.00330 
#>  112 Number of features:   26 Max AUC:    0.608 AUC:    0.580 Z:    0.094 Rdelta:  0.00264 
#>  113 Number of features:   26 Max AUC:    0.608 AUC:    0.582 Z:    0.114 Rdelta:  0.00211 
#>  114 Number of features:   26 Max AUC:    0.608 AUC:    0.578 Z:    0.032 Rdelta:  0.00169 
#>  115 Number of features:   26 Max AUC:    0.608 AUC:    0.600 Z:    0.069 Rdelta:  0.00135 
#>  116 Number of features:   26 Max AUC:    0.608 AUC:    0.543 Z:    0.023 Rdelta:  0.00108 
#>  117 Number of features:   26 Max AUC:    0.608 AUC:    0.576 Z:    0.226 Rdelta:  0.00087 
#>  118 Number of features:   26 Max AUC:    0.608 AUC:    0.564 Z:    0.060 Rdelta:  0.00069 
#>  119 Number of features:   26 Max AUC:    0.608 AUC:    0.572 Z:    0.099 Rdelta:  0.00055 
#>  120 Number of features:   27 Max AUC:    0.641 AUC:    0.641 Z:    0.221 Rdelta:  0.01050 
#>  121 Number of features:   27 Max AUC:    0.641 AUC:    0.615 Z:    0.048 Rdelta:  0.00840 
#>  122 Number of features:   28 Max AUC:    0.647 AUC:    0.647 Z:    0.101 Rdelta:  0.01756 
#>  123 Number of features:   29 Max AUC:    0.647 AUC:    0.642 Z:    0.197 Rdelta:  0.02580 
#>  124 Number of features:   29 Max AUC:    0.647 AUC:    0.622 Z:    0.045 Rdelta:  0.02064 
#>  125 Number of features:   29 Max AUC:    0.647 AUC:    0.625 Z:    0.180 Rdelta:  0.01651 
#>  126 Number of features:   29 Max AUC:    0.647 AUC:    0.605 Z:    0.003 Rdelta:  0.01321 
#>  127 Number of features:   30 Max AUC:    0.647 AUC:    0.641 Z:    0.075 Rdelta:  0.02189 
#>  128 Number of features:   30 Max AUC:    0.647 AUC:    0.635 Z:    0.010 Rdelta:  0.01751 
#>  129 Number of features:   31 Max AUC:    0.647 AUC:    0.647 Z:    0.310 Rdelta:  0.02576 
#>  130 Number of features:   31 Max AUC:    0.647 AUC:    0.613 Z:    0.011 Rdelta:  0.02061 
#>  131 Number of features:   31 Max AUC:    0.647 AUC:    0.607 Z:    0.209 Rdelta:  0.01649 
#>  132 Number of features:   31 Max AUC:    0.647 AUC:    0.626 Z:    0.080 Rdelta:  0.01319 
#>  133 Number of features:   31 Max AUC:    0.647 AUC:    0.610 Z:    0.035 Rdelta:  0.01055 
#>  134 Number of features:   31 Max AUC:    0.647 AUC:    0.614 Z:    0.040 Rdelta:  0.00844 
#>  135 Number of features:   31 Max AUC:    0.647 AUC:    0.612 Z:    0.197 Rdelta:  0.00675 
#>  136 Number of features:   31 Max AUC:    0.647 AUC:    0.589 Z:    0.076 Rdelta:  0.00540 
#>  137 Number of features:   31 Max AUC:    0.647 AUC:    0.593 Z:    0.092 Rdelta:  0.00432 
#>  138 Number of features:   31 Max AUC:    0.647 AUC:    0.604 Z:    0.066 Rdelta:  0.00346 
#>  139 Number of features:   31 Max AUC:    0.647 AUC:    0.622 Z:    0.237 Rdelta:  0.00277 
#>  140 Number of features:   31 Max AUC:    0.647 AUC:    0.640 Z:    0.170 Rdelta:  0.00221 
#>  141 Number of features:   31 Max AUC:    0.647 AUC:    0.634 Z:    0.248 Rdelta:  0.00177 
#>  142 Number of features:   31 Max AUC:    0.647 AUC:    0.624 Z:    0.227 Rdelta:  0.00142 
#>  143 Number of features:   31 Max AUC:    0.647 AUC:    0.591 Z:    0.049 Rdelta:  0.00113 
#>  144 Number of features:   31 Max AUC:    0.647 AUC:    0.607 Z:    0.015 Rdelta:  0.00091 
#>  145 Number of features:   31 Max AUC:    0.647 AUC:    0.552 Z:   -0.044 Rdelta:  0.00073 
#>  146 Number of features:   31 Max AUC:    0.647 AUC:    0.630 Z:    0.286 Rdelta:  0.00058 
#>  147 Number of features:   31 Max AUC:    0.647 AUC:    0.630 Z:    0.064 Rdelta:  0.00046 
#>  148 Number of features:   31 Max AUC:    0.647 AUC:    0.614 Z:    0.183 Rdelta:  0.00037 
#>  149 Number of features:   31 Max AUC:    0.647 AUC:    0.628 Z:    0.149 Rdelta:  0.00030 
#>  150 Number of features:   31 Max AUC:    0.647 AUC:    0.608 Z:    0.144 Rdelta:  0.00024 
#>  151 Number of features:   31 Max AUC:    0.647 AUC:    0.632 Z:    0.176 Rdelta:  0.00019 
#>  152 Number of features:   31 Max AUC:    0.647 AUC:    0.614 Z:    0.099 Rdelta:  0.00015 
#>  153 Number of features:   31 Max AUC:    0.647 AUC:    0.597 Z:    0.058 Rdelta:  0.00012 
#>  154 Number of features:   31 Max AUC:    0.647 AUC:    0.595 Z:    0.180 Rdelta:  0.00010
#>    user  system elapsed 
#>   50.24    0.00   50.29
testDistance_control  <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#>    7 Number of features:    7 Max AUC:    0.776 AUC:    0.766 Z:    0.948 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.776 AUC:    0.767 Z:    1.474 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.810 AUC:    0.810 Z:    1.689 Rdelta:  0.10000 
#>   10 Number of features:    9 Max AUC:    0.810 AUC:    0.792 Z:    1.419 Rdelta:  0.08000 
#>   11 Number of features:   10 Max AUC:    0.830 AUC:    0.830 Z:    1.769 Rdelta:  0.08200 
#>   12 Number of features:   11 Max AUC:    0.837 AUC:    0.837 Z:    1.792 Rdelta:  0.08380 
#>   13 Number of features:   11 Max AUC:    0.837 AUC:    0.817 Z:    1.805 Rdelta:  0.06704 
#>   14 Number of features:   12 Max AUC:    0.837 AUC:    0.828 Z:    1.795 Rdelta:  0.07034 
#>   15 Number of features:   13 Max AUC:    0.837 AUC:    0.820 Z:    1.931 Rdelta:  0.07330 
#>   16 Number of features:   14 Max AUC:    0.837 AUC:    0.822 Z:    1.974 Rdelta:  0.07597 
#>   17 Number of features:   15 Max AUC:    0.837 AUC:    0.827 Z:    1.078 Rdelta:  0.07837 
#>   18 Number of features:   16 Max AUC:    0.838 AUC:    0.838 Z:    0.689 Rdelta:  0.08054 
#>   19 Number of features:   16 Max AUC:    0.838 AUC:    0.827 Z:    0.325 Rdelta:  0.06443 
#>   20 Number of features:   17 Max AUC:    0.839 AUC:    0.839 Z:    0.647 Rdelta:  0.06799 
#>   21 Number of features:   18 Max AUC:    0.839 AUC:    0.838 Z:    0.658 Rdelta:  0.07119 
#>   22 Number of features:   19 Max AUC:    0.839 AUC:    0.832 Z:    0.720 Rdelta:  0.07407 
#>   23 Number of features:   20 Max AUC:    0.850 AUC:    0.850 Z:    0.752 Rdelta:  0.07666 
#>   24 Number of features:   21 Max AUC:    0.864 AUC:    0.864 Z:    0.510 Rdelta:  0.07900 
#>   25 Number of features:   21 Max AUC:    0.864 AUC:    0.845 Z:    0.625 Rdelta:  0.06320 
#>   26 Number of features:   21 Max AUC:    0.864 AUC:    0.845 Z:    0.532 Rdelta:  0.05056 
#>   27 Number of features:   21 Max AUC:    0.864 AUC:    0.840 Z:    0.631 Rdelta:  0.04045 
#>   28 Number of features:   22 Max AUC:    0.864 AUC:    0.854 Z:    0.493 Rdelta:  0.04640 
#>   29 Number of features:   22 Max AUC:    0.864 AUC:    0.849 Z:    0.478 Rdelta:  0.03712 
#>   30 Number of features:   22 Max AUC:    0.864 AUC:    0.838 Z:    0.570 Rdelta:  0.02970 
#>   31 Number of features:   22 Max AUC:    0.864 AUC:    0.848 Z:    0.574 Rdelta:  0.02376 
#>   32 Number of features:   23 Max AUC:    0.864 AUC:    0.858 Z:    0.412 Rdelta:  0.03138 
#>   33 Number of features:   23 Max AUC:    0.864 AUC:    0.836 Z:    0.543 Rdelta:  0.02511 
#>   34 Number of features:   23 Max AUC:    0.864 AUC:    0.836 Z:    0.411 Rdelta:  0.02008 
#>   35 Number of features:   23 Max AUC:    0.864 AUC:    0.830 Z:    0.551 Rdelta:  0.01607 
#>   36 Number of features:   24 Max AUC:    0.864 AUC:    0.857 Z:    0.447 Rdelta:  0.02446 
#>   37 Number of features:   24 Max AUC:    0.864 AUC:    0.823 Z:    0.342 Rdelta:  0.01957 
#>   38 Number of features:   25 Max AUC:    0.864 AUC:    0.855 Z:    0.476 Rdelta:  0.02761 
#>   39 Number of features:   25 Max AUC:    0.864 AUC:    0.841 Z:    0.483 Rdelta:  0.02209 
#>   40 Number of features:   26 Max AUC:    0.864 AUC:    0.861 Z:    0.462 Rdelta:  0.02988 
#>   41 Number of features:   27 Max AUC:    0.864 AUC:    0.864 Z:    0.409 Rdelta:  0.03689 
#>   42 Number of features:   27 Max AUC:    0.864 AUC:    0.851 Z:    0.141 Rdelta:  0.02951 
#>   43 Number of features:   27 Max AUC:    0.864 AUC:    0.843 Z:    0.529 Rdelta:  0.02361 
#>   44 Number of features:   27 Max AUC:    0.864 AUC:    0.847 Z:    0.520 Rdelta:  0.01889 
#>   45 Number of features:   27 Max AUC:    0.864 AUC:    0.851 Z:    0.533 Rdelta:  0.01511 
#>   46 Number of features:   27 Max AUC:    0.864 AUC:    0.838 Z:    0.543 Rdelta:  0.01209 
#>   47 Number of features:   28 Max AUC:    0.864 AUC:    0.858 Z:    0.529 Rdelta:  0.02088 
#>   48 Number of features:   29 Max AUC:    0.864 AUC:    0.863 Z:    0.129 Rdelta:  0.02879 
#>   49 Number of features:   30 Max AUC:    0.864 AUC:    0.853 Z:    0.544 Rdelta:  0.03591 
#>   50 Number of features:   31 Max AUC:    0.864 AUC:    0.857 Z:    0.701 Rdelta:  0.04232 
#>   51 Number of features:   31 Max AUC:    0.864 AUC:    0.841 Z:    0.467 Rdelta:  0.03386 
#>   52 Number of features:   32 Max AUC:    0.864 AUC:    0.861 Z:    0.576 Rdelta:  0.04047 
#>   53 Number of features:   33 Max AUC:    0.864 AUC:    0.852 Z:    0.617 Rdelta:  0.04642 
#>   54 Number of features:   33 Max AUC:    0.864 AUC:    0.848 Z:    0.367 Rdelta:  0.03714 
#>   55 Number of features:   34 Max AUC:    0.864 AUC:    0.859 Z:    0.518 Rdelta:  0.04343 
#>   56 Number of features:   35 Max AUC:    0.864 AUC:    0.862 Z:    0.489 Rdelta:  0.04908 
#>   57 Number of features:   36 Max AUC:    0.864 AUC:    0.863 Z:    0.585 Rdelta:  0.05417 
#>   58 Number of features:   36 Max AUC:    0.864 AUC:    0.812 Z:    0.662 Rdelta:  0.04334 
#>   59 Number of features:   36 Max AUC:    0.864 AUC:    0.854 Z:    0.539 Rdelta:  0.03467 
#>   60 Number of features:   37 Max AUC:    0.864 AUC:    0.864 Z:    0.539 Rdelta:  0.04120 
#>   61 Number of features:   38 Max AUC:    0.864 AUC:    0.862 Z:    0.510 Rdelta:  0.04708 
#>   62 Number of features:   38 Max AUC:    0.864 AUC:    0.814 Z:    0.546 Rdelta:  0.03767 
#>   63 Number of features:   39 Max AUC:    0.864 AUC:    0.861 Z:    0.565 Rdelta:  0.04390 
#>   64 Number of features:   40 Max AUC:    0.864 AUC:    0.862 Z:    0.563 Rdelta:  0.04951 
#>   65 Number of features:   41 Max AUC:    0.864 AUC:    0.856 Z:    0.488 Rdelta:  0.05456 
#>   66 Number of features:   42 Max AUC:    0.864 AUC:    0.854 Z:    0.584 Rdelta:  0.05910 
#>   67 Number of features:   42 Max AUC:    0.864 AUC:    0.851 Z:    0.568 Rdelta:  0.04728 
#>   68 Number of features:   42 Max AUC:    0.864 AUC:    0.843 Z:    0.540 Rdelta:  0.03783 
#>   69 Number of features:   42 Max AUC:    0.864 AUC:    0.840 Z:    0.368 Rdelta:  0.03026 
#>   70 Number of features:   43 Max AUC:    0.864 AUC:    0.859 Z:    0.592 Rdelta:  0.03723 
#>   71 Number of features:   44 Max AUC:    0.864 AUC:    0.857 Z:    0.537 Rdelta:  0.04351 
#>   72 Number of features:   44 Max AUC:    0.864 AUC:    0.847 Z:    0.551 Rdelta:  0.03481 
#>   73 Number of features:   45 Max AUC:    0.864 AUC:    0.851 Z:    0.556 Rdelta:  0.04133 
#>   74 Number of features:   45 Max AUC:    0.864 AUC:    0.844 Z:    0.551 Rdelta:  0.03306 
#>   75 Number of features:   46 Max AUC:    0.864 AUC:    0.861 Z:    0.634 Rdelta:  0.03976 
#>   76 Number of features:   46 Max AUC:    0.864 AUC:    0.838 Z:    0.482 Rdelta:  0.03181 
#>   77 Number of features:   46 Max AUC:    0.864 AUC:    0.820 Z:    0.442 Rdelta:  0.02544 
#>   78 Number of features:   46 Max AUC:    0.864 AUC:    0.844 Z:    0.538 Rdelta:  0.02036 
#>   79 Number of features:   47 Max AUC:    0.864 AUC:    0.857 Z:    0.562 Rdelta:  0.02832 
#>   80 Number of features:   47 Max AUC:    0.864 AUC:    0.848 Z:    0.409 Rdelta:  0.02266 
#>   81 Number of features:   47 Max AUC:    0.864 AUC:    0.848 Z:    0.579 Rdelta:  0.01812 
#>   82 Number of features:   47 Max AUC:    0.864 AUC:    0.846 Z:    0.536 Rdelta:  0.01450 
#>   83 Number of features:   48 Max AUC:    0.864 AUC:    0.860 Z:    0.497 Rdelta:  0.02305 
#>   84 Number of features:   48 Max AUC:    0.864 AUC:    0.843 Z:    0.235 Rdelta:  0.01844 
#>   85 Number of features:   48 Max AUC:    0.864 AUC:    0.843 Z:    0.581 Rdelta:  0.01475 
#>   86 Number of features:   49 Max AUC:    0.864 AUC:    0.854 Z:    0.471 Rdelta:  0.02328 
#>   87 Number of features:   49 Max AUC:    0.864 AUC:    0.835 Z:    0.450 Rdelta:  0.01862 
#>   88 Number of features:   49 Max AUC:    0.864 AUC:    0.809 Z:    0.542 Rdelta:  0.01490 
#>   89 Number of features:   49 Max AUC:    0.864 AUC:    0.824 Z:    0.495 Rdelta:  0.01192 
#>   90 Number of features:   49 Max AUC:    0.864 AUC:    0.851 Z:    0.607 Rdelta:  0.00953 
#>   91 Number of features:   50 Max AUC:    0.864 AUC:    0.860 Z:    0.504 Rdelta:  0.01858 
#>   92 Number of features:   50 Max AUC:    0.864 AUC:    0.850 Z:    0.544 Rdelta:  0.01486 
#>   93 Number of features:   50 Max AUC:    0.864 AUC:    0.841 Z:    0.553 Rdelta:  0.01189 
#>   94 Number of features:   50 Max AUC:    0.864 AUC:    0.833 Z:    0.529 Rdelta:  0.00951 
#>   95 Number of features:   50 Max AUC:    0.864 AUC:    0.835 Z:    0.571 Rdelta:  0.00761 
#>   96 Number of features:   50 Max AUC:    0.864 AUC:    0.818 Z:    0.550 Rdelta:  0.00609 
#>   97 Number of features:   50 Max AUC:    0.864 AUC:    0.843 Z:    0.540 Rdelta:  0.00487 
#>   98 Number of features:   50 Max AUC:    0.864 AUC:    0.845 Z:    0.571 Rdelta:  0.00390 
#>   99 Number of features:   50 Max AUC:    0.864 AUC:    0.824 Z:    0.502 Rdelta:  0.00312 
#>  100 Number of features:   50 Max AUC:    0.864 AUC:    0.820 Z:    0.480 Rdelta:  0.00249 
#>  101 Number of features:   51 Max AUC:    0.864 AUC:    0.856 Z:    0.539 Rdelta:  0.01224 
#>  102 Number of features:   51 Max AUC:    0.864 AUC:    0.847 Z:    0.493 Rdelta:  0.00980 
#>  103 Number of features:   52 Max AUC:    0.864 AUC:    0.857 Z:    0.509 Rdelta:  0.01882 
#>  104 Number of features:   52 Max AUC:    0.864 AUC:    0.842 Z:    0.505 Rdelta:  0.01505 
#>  105 Number of features:   52 Max AUC:    0.864 AUC:    0.804 Z:    0.550 Rdelta:  0.01204 
#>  106 Number of features:   52 Max AUC:    0.864 AUC:    0.825 Z:    0.448 Rdelta:  0.00963 
#>  107 Number of features:   52 Max AUC:    0.864 AUC:    0.847 Z:    0.507 Rdelta:  0.00771 
#>  108 Number of features:   52 Max AUC:    0.864 AUC:    0.833 Z:    0.509 Rdelta:  0.00617 
#>  109 Number of features:   52 Max AUC:    0.864 AUC:    0.850 Z:    0.476 Rdelta:  0.00493 
#>  110 Number of features:   52 Max AUC:    0.864 AUC:    0.834 Z:    0.565 Rdelta:  0.00395 
#>  111 Number of features:   52 Max AUC:    0.864 AUC:    0.847 Z:    0.532 Rdelta:  0.00316 
#>  112 Number of features:   52 Max AUC:    0.864 AUC:    0.836 Z:    0.217 Rdelta:  0.00253 
#>  113 Number of features:   52 Max AUC:    0.864 AUC:    0.840 Z:    0.602 Rdelta:  0.00202 
#>  114 Number of features:   53 Max AUC:    0.864 AUC:    0.851 Z:    0.509 Rdelta:  0.01182 
#>  115 Number of features:   53 Max AUC:    0.864 AUC:    0.839 Z:    0.576 Rdelta:  0.00945 
#>  116 Number of features:   53 Max AUC:    0.864 AUC:    0.843 Z:    0.516 Rdelta:  0.00756 
#>  117 Number of features:   53 Max AUC:    0.864 AUC:    0.836 Z:    0.506 Rdelta:  0.00605 
#>  118 Number of features:   53 Max AUC:    0.864 AUC:    0.841 Z:    0.289 Rdelta:  0.00484 
#>  119 Number of features:   53 Max AUC:    0.864 AUC:    0.842 Z:    0.489 Rdelta:  0.00387 
#>  120 Number of features:   53 Max AUC:    0.864 AUC:    0.825 Z:    0.538 Rdelta:  0.00310 
#>  121 Number of features:   53 Max AUC:    0.864 AUC:    0.822 Z:    0.276 Rdelta:  0.00248 
#>  122 Number of features:   53 Max AUC:    0.864 AUC:    0.849 Z:    0.578 Rdelta:  0.00198 
#>  123 Number of features:   53 Max AUC:    0.864 AUC:    0.834 Z:    0.224 Rdelta:  0.00159 
#>  124 Number of features:   54 Max AUC:    0.864 AUC:    0.860 Z:    0.621 Rdelta:  0.01143 
#>  125 Number of features:   54 Max AUC:    0.864 AUC:    0.841 Z:    0.316 Rdelta:  0.00914 
#>  126 Number of features:   54 Max AUC:    0.864 AUC:    0.823 Z:    0.521 Rdelta:  0.00731 
#>  127 Number of features:   54 Max AUC:    0.864 AUC:    0.825 Z:    0.580 Rdelta:  0.00585 
#>  128 Number of features:   54 Max AUC:    0.864 AUC:    0.819 Z:    0.502 Rdelta:  0.00468 
#>  129 Number of features:   55 Max AUC:    0.864 AUC:    0.856 Z:    0.599 Rdelta:  0.01421 
#>  130 Number of features:   55 Max AUC:    0.864 AUC:    0.840 Z:    0.438 Rdelta:  0.01137 
#>  131 Number of features:   55 Max AUC:    0.864 AUC:    0.818 Z:    0.385 Rdelta:  0.00910 
#>  132 Number of features:   55 Max AUC:    0.864 AUC:    0.833 Z:    0.481 Rdelta:  0.00728 
#>  133 Number of features:   55 Max AUC:    0.864 AUC:    0.834 Z:    0.361 Rdelta:  0.00582 
#>  134 Number of features:   55 Max AUC:    0.864 AUC:    0.841 Z:    0.482 Rdelta:  0.00466 
#>  135 Number of features:   55 Max AUC:    0.864 AUC:    0.838 Z:    0.574 Rdelta:  0.00373 
#>  136 Number of features:   55 Max AUC:    0.864 AUC:    0.834 Z:    0.513 Rdelta:  0.00298 
#>  137 Number of features:   55 Max AUC:    0.864 AUC:    0.797 Z:    0.498 Rdelta:  0.00238 
#>  138 Number of features:   55 Max AUC:    0.864 AUC:    0.818 Z:    0.464 Rdelta:  0.00191 
#>  139 Number of features:   55 Max AUC:    0.864 AUC:    0.834 Z:    0.479 Rdelta:  0.00153 
#>  140 Number of features:   55 Max AUC:    0.864 AUC:    0.791 Z:    0.466 Rdelta:  0.00122 
#>  141 Number of features:   55 Max AUC:    0.864 AUC:    0.824 Z:    0.587 Rdelta:  0.00098 
#>  142 Number of features:   55 Max AUC:    0.864 AUC:    0.838 Z:    0.476 Rdelta:  0.00078 
#>  143 Number of features:   55 Max AUC:    0.864 AUC:    0.840 Z:    0.236 Rdelta:  0.00063 
#>  144 Number of features:   55 Max AUC:    0.864 AUC:    0.834 Z:    0.339 Rdelta:  0.00050 
#>  145 Number of features:   56 Max AUC:    0.864 AUC:    0.862 Z:    0.542 Rdelta:  0.01045 
#>  146 Number of features:   56 Max AUC:    0.864 AUC:    0.844 Z:    0.559 Rdelta:  0.00836 
#>  147 Number of features:   56 Max AUC:    0.864 AUC:    0.807 Z:    0.568 Rdelta:  0.00669 
#>  148 Number of features:   56 Max AUC:    0.864 AUC:    0.812 Z:    0.576 Rdelta:  0.00535 
#>  149 Number of features:   56 Max AUC:    0.864 AUC:    0.822 Z:    0.643 Rdelta:  0.00428 
#>  150 Number of features:   56 Max AUC:    0.864 AUC:    0.819 Z:    0.463 Rdelta:  0.00342 
#>  151 Number of features:   57 Max AUC:    0.864 AUC:    0.852 Z:    0.637 Rdelta:  0.01308 
#>  152 Number of features:   57 Max AUC:    0.864 AUC:    0.806 Z:    0.499 Rdelta:  0.01047 
#>  153 Number of features:   57 Max AUC:    0.864 AUC:    0.841 Z:    0.360 Rdelta:  0.00837 
#>  154 Number of features:   57 Max AUC:    0.864 AUC:    0.793 Z:    0.570 Rdelta:  0.00670 
#>  155 Number of features:   57 Max AUC:    0.864 AUC:    0.801 Z:    0.590 Rdelta:  0.00536 
#>  156 Number of features:   57 Max AUC:    0.864 AUC:    0.836 Z:    0.396 Rdelta:  0.00429 
#>  157 Number of features:   57 Max AUC:    0.864 AUC:    0.822 Z:    0.491 Rdelta:  0.00343 
#>  158 Number of features:   57 Max AUC:    0.864 AUC:    0.841 Z:    0.592 Rdelta:  0.00274 
#>  159 Number of features:   57 Max AUC:    0.864 AUC:    0.839 Z:    0.569 Rdelta:  0.00219 
#>  160 Number of features:   57 Max AUC:    0.864 AUC:    0.796 Z:    0.416 Rdelta:  0.00176 
#>  161 Number of features:   57 Max AUC:    0.864 AUC:    0.828 Z:    0.532 Rdelta:  0.00140 
#>  162 Number of features:   57 Max AUC:    0.864 AUC:    0.824 Z:    0.366 Rdelta:  0.00112 
#>  163 Number of features:   57 Max AUC:    0.864 AUC:    0.835 Z:    0.566 Rdelta:  0.00090 
#>  164 Number of features:   57 Max AUC:    0.864 AUC:    0.807 Z:    0.389 Rdelta:  0.00072 
#>  165 Number of features:   57 Max AUC:    0.864 AUC:    0.823 Z:    0.515 Rdelta:  0.00058 
#>  166 Number of features:   57 Max AUC:    0.864 AUC:    0.827 Z:    0.310 Rdelta:  0.00046 
#>  167 Number of features:   57 Max AUC:    0.864 AUC:    0.819 Z:    0.541 Rdelta:  0.00037 
#>  168 Number of features:   57 Max AUC:    0.864 AUC:    0.846 Z:    0.608 Rdelta:  0.00029 
#>  169 Number of features:   57 Max AUC:    0.864 AUC:    0.830 Z:    0.514 Rdelta:  0.00024 
#>  170 Number of features:   57 Max AUC:    0.864 AUC:    0.834 Z:    0.301 Rdelta:  0.00019 
#>  171 Number of features:   57 Max AUC:    0.864 AUC:    0.812 Z:    0.104 Rdelta:  0.00015 
#>  172 Number of features:   57 Max AUC:    0.864 AUC:    0.822 Z:    0.556 Rdelta:  0.00012 
#>  173 Number of features:   57 Max AUC:    0.864 AUC:    0.830 Z:    0.598 Rdelta:  0.00010
#>    user  system elapsed 
#>   93.21    0.00   93.32
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################
 
varlist <- names(arceneCVTwo$bagging$frequencyTable)
#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#>    7 Number of features:    7 Max AUC:    0.525 AUC:    0.525 Z:    0.083 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.525 AUC:    0.525 Z:    0.066 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.525 AUC:    0.517 Z:    0.062 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.534 AUC:    0.534 Z:    0.066 Rdelta:  0.10000 
#>   11 Number of features:   10 Max AUC:    0.534 AUC:    0.522 Z:    0.098 Rdelta:  0.08000 
#>   12 Number of features:   10 Max AUC:    0.534 AUC:    0.504 Z:   -0.009 Rdelta:  0.06400 
#>   13 Number of features:   11 Max AUC:    0.534 AUC:    0.524 Z:    0.100 Rdelta:  0.06760 
#>   14 Number of features:   12 Max AUC:    0.534 AUC:    0.520 Z:    0.068 Rdelta:  0.07084 
#>   15 Number of features:   13 Max AUC:    0.534 AUC:    0.526 Z:    0.111 Rdelta:  0.07376 
#>   16 Number of features:   14 Max AUC:    0.540 AUC:    0.540 Z:    0.161 Rdelta:  0.07638 
#>   17 Number of features:   15 Max AUC:    0.560 AUC:    0.560 Z:    0.273 Rdelta:  0.07874 
#>   18 Number of features:   15 Max AUC:    0.560 AUC:    0.543 Z:    0.174 Rdelta:  0.06299 
#>   19 Number of features:   15 Max AUC:    0.560 AUC:    0.545 Z:    0.191 Rdelta:  0.05040 
#>   20 Number of features:   15 Max AUC:    0.560 AUC:    0.540 Z:    0.105 Rdelta:  0.04032 
#>   21 Number of features:   15 Max AUC:    0.560 AUC:    0.529 Z:    0.085 Rdelta:  0.03225 
#>   22 Number of features:   15 Max AUC:    0.560 AUC:    0.530 Z:    0.135 Rdelta:  0.02580 
#>   23 Number of features:   15 Max AUC:    0.560 AUC:    0.527 Z:    0.109 Rdelta:  0.02064 
#>   24 Number of features:   16 Max AUC:    0.706 AUC:    0.706 Z:    0.880 Rdelta:  0.02858 
#>   25 Number of features:   17 Max AUC:    0.708 AUC:    0.708 Z:    0.948 Rdelta:  0.03572 
#>   26 Number of features:   18 Max AUC:    0.713 AUC:    0.713 Z:    0.962 Rdelta:  0.04215 
#>   27 Number of features:   19 Max AUC:    0.713 AUC:    0.713 Z:    0.964 Rdelta:  0.04793 
#>   28 Number of features:   20 Max AUC:    0.713 AUC:    0.710 Z:    0.965 Rdelta:  0.05314 
#>   29 Number of features:   21 Max AUC:    0.716 AUC:    0.716 Z:    1.002 Rdelta:  0.05783 
#>   30 Number of features:   22 Max AUC:    0.716 AUC:    0.716 Z:    1.059 Rdelta:  0.06204 
#>   31 Number of features:   23 Max AUC:    0.716 AUC:    0.716 Z:    1.027 Rdelta:  0.06584 
#>   32 Number of features:   24 Max AUC:    0.726 AUC:    0.726 Z:    1.069 Rdelta:  0.06926 
#>   33 Number of features:   25 Max AUC:    0.726 AUC:    0.722 Z:    1.038 Rdelta:  0.07233 
#>   34 Number of features:   26 Max AUC:    0.726 AUC:    0.717 Z:    1.014 Rdelta:  0.07510 
#>   35 Number of features:   27 Max AUC:    0.726 AUC:    0.723 Z:    1.033 Rdelta:  0.07759 
#>   36 Number of features:   28 Max AUC:    0.726 AUC:    0.719 Z:    0.994 Rdelta:  0.07983 
#>   37 Number of features:   29 Max AUC:    0.727 AUC:    0.727 Z:    1.099 Rdelta:  0.08185 
#>   38 Number of features:   29 Max AUC:    0.727 AUC:    0.717 Z:    1.047 Rdelta:  0.06548 
#>   39 Number of features:   29 Max AUC:    0.727 AUC:    0.708 Z:    1.058 Rdelta:  0.05238 
#>   40 Number of features:   30 Max AUC:    0.737 AUC:    0.737 Z:    1.095 Rdelta:  0.05714 
#>   41 Number of features:   31 Max AUC:    0.743 AUC:    0.743 Z:    1.131 Rdelta:  0.06143 
#>   42 Number of features:   31 Max AUC:    0.743 AUC:    0.724 Z:    1.146 Rdelta:  0.04914 
#>   43 Number of features:   31 Max AUC:    0.743 AUC:    0.720 Z:    1.178 Rdelta:  0.03931 
#>   44 Number of features:   31 Max AUC:    0.743 AUC:    0.733 Z:    1.195 Rdelta:  0.03145 
#>   45 Number of features:   32 Max AUC:    0.751 AUC:    0.751 Z:    1.320 Rdelta:  0.03831 
#>   46 Number of features:   33 Max AUC:    0.751 AUC:    0.748 Z:    1.395 Rdelta:  0.04448 
#>   47 Number of features:   34 Max AUC:    0.756 AUC:    0.756 Z:    1.362 Rdelta:  0.05003 
#>   48 Number of features:   35 Max AUC:    0.756 AUC:    0.756 Z:    1.422 Rdelta:  0.05503 
#>   49 Number of features:   35 Max AUC:    0.756 AUC:    0.697 Z:    0.993 Rdelta:  0.04402 
#>   50 Number of features:   36 Max AUC:    0.756 AUC:    0.749 Z:    1.453 Rdelta:  0.04962 
#>   51 Number of features:   36 Max AUC:    0.756 AUC:    0.734 Z:    1.329 Rdelta:  0.03969 
#>   52 Number of features:   36 Max AUC:    0.756 AUC:    0.737 Z:    1.375 Rdelta:  0.03176 
#>   53 Number of features:   37 Max AUC:    0.756 AUC:    0.751 Z:    1.395 Rdelta:  0.03858 
#>   54 Number of features:   38 Max AUC:    0.756 AUC:    0.753 Z:    1.405 Rdelta:  0.04472 
#>   55 Number of features:   39 Max AUC:    0.761 AUC:    0.761 Z:    1.440 Rdelta:  0.05025 
#>   56 Number of features:   39 Max AUC:    0.761 AUC:    0.745 Z:    1.392 Rdelta:  0.04020 
#>   57 Number of features:   40 Max AUC:    0.765 AUC:    0.765 Z:    1.442 Rdelta:  0.04618 
#>   58 Number of features:   40 Max AUC:    0.765 AUC:    0.727 Z:    1.381 Rdelta:  0.03694 
#>   59 Number of features:   41 Max AUC:    0.765 AUC:    0.765 Z:    1.426 Rdelta:  0.04325 
#>   60 Number of features:   41 Max AUC:    0.765 AUC:    0.751 Z:    1.415 Rdelta:  0.03460 
#>   61 Number of features:   42 Max AUC:    0.765 AUC:    0.761 Z:    1.471 Rdelta:  0.04114 
#>   62 Number of features:   42 Max AUC:    0.765 AUC:    0.744 Z:    1.502 Rdelta:  0.03291 
#>   63 Number of features:   42 Max AUC:    0.765 AUC:    0.754 Z:    1.438 Rdelta:  0.02633 
#>   64 Number of features:   43 Max AUC:    0.765 AUC:    0.764 Z:    1.451 Rdelta:  0.03370 
#>   65 Number of features:   44 Max AUC:    0.765 AUC:    0.758 Z:    1.448 Rdelta:  0.04033 
#>   66 Number of features:   45 Max AUC:    0.765 AUC:    0.760 Z:    1.474 Rdelta:  0.04629 
#>   67 Number of features:   45 Max AUC:    0.765 AUC:    0.752 Z:    1.453 Rdelta:  0.03704 
#>   68 Number of features:   46 Max AUC:    0.771 AUC:    0.771 Z:    1.456 Rdelta:  0.04333 
#>   69 Number of features:   47 Max AUC:    0.771 AUC:    0.771 Z:    1.490 Rdelta:  0.04900 
#>   70 Number of features:   47 Max AUC:    0.771 AUC:    0.751 Z:    1.441 Rdelta:  0.03920 
#>   71 Number of features:   48 Max AUC:    0.775 AUC:    0.775 Z:    1.491 Rdelta:  0.04528 
#>   72 Number of features:   48 Max AUC:    0.775 AUC:    0.748 Z:    1.432 Rdelta:  0.03622 
#>   73 Number of features:   48 Max AUC:    0.775 AUC:    0.760 Z:    1.467 Rdelta:  0.02898 
#>   74 Number of features:   48 Max AUC:    0.775 AUC:    0.749 Z:    1.478 Rdelta:  0.02318 
#>   75 Number of features:   48 Max AUC:    0.775 AUC:    0.759 Z:    1.400 Rdelta:  0.01855 
#>   76 Number of features:   48 Max AUC:    0.775 AUC:    0.765 Z:    1.526 Rdelta:  0.01484 
#>   77 Number of features:   48 Max AUC:    0.775 AUC:    0.752 Z:    1.401 Rdelta:  0.01187 
#>   78 Number of features:   48 Max AUC:    0.775 AUC:    0.711 Z:    1.068 Rdelta:  0.00950 
#>   79 Number of features:   48 Max AUC:    0.775 AUC:    0.761 Z:    1.427 Rdelta:  0.00760 
#>   80 Number of features:   49 Max AUC:    0.775 AUC:    0.769 Z:    1.430 Rdelta:  0.01684 
#>   81 Number of features:   49 Max AUC:    0.775 AUC:    0.759 Z:    1.435 Rdelta:  0.01347 
#>   82 Number of features:   49 Max AUC:    0.775 AUC:    0.755 Z:    1.357 Rdelta:  0.01078 
#>   83 Number of features:   49 Max AUC:    0.775 AUC:    0.722 Z:    1.151 Rdelta:  0.00862 
#>   84 Number of features:   49 Max AUC:    0.775 AUC:    0.750 Z:    1.367 Rdelta:  0.00690 
#>   85 Number of features:   49 Max AUC:    0.775 AUC:    0.759 Z:    1.447 Rdelta:  0.00552 
#>   86 Number of features:   49 Max AUC:    0.775 AUC:    0.762 Z:    1.439 Rdelta:  0.00441 
#>   87 Number of features:   49 Max AUC:    0.775 AUC:    0.684 Z:    0.952 Rdelta:  0.00353 
#>   88 Number of features:   49 Max AUC:    0.775 AUC:    0.745 Z:    1.352 Rdelta:  0.00282 
#>   89 Number of features:   49 Max AUC:    0.775 AUC:    0.747 Z:    1.401 Rdelta:  0.00226 
#>   90 Number of features:   49 Max AUC:    0.775 AUC:    0.744 Z:    1.318 Rdelta:  0.00181 
#>   91 Number of features:   49 Max AUC:    0.775 AUC:    0.762 Z:    1.466 Rdelta:  0.00145 
#>   92 Number of features:   49 Max AUC:    0.775 AUC:    0.747 Z:    1.361 Rdelta:  0.00116 
#>   93 Number of features:   49 Max AUC:    0.775 AUC:    0.742 Z:    1.333 Rdelta:  0.00093 
#>   94 Number of features:   49 Max AUC:    0.775 AUC:    0.760 Z:    1.388 Rdelta:  0.00074 
#>   95 Number of features:   49 Max AUC:    0.775 AUC:    0.679 Z:    0.950 Rdelta:  0.00059 
#>   96 Number of features:   49 Max AUC:    0.775 AUC:    0.730 Z:    1.146 Rdelta:  0.00047 
#>   97 Number of features:   49 Max AUC:    0.775 AUC:    0.675 Z:    0.953 Rdelta:  0.00038 
#>   98 Number of features:   49 Max AUC:    0.775 AUC:    0.689 Z:    0.931 Rdelta:  0.00030 
#>   99 Number of features:   49 Max AUC:    0.775 AUC:    0.732 Z:    1.217 Rdelta:  0.00024 
#>  100 Number of features:   49 Max AUC:    0.775 AUC:    0.724 Z:    1.284 Rdelta:  0.00019 
#>  101 Number of features:   49 Max AUC:    0.775 AUC:    0.751 Z:    1.392 Rdelta:  0.00016 
#>  102 Number of features:   49 Max AUC:    0.775 AUC:    0.751 Z:    1.384 Rdelta:  0.00012 
#>  103 Number of features:   50 Max AUC:    0.775 AUC:    0.775 Z:    1.473 Rdelta:  0.01011 
#>  104 Number of features:   50 Max AUC:    0.775 AUC:    0.731 Z:    1.143 Rdelta:  0.00809 
#>  105 Number of features:   50 Max AUC:    0.775 AUC:    0.754 Z:    1.411 Rdelta:  0.00647 
#>  106 Number of features:   50 Max AUC:    0.775 AUC:    0.675 Z:    0.916 Rdelta:  0.00518 
#>  107 Number of features:   50 Max AUC:    0.775 AUC:    0.746 Z:    1.393 Rdelta:  0.00414 
#>  108 Number of features:   50 Max AUC:    0.775 AUC:    0.741 Z:    1.324 Rdelta:  0.00331 
#>  109 Number of features:   50 Max AUC:    0.775 AUC:    0.750 Z:    1.386 Rdelta:  0.00265 
#>  110 Number of features:   51 Max AUC:    0.775 AUC:    0.767 Z:    1.450 Rdelta:  0.01239 
#>  111 Number of features:   51 Max AUC:    0.775 AUC:    0.759 Z:    1.444 Rdelta:  0.00991 
#>  112 Number of features:   51 Max AUC:    0.775 AUC:    0.763 Z:    1.413 Rdelta:  0.00793 
#>  113 Number of features:   51 Max AUC:    0.775 AUC:    0.751 Z:    1.361 Rdelta:  0.00634 
#>  114 Number of features:   51 Max AUC:    0.775 AUC:    0.750 Z:    1.377 Rdelta:  0.00507 
#>  115 Number of features:   51 Max AUC:    0.775 AUC:    0.719 Z:    1.319 Rdelta:  0.00406 
#>  116 Number of features:   52 Max AUC:    0.775 AUC:    0.768 Z:    1.390 Rdelta:  0.01365 
#>  117 Number of features:   52 Max AUC:    0.775 AUC:    0.742 Z:    1.390 Rdelta:  0.01092 
#>  118 Number of features:   52 Max AUC:    0.775 AUC:    0.758 Z:    1.424 Rdelta:  0.00874 
#>  119 Number of features:   53 Max AUC:    0.775 AUC:    0.769 Z:    1.404 Rdelta:  0.01786 
#>  120 Number of features:   53 Max AUC:    0.775 AUC:    0.762 Z:    1.420 Rdelta:  0.01429 
#>  121 Number of features:   53 Max AUC:    0.775 AUC:    0.744 Z:    1.394 Rdelta:  0.01143 
#>  122 Number of features:   53 Max AUC:    0.775 AUC:    0.754 Z:    1.442 Rdelta:  0.00915 
#>  123 Number of features:   53 Max AUC:    0.775 AUC:    0.761 Z:    1.394 Rdelta:  0.00732 
#>  124 Number of features:   53 Max AUC:    0.775 AUC:    0.727 Z:    1.249 Rdelta:  0.00585 
#>  125 Number of features:   54 Max AUC:    0.775 AUC:    0.767 Z:    1.478 Rdelta:  0.01527 
#>  126 Number of features:   54 Max AUC:    0.775 AUC:    0.764 Z:    1.448 Rdelta:  0.01221 
#>  127 Number of features:   54 Max AUC:    0.775 AUC:    0.736 Z:    1.138 Rdelta:  0.00977 
#>  128 Number of features:   54 Max AUC:    0.775 AUC:    0.758 Z:    1.430 Rdelta:  0.00782 
#>  129 Number of features:   54 Max AUC:    0.775 AUC:    0.757 Z:    1.451 Rdelta:  0.00625 
#>  130 Number of features:   54 Max AUC:    0.775 AUC:    0.755 Z:    1.366 Rdelta:  0.00500 
#>  131 Number of features:   54 Max AUC:    0.775 AUC:    0.756 Z:    1.426 Rdelta:  0.00400 
#>  132 Number of features:   54 Max AUC:    0.775 AUC:    0.699 Z:    1.077 Rdelta:  0.00320 
#>  133 Number of features:   54 Max AUC:    0.775 AUC:    0.763 Z:    1.413 Rdelta:  0.00256 
#>  134 Number of features:   54 Max AUC:    0.775 AUC:    0.759 Z:    1.426 Rdelta:  0.00205 
#>  135 Number of features:   54 Max AUC:    0.775 AUC:    0.758 Z:    1.431 Rdelta:  0.00164 
#>  136 Number of features:   54 Max AUC:    0.775 AUC:    0.728 Z:    1.181 Rdelta:  0.00131 
#>  137 Number of features:   54 Max AUC:    0.775 AUC:    0.752 Z:    1.395 Rdelta:  0.00105 
#>  138 Number of features:   55 Max AUC:    0.775 AUC:    0.769 Z:    1.447 Rdelta:  0.01094 
#>  139 Number of features:   55 Max AUC:    0.775 AUC:    0.765 Z:    1.426 Rdelta:  0.00876 
#>  140 Number of features:   55 Max AUC:    0.775 AUC:    0.746 Z:    1.188 Rdelta:  0.00700 
#>  141 Number of features:   55 Max AUC:    0.775 AUC:    0.746 Z:    1.371 Rdelta:  0.00560 
#>  142 Number of features:   55 Max AUC:    0.775 AUC:    0.747 Z:    1.376 Rdelta:  0.00448 
#>  143 Number of features:   56 Max AUC:    0.775 AUC:    0.772 Z:    1.233 Rdelta:  0.01403 
#>  144 Number of features:   57 Max AUC:    0.775 AUC:    0.772 Z:    1.245 Rdelta:  0.02263 
#>  145 Number of features:   57 Max AUC:    0.775 AUC:    0.674 Z:    0.937 Rdelta:  0.01810 
#>  146 Number of features:   58 Max AUC:    0.775 AUC:    0.772 Z:    1.278 Rdelta:  0.02629 
#>  147 Number of features:   58 Max AUC:    0.775 AUC:    0.751 Z:    1.135 Rdelta:  0.02104 
#>  148 Number of features:   58 Max AUC:    0.775 AUC:    0.750 Z:    1.212 Rdelta:  0.01683 
#>  149 Number of features:   59 Max AUC:    0.776 AUC:    0.776 Z:    1.249 Rdelta:  0.02515 
#>  150 Number of features:   60 Max AUC:    0.776 AUC:    0.769 Z:    1.205 Rdelta:  0.03263 
#>  151 Number of features:   60 Max AUC:    0.776 AUC:    0.713 Z:    1.014 Rdelta:  0.02610 
#>  152 Number of features:   60 Max AUC:    0.776 AUC:    0.753 Z:    1.196 Rdelta:  0.02088 
#>  153 Number of features:   60 Max AUC:    0.776 AUC:    0.736 Z:    1.109 Rdelta:  0.01671 
#>  154 Number of features:   61 Max AUC:    0.776 AUC:    0.771 Z:    1.234 Rdelta:  0.02504 
#>  155 Number of features:   61 Max AUC:    0.776 AUC:    0.755 Z:    1.198 Rdelta:  0.02003 
#>  156 Number of features:   61 Max AUC:    0.776 AUC:    0.750 Z:    1.135 Rdelta:  0.01602 
#>  157 Number of features:   61 Max AUC:    0.776 AUC:    0.724 Z:    1.139 Rdelta:  0.01282 
#>  158 Number of features:   61 Max AUC:    0.776 AUC:    0.761 Z:    1.226 Rdelta:  0.01025 
#>  159 Number of features:   61 Max AUC:    0.776 AUC:    0.765 Z:    1.250 Rdelta:  0.00820 
#>  160 Number of features:   61 Max AUC:    0.776 AUC:    0.750 Z:    1.182 Rdelta:  0.00656 
#>  161 Number of features:   61 Max AUC:    0.776 AUC:    0.759 Z:    1.166 Rdelta:  0.00525 
#>  162 Number of features:   61 Max AUC:    0.776 AUC:    0.761 Z:    1.212 Rdelta:  0.00420 
#>  163 Number of features:   61 Max AUC:    0.776 AUC:    0.746 Z:    1.175 Rdelta:  0.00336 
#>  164 Number of features:   61 Max AUC:    0.776 AUC:    0.734 Z:    1.167 Rdelta:  0.00269 
#>  165 Number of features:   61 Max AUC:    0.776 AUC:    0.762 Z:    1.213 Rdelta:  0.00215 
#>  166 Number of features:   62 Max AUC:    0.776 AUC:    0.770 Z:    1.225 Rdelta:  0.01194 
#>  167 Number of features:   62 Max AUC:    0.776 AUC:    0.744 Z:    1.131 Rdelta:  0.00955 
#>  168 Number of features:   62 Max AUC:    0.776 AUC:    0.705 Z:    0.839 Rdelta:  0.00764 
#>  169 Number of features:   62 Max AUC:    0.776 AUC:    0.730 Z:    1.123 Rdelta:  0.00611 
#>  170 Number of features:   62 Max AUC:    0.776 AUC:    0.757 Z:    1.171 Rdelta:  0.00489 
#>  171 Number of features:   62 Max AUC:    0.776 AUC:    0.765 Z:    1.208 Rdelta:  0.00391 
#>  172 Number of features:   62 Max AUC:    0.776 AUC:    0.756 Z:    1.171 Rdelta:  0.00313 
#>  173 Number of features:   62 Max AUC:    0.776 AUC:    0.759 Z:    1.212 Rdelta:  0.00250 
#>  174 Number of features:   62 Max AUC:    0.776 AUC:    0.757 Z:    1.195 Rdelta:  0.00200 
#>  175 Number of features:   62 Max AUC:    0.776 AUC:    0.750 Z:    1.152 Rdelta:  0.00160 
#>  176 Number of features:   62 Max AUC:    0.776 AUC:    0.756 Z:    1.188 Rdelta:  0.00128 
#>  177 Number of features:   62 Max AUC:    0.776 AUC:    0.766 Z:    1.157 Rdelta:  0.00103 
#>  178 Number of features:   62 Max AUC:    0.776 AUC:    0.757 Z:    1.190 Rdelta:  0.00082 
#>  179 Number of features:   62 Max AUC:    0.776 AUC:    0.757 Z:    1.151 Rdelta:  0.00066 
#>  180 Number of features:   62 Max AUC:    0.776 AUC:    0.754 Z:    1.226 Rdelta:  0.00052 
#>  181 Number of features:   62 Max AUC:    0.776 AUC:    0.754 Z:    1.217 Rdelta:  0.00042 
#>  182 Number of features:   62 Max AUC:    0.776 AUC:    0.735 Z:    0.995 Rdelta:  0.00034 
#>  183 Number of features:   62 Max AUC:    0.776 AUC:    0.763 Z:    1.234 Rdelta:  0.00027 
#>  184 Number of features:   62 Max AUC:    0.776 AUC:    0.694 Z:    1.070 Rdelta:  0.00022 
#>  185 Number of features:   62 Max AUC:    0.776 AUC:    0.738 Z:    1.143 Rdelta:  0.00017 
#>  186 Number of features:   62 Max AUC:    0.776 AUC:    0.745 Z:    1.116 Rdelta:  0.00014 
#>  187 Number of features:   62 Max AUC:    0.776 AUC:    0.756 Z:    1.177 Rdelta:  0.00011 
#>  188 Number of features:   62 Max AUC:    0.776 AUC:    0.764 Z:    1.221 Rdelta:  0.00009
#>    user  system elapsed 
#>  109.02    0.01  109.09
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#>    7 Number of features:    7 Max AUC:    0.715 AUC:    0.715 Z:    0.952 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.715 AUC:    0.709 Z:    0.962 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.715 AUC:    0.709 Z:    1.200 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.715 AUC:    0.707 Z:    0.954 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.726 AUC:    0.726 Z:    1.209 Rdelta:  0.10000 
#>   12 Number of features:   11 Max AUC:    0.726 AUC:    0.712 Z:    1.139 Rdelta:  0.08000 
#>   13 Number of features:   12 Max AUC:    0.726 AUC:    0.717 Z:    1.227 Rdelta:  0.08200 
#>   14 Number of features:   13 Max AUC:    0.743 AUC:    0.743 Z:    1.374 Rdelta:  0.08380 
#>   15 Number of features:   14 Max AUC:    0.748 AUC:    0.748 Z:    1.500 Rdelta:  0.08542 
#>   16 Number of features:   14 Max AUC:    0.748 AUC:    0.744 Z:    0.525 Rdelta:  0.06834 
#>   17 Number of features:   15 Max AUC:    0.750 AUC:    0.750 Z:    0.218 Rdelta:  0.07150 
#>   18 Number of features:   16 Max AUC:    0.756 AUC:    0.756 Z:    0.239 Rdelta:  0.07435 
#>   19 Number of features:   17 Max AUC:    0.768 AUC:    0.768 Z:    0.235 Rdelta:  0.07692 
#>   20 Number of features:   18 Max AUC:    0.774 AUC:    0.774 Z:    0.221 Rdelta:  0.07923 
#>   21 Number of features:   19 Max AUC:    0.781 AUC:    0.781 Z:    0.233 Rdelta:  0.08130 
#>   22 Number of features:   19 Max AUC:    0.781 AUC:    0.759 Z:    0.288 Rdelta:  0.06504 
#>   23 Number of features:   20 Max AUC:    0.781 AUC:    0.776 Z:    0.263 Rdelta:  0.06854 
#>   24 Number of features:   20 Max AUC:    0.781 AUC:    0.719 Z:    0.227 Rdelta:  0.05483 
#>   25 Number of features:   21 Max AUC:    0.781 AUC:    0.779 Z:    0.263 Rdelta:  0.05935 
#>   26 Number of features:   21 Max AUC:    0.781 AUC:    0.755 Z:    0.231 Rdelta:  0.04748 
#>   27 Number of features:   22 Max AUC:    0.785 AUC:    0.785 Z:    0.225 Rdelta:  0.05273 
#>   28 Number of features:   22 Max AUC:    0.785 AUC:    0.748 Z:    0.246 Rdelta:  0.04218 
#>   29 Number of features:   23 Max AUC:    0.785 AUC:    0.781 Z:    0.260 Rdelta:  0.04797 
#>   30 Number of features:   23 Max AUC:    0.785 AUC:    0.770 Z:    0.233 Rdelta:  0.03837 
#>   31 Number of features:   23 Max AUC:    0.785 AUC:    0.750 Z:    0.260 Rdelta:  0.03070 
#>   32 Number of features:   24 Max AUC:    0.785 AUC:    0.783 Z:    0.225 Rdelta:  0.03763 
#>   33 Number of features:   24 Max AUC:    0.785 AUC:    0.766 Z:    0.237 Rdelta:  0.03010 
#>   34 Number of features:   24 Max AUC:    0.785 AUC:    0.764 Z:    0.231 Rdelta:  0.02408 
#>   35 Number of features:   24 Max AUC:    0.785 AUC:    0.764 Z:    0.257 Rdelta:  0.01927 
#>   36 Number of features:   25 Max AUC:    0.788 AUC:    0.788 Z:    0.224 Rdelta:  0.02734 
#>   37 Number of features:   26 Max AUC:    0.795 AUC:    0.795 Z:    0.254 Rdelta:  0.03461 
#>   38 Number of features:   26 Max AUC:    0.795 AUC:    0.785 Z:    0.252 Rdelta:  0.02768 
#>   39 Number of features:   26 Max AUC:    0.795 AUC:    0.785 Z:    0.259 Rdelta:  0.02215 
#>   40 Number of features:   26 Max AUC:    0.795 AUC:    0.755 Z:    0.265 Rdelta:  0.01772 
#>   41 Number of features:   27 Max AUC:    0.795 AUC:    0.791 Z:    0.282 Rdelta:  0.02595 
#>   42 Number of features:   27 Max AUC:    0.795 AUC:    0.776 Z:    0.328 Rdelta:  0.02076 
#>   43 Number of features:   27 Max AUC:    0.795 AUC:    0.776 Z:    0.341 Rdelta:  0.01661 
#>   44 Number of features:   28 Max AUC:    0.795 AUC:    0.785 Z:    0.323 Rdelta:  0.02494 
#>   45 Number of features:   28 Max AUC:    0.795 AUC:    0.776 Z:    0.304 Rdelta:  0.01996 
#>   46 Number of features:   28 Max AUC:    0.795 AUC:    0.779 Z:    0.360 Rdelta:  0.01596 
#>   47 Number of features:   28 Max AUC:    0.795 AUC:    0.773 Z:    0.325 Rdelta:  0.01277 
#>   48 Number of features:   29 Max AUC:    0.795 AUC:    0.793 Z:    0.307 Rdelta:  0.02149 
#>   49 Number of features:   29 Max AUC:    0.795 AUC:    0.748 Z:    0.290 Rdelta:  0.01720 
#>   50 Number of features:   29 Max AUC:    0.795 AUC:    0.775 Z:    0.265 Rdelta:  0.01376 
#>   51 Number of features:   29 Max AUC:    0.795 AUC:    0.774 Z:    0.286 Rdelta:  0.01101 
#>   52 Number of features:   30 Max AUC:    0.795 AUC:    0.790 Z:    0.286 Rdelta:  0.01990 
#>   53 Number of features:   30 Max AUC:    0.795 AUC:    0.756 Z:    0.268 Rdelta:  0.01592 
#>   54 Number of features:   30 Max AUC:    0.795 AUC:    0.763 Z:    0.266 Rdelta:  0.01274 
#>   55 Number of features:   30 Max AUC:    0.795 AUC:    0.776 Z:    0.273 Rdelta:  0.01019 
#>   56 Number of features:   31 Max AUC:    0.795 AUC:    0.791 Z:    0.311 Rdelta:  0.01917 
#>   57 Number of features:   31 Max AUC:    0.795 AUC:    0.766 Z:    0.267 Rdelta:  0.01534 
#>   58 Number of features:   31 Max AUC:    0.795 AUC:    0.760 Z:    0.274 Rdelta:  0.01227 
#>   59 Number of features:   31 Max AUC:    0.795 AUC:    0.758 Z:    0.270 Rdelta:  0.00982 
#>   60 Number of features:   31 Max AUC:    0.795 AUC:    0.779 Z:    0.268 Rdelta:  0.00785 
#>   61 Number of features:   31 Max AUC:    0.795 AUC:    0.773 Z:    0.323 Rdelta:  0.00628 
#>   62 Number of features:   32 Max AUC:    0.795 AUC:    0.790 Z:    0.290 Rdelta:  0.01565 
#>   63 Number of features:   33 Max AUC:    0.795 AUC:    0.791 Z:    0.176 Rdelta:  0.02409 
#>   64 Number of features:   33 Max AUC:    0.795 AUC:    0.774 Z:    0.191 Rdelta:  0.01927 
#>   65 Number of features:   33 Max AUC:    0.795 AUC:    0.781 Z:    0.215 Rdelta:  0.01542 
#>   66 Number of features:   33 Max AUC:    0.795 AUC:    0.774 Z:    0.223 Rdelta:  0.01233 
#>   67 Number of features:   33 Max AUC:    0.795 AUC:    0.770 Z:    0.203 Rdelta:  0.00987 
#>   68 Number of features:   34 Max AUC:    0.797 AUC:    0.797 Z:    0.213 Rdelta:  0.01888 
#>   69 Number of features:   34 Max AUC:    0.797 AUC:    0.767 Z:    0.236 Rdelta:  0.01510 
#>   70 Number of features:   34 Max AUC:    0.797 AUC:    0.773 Z:    0.204 Rdelta:  0.01208 
#>   71 Number of features:   34 Max AUC:    0.797 AUC:    0.773 Z:    0.196 Rdelta:  0.00967 
#>   72 Number of features:   34 Max AUC:    0.797 AUC:    0.767 Z:    0.223 Rdelta:  0.00773 
#>   73 Number of features:   34 Max AUC:    0.797 AUC:    0.779 Z:    0.222 Rdelta:  0.00619 
#>   74 Number of features:   34 Max AUC:    0.797 AUC:    0.767 Z:    0.206 Rdelta:  0.00495 
#>   75 Number of features:   34 Max AUC:    0.797 AUC:    0.749 Z:    0.200 Rdelta:  0.00396 
#>   76 Number of features:   34 Max AUC:    0.797 AUC:    0.771 Z:    0.210 Rdelta:  0.00317 
#>   77 Number of features:   34 Max AUC:    0.797 AUC:    0.786 Z:    0.211 Rdelta:  0.00253 
#>   78 Number of features:   34 Max AUC:    0.797 AUC:    0.767 Z:    0.223 Rdelta:  0.00203 
#>   79 Number of features:   34 Max AUC:    0.797 AUC:    0.783 Z:    0.288 Rdelta:  0.00162 
#>   80 Number of features:   34 Max AUC:    0.797 AUC:    0.769 Z:    0.215 Rdelta:  0.00130 
#>   81 Number of features:   35 Max AUC:    0.797 AUC:    0.790 Z:    0.282 Rdelta:  0.01117 
#>   82 Number of features:   36 Max AUC:    0.797 AUC:    0.788 Z:    0.279 Rdelta:  0.02005 
#>   83 Number of features:   36 Max AUC:    0.797 AUC:    0.779 Z:    0.276 Rdelta:  0.01604 
#>   84 Number of features:   36 Max AUC:    0.797 AUC:    0.776 Z:    0.306 Rdelta:  0.01283 
#>   85 Number of features:   36 Max AUC:    0.797 AUC:    0.763 Z:    0.315 Rdelta:  0.01027 
#>   86 Number of features:   36 Max AUC:    0.797 AUC:    0.780 Z:    0.318 Rdelta:  0.00821 
#>   87 Number of features:   36 Max AUC:    0.797 AUC:    0.709 Z:    0.335 Rdelta:  0.00657 
#>   88 Number of features:   36 Max AUC:    0.797 AUC:    0.778 Z:    0.358 Rdelta:  0.00526 
#>   89 Number of features:   37 Max AUC:    0.804 AUC:    0.804 Z:    0.316 Rdelta:  0.01473 
#>   90 Number of features:   37 Max AUC:    0.804 AUC:    0.794 Z:    0.293 Rdelta:  0.01178 
#>   91 Number of features:   38 Max AUC:    0.804 AUC:    0.798 Z:    0.325 Rdelta:  0.02061 
#>   92 Number of features:   39 Max AUC:    0.806 AUC:    0.806 Z:    0.281 Rdelta:  0.02855 
#>   93 Number of features:   39 Max AUC:    0.806 AUC:    0.789 Z:    0.349 Rdelta:  0.02284 
#>   94 Number of features:   39 Max AUC:    0.806 AUC:    0.784 Z:    0.339 Rdelta:  0.01827 
#>   95 Number of features:   39 Max AUC:    0.806 AUC:    0.771 Z:    0.279 Rdelta:  0.01462 
#>   96 Number of features:   39 Max AUC:    0.806 AUC:    0.741 Z:    0.348 Rdelta:  0.01169 
#>   97 Number of features:   39 Max AUC:    0.806 AUC:    0.759 Z:    0.353 Rdelta:  0.00935 
#>   98 Number of features:   39 Max AUC:    0.806 AUC:    0.715 Z:    0.403 Rdelta:  0.00748 
#>   99 Number of features:   39 Max AUC:    0.806 AUC:    0.788 Z:    0.293 Rdelta:  0.00599 
#>  100 Number of features:   39 Max AUC:    0.806 AUC:    0.738 Z:    0.348 Rdelta:  0.00479 
#>  101 Number of features:   39 Max AUC:    0.806 AUC:    0.779 Z:    0.292 Rdelta:  0.00383 
#>  102 Number of features:   39 Max AUC:    0.806 AUC:    0.782 Z:    0.297 Rdelta:  0.00307 
#>  103 Number of features:   39 Max AUC:    0.806 AUC:    0.774 Z:    0.330 Rdelta:  0.00245 
#>  104 Number of features:   39 Max AUC:    0.806 AUC:    0.689 Z:    0.343 Rdelta:  0.00196 
#>  105 Number of features:   39 Max AUC:    0.806 AUC:    0.794 Z:    0.329 Rdelta:  0.00157 
#>  106 Number of features:   39 Max AUC:    0.806 AUC:    0.756 Z:    0.352 Rdelta:  0.00126 
#>  107 Number of features:   39 Max AUC:    0.806 AUC:    0.792 Z:    0.303 Rdelta:  0.00100 
#>  108 Number of features:   39 Max AUC:    0.806 AUC:    0.789 Z:    0.327 Rdelta:  0.00080 
#>  109 Number of features:   39 Max AUC:    0.806 AUC:    0.774 Z:    0.349 Rdelta:  0.00064 
#>  110 Number of features:   39 Max AUC:    0.806 AUC:    0.775 Z:    0.396 Rdelta:  0.00051 
#>  111 Number of features:   39 Max AUC:    0.806 AUC:    0.758 Z:    0.290 Rdelta:  0.00041 
#>  112 Number of features:   39 Max AUC:    0.806 AUC:    0.785 Z:    0.403 Rdelta:  0.00033 
#>  113 Number of features:   39 Max AUC:    0.806 AUC:    0.753 Z:    0.304 Rdelta:  0.00026 
#>  114 Number of features:   39 Max AUC:    0.806 AUC:    0.788 Z:    0.426 Rdelta:  0.00021 
#>  115 Number of features:   39 Max AUC:    0.806 AUC:    0.741 Z:    0.310 Rdelta:  0.00017 
#>  116 Number of features:   39 Max AUC:    0.806 AUC:    0.775 Z:    0.308 Rdelta:  0.00013 
#>  117 Number of features:   39 Max AUC:    0.806 AUC:    0.796 Z:    0.348 Rdelta:  0.00011 
#>  118 Number of features:   39 Max AUC:    0.806 AUC:    0.791 Z:    0.336 Rdelta:  0.00009
#>    user  system elapsed 
#>   48.47    0.00   48.50
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))

testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
 
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#>    7 Number of features:    7 Max AUC:    0.876 AUC:    0.872 Z:    1.020 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.904 AUC:    0.904 Z:    1.345 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.904 AUC:    0.887 Z:    1.129 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.904 AUC:    0.897 Z:    1.411 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.904 AUC:    0.899 Z:    1.457 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.904 AUC:    0.892 Z:    1.400 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.916 AUC:    0.916 Z:    1.374 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.920 AUC:    0.920 Z:    1.372 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.942 AUC:    0.942 Z:    1.726 Rdelta:  0.10000 
#>   16 Number of features:   16 Max AUC:    0.948 AUC:    0.948 Z:    0.928 Rdelta:  0.10000 
#>   17 Number of features:   17 Max AUC:    0.953 AUC:    0.953 Z:    0.344 Rdelta:  0.10000 
#>   18 Number of features:   18 Max AUC:    0.955 AUC:    0.955 Z:    0.323 Rdelta:  0.10000 
#>   19 Number of features:   19 Max AUC:    0.955 AUC:    0.951 Z:    0.293 Rdelta:  0.10000 
#>   20 Number of features:   20 Max AUC:    0.955 AUC:    0.952 Z:    0.289 Rdelta:  0.10000 
#>   21 Number of features:   21 Max AUC:    0.955 AUC:    0.942 Z:    0.336 Rdelta:  0.10000 
#>   22 Number of features:   22 Max AUC:    0.955 AUC:    0.952 Z:    0.300 Rdelta:  0.10000 
#>   23 Number of features:   23 Max AUC:    0.955 AUC:    0.942 Z:    0.313 Rdelta:  0.10000 
#>   24 Number of features:   23 Max AUC:    0.955 AUC:    0.886 Z:    0.423 Rdelta:  0.08000 
#>   25 Number of features:   24 Max AUC:    0.955 AUC:    0.940 Z:    0.381 Rdelta:  0.08200 
#>   26 Number of features:   25 Max AUC:    0.955 AUC:    0.942 Z:    0.348 Rdelta:  0.08380 
#>   27 Number of features:   26 Max AUC:    0.955 AUC:    0.947 Z:    0.346 Rdelta:  0.08542 
#>   28 Number of features:   27 Max AUC:    0.955 AUC:    0.949 Z:    0.296 Rdelta:  0.08688 
#>   29 Number of features:   28 Max AUC:    0.955 AUC:    0.939 Z:    0.258 Rdelta:  0.08819 
#>   30 Number of features:   29 Max AUC:    0.955 AUC:    0.950 Z:    0.318 Rdelta:  0.08937 
#>   31 Number of features:   30 Max AUC:    0.955 AUC:    0.946 Z:    0.309 Rdelta:  0.09043 
#>   32 Number of features:   31 Max AUC:    0.955 AUC:    0.949 Z:    0.279 Rdelta:  0.09139 
#>   33 Number of features:   31 Max AUC:    0.955 AUC:    0.932 Z:    0.271 Rdelta:  0.07311 
#>   34 Number of features:   32 Max AUC:    0.955 AUC:    0.942 Z:    0.249 Rdelta:  0.07580 
#>   35 Number of features:   33 Max AUC:    0.955 AUC:    0.943 Z:    0.307 Rdelta:  0.07822 
#>   36 Number of features:   34 Max AUC:    0.955 AUC:    0.943 Z:    0.238 Rdelta:  0.08040 
#>   37 Number of features:   35 Max AUC:    0.955 AUC:    0.942 Z:    0.255 Rdelta:  0.08236 
#>   38 Number of features:   35 Max AUC:    0.955 AUC:    0.928 Z:    0.213 Rdelta:  0.06589 
#>   39 Number of features:   36 Max AUC:    0.955 AUC:    0.938 Z:    0.278 Rdelta:  0.06930 
#>   40 Number of features:   37 Max AUC:    0.955 AUC:    0.950 Z:    0.298 Rdelta:  0.07237 
#>   41 Number of features:   38 Max AUC:    0.955 AUC:    0.946 Z:    0.437 Rdelta:  0.07513 
#>   42 Number of features:   39 Max AUC:    0.955 AUC:    0.939 Z:    0.328 Rdelta:  0.07762 
#>   43 Number of features:   40 Max AUC:    0.955 AUC:    0.940 Z:    0.369 Rdelta:  0.07986 
#>   44 Number of features:   40 Max AUC:    0.955 AUC:    0.934 Z:    0.354 Rdelta:  0.06389 
#>   45 Number of features:   41 Max AUC:    0.955 AUC:    0.938 Z:    0.331 Rdelta:  0.06750 
#>   46 Number of features:   42 Max AUC:    0.955 AUC:    0.938 Z:    0.344 Rdelta:  0.07075 
#>   47 Number of features:   43 Max AUC:    0.955 AUC:    0.939 Z:    0.338 Rdelta:  0.07367 
#>   48 Number of features:   44 Max AUC:    0.955 AUC:    0.939 Z:    0.366 Rdelta:  0.07631 
#>   49 Number of features:   44 Max AUC:    0.955 AUC:    0.926 Z:    0.287 Rdelta:  0.06104 
#>   50 Number of features:   45 Max AUC:    0.955 AUC:    0.935 Z:    0.337 Rdelta:  0.06494 
#>   51 Number of features:   45 Max AUC:    0.955 AUC:    0.930 Z:    0.262 Rdelta:  0.05195 
#>   52 Number of features:   45 Max AUC:    0.955 AUC:    0.933 Z:    0.368 Rdelta:  0.04156 
#>   53 Number of features:   46 Max AUC:    0.955 AUC:    0.936 Z:    0.337 Rdelta:  0.04741 
#>   54 Number of features:   47 Max AUC:    0.955 AUC:    0.937 Z:    0.357 Rdelta:  0.05266 
#>   55 Number of features:   48 Max AUC:    0.955 AUC:    0.935 Z:    0.345 Rdelta:  0.05740 
#>   56 Number of features:   49 Max AUC:    0.955 AUC:    0.940 Z:    0.334 Rdelta:  0.06166 
#>   57 Number of features:   49 Max AUC:    0.955 AUC:    0.928 Z:    0.352 Rdelta:  0.04933 
#>   58 Number of features:   49 Max AUC:    0.955 AUC:    0.927 Z:    0.387 Rdelta:  0.03946 
#>   59 Number of features:   50 Max AUC:    0.955 AUC:    0.943 Z:    0.347 Rdelta:  0.04552 
#>   60 Number of features:   50 Max AUC:    0.955 AUC:    0.932 Z:    0.382 Rdelta:  0.03641 
#>   61 Number of features:   50 Max AUC:    0.955 AUC:    0.928 Z:    0.314 Rdelta:  0.02913 
#>   62 Number of features:   50 Max AUC:    0.955 AUC:    0.922 Z:    0.373 Rdelta:  0.02330 
#>   63 Number of features:   50 Max AUC:    0.955 AUC:    0.932 Z:    0.283 Rdelta:  0.01864 
#>   64 Number of features:   51 Max AUC:    0.955 AUC:    0.938 Z:    0.375 Rdelta:  0.02678 
#>   65 Number of features:   51 Max AUC:    0.955 AUC:    0.933 Z:    0.352 Rdelta:  0.02142 
#>   66 Number of features:   51 Max AUC:    0.955 AUC:    0.918 Z:    0.417 Rdelta:  0.01714 
#>   67 Number of features:   51 Max AUC:    0.955 AUC:    0.921 Z:    0.346 Rdelta:  0.01371 
#>   68 Number of features:   52 Max AUC:    0.955 AUC:    0.936 Z:    0.377 Rdelta:  0.02234 
#>   69 Number of features:   52 Max AUC:    0.955 AUC:    0.926 Z:    0.401 Rdelta:  0.01787 
#>   70 Number of features:   52 Max AUC:    0.955 AUC:    0.916 Z:    0.356 Rdelta:  0.01430 
#>   71 Number of features:   53 Max AUC:    0.955 AUC:    0.933 Z:    0.373 Rdelta:  0.02287 
#>   72 Number of features:   53 Max AUC:    0.955 AUC:    0.931 Z:    0.328 Rdelta:  0.01829 
#>   73 Number of features:   53 Max AUC:    0.955 AUC:    0.924 Z:    0.235 Rdelta:  0.01464 
#>   74 Number of features:   53 Max AUC:    0.955 AUC:    0.931 Z:    0.383 Rdelta:  0.01171 
#>   75 Number of features:   53 Max AUC:    0.955 AUC:    0.925 Z:    0.384 Rdelta:  0.00937 
#>   76 Number of features:   53 Max AUC:    0.955 AUC:    0.925 Z:    0.371 Rdelta:  0.00749 
#>   77 Number of features:   54 Max AUC:    0.955 AUC:    0.933 Z:    0.294 Rdelta:  0.01674 
#>   78 Number of features:   55 Max AUC:    0.955 AUC:    0.941 Z:    0.320 Rdelta:  0.02507 
#>   79 Number of features:   56 Max AUC:    0.955 AUC:    0.937 Z:    0.411 Rdelta:  0.03256 
#>   80 Number of features:   57 Max AUC:    0.955 AUC:    0.938 Z:    0.441 Rdelta:  0.03931 
#>   81 Number of features:   58 Max AUC:    0.955 AUC:    0.931 Z:    0.468 Rdelta:  0.04538 
#>   82 Number of features:   58 Max AUC:    0.955 AUC:    0.927 Z:    0.361 Rdelta:  0.03630 
#>   83 Number of features:   59 Max AUC:    0.955 AUC:    0.933 Z:    0.430 Rdelta:  0.04267 
#>   84 Number of features:   59 Max AUC:    0.955 AUC:    0.929 Z:    0.410 Rdelta:  0.03414 
#>   85 Number of features:   60 Max AUC:    0.955 AUC:    0.931 Z:    0.393 Rdelta:  0.04072 
#>   86 Number of features:   61 Max AUC:    0.955 AUC:    0.932 Z:    0.465 Rdelta:  0.04665 
#>   87 Number of features:   61 Max AUC:    0.955 AUC:    0.862 Z:    0.246 Rdelta:  0.03732 
#>   88 Number of features:   61 Max AUC:    0.955 AUC:    0.925 Z:    0.474 Rdelta:  0.02986 
#>   89 Number of features:   62 Max AUC:    0.955 AUC:    0.941 Z:    0.471 Rdelta:  0.03687 
#>   90 Number of features:   62 Max AUC:    0.955 AUC:    0.925 Z:    0.380 Rdelta:  0.02950 
#>   91 Number of features:   62 Max AUC:    0.955 AUC:    0.901 Z:    0.454 Rdelta:  0.02360 
#>   92 Number of features:   62 Max AUC:    0.955 AUC:    0.919 Z:    0.460 Rdelta:  0.01888 
#>   93 Number of features:   62 Max AUC:    0.955 AUC:    0.931 Z:    0.473 Rdelta:  0.01510 
#>   94 Number of features:   62 Max AUC:    0.955 AUC:    0.929 Z:    0.468 Rdelta:  0.01208 
#>   95 Number of features:   62 Max AUC:    0.955 AUC:    0.925 Z:    0.447 Rdelta:  0.00967 
#>   96 Number of features:   62 Max AUC:    0.955 AUC:    0.899 Z:    0.054 Rdelta:  0.00773 
#>   97 Number of features:   62 Max AUC:    0.955 AUC:    0.915 Z:    0.464 Rdelta:  0.00619 
#>   98 Number of features:   62 Max AUC:    0.955 AUC:    0.856 Z:    0.088 Rdelta:  0.00495 
#>   99 Number of features:   62 Max AUC:    0.955 AUC:    0.927 Z:    0.366 Rdelta:  0.00396 
#>  100 Number of features:   62 Max AUC:    0.955 AUC:    0.867 Z:    0.427 Rdelta:  0.00317 
#>  101 Number of features:   62 Max AUC:    0.955 AUC:    0.931 Z:    0.424 Rdelta:  0.00253 
#>  102 Number of features:   62 Max AUC:    0.955 AUC:    0.927 Z:    0.394 Rdelta:  0.00203 
#>  103 Number of features:   63 Max AUC:    0.955 AUC:    0.934 Z:    0.447 Rdelta:  0.01182 
#>  104 Number of features:   63 Max AUC:    0.955 AUC:    0.895 Z:    0.448 Rdelta:  0.00946 
#>  105 Number of features:   63 Max AUC:    0.955 AUC:    0.922 Z:    0.249 Rdelta:  0.00757 
#>  106 Number of features:   63 Max AUC:    0.955 AUC:    0.909 Z:    0.405 Rdelta:  0.00605 
#>  107 Number of features:   64 Max AUC:    0.955 AUC:    0.937 Z:    0.421 Rdelta:  0.01545 
#>  108 Number of features:   64 Max AUC:    0.955 AUC:    0.930 Z:    0.387 Rdelta:  0.01236 
#>  109 Number of features:   64 Max AUC:    0.955 AUC:    0.926 Z:    0.408 Rdelta:  0.00989 
#>  110 Number of features:   64 Max AUC:    0.955 AUC:    0.924 Z:    0.376 Rdelta:  0.00791 
#>  111 Number of features:   64 Max AUC:    0.955 AUC:    0.919 Z:    0.403 Rdelta:  0.00633 
#>  112 Number of features:   64 Max AUC:    0.955 AUC:    0.918 Z:    0.359 Rdelta:  0.00506 
#>  113 Number of features:   64 Max AUC:    0.955 AUC:    0.892 Z:    0.227 Rdelta:  0.00405 
#>  114 Number of features:   64 Max AUC:    0.955 AUC:    0.917 Z:    0.337 Rdelta:  0.00324 
#>  115 Number of features:   64 Max AUC:    0.955 AUC:    0.890 Z:    0.392 Rdelta:  0.00259 
#>  116 Number of features:   64 Max AUC:    0.955 AUC:    0.926 Z:    0.374 Rdelta:  0.00207 
#>  117 Number of features:   64 Max AUC:    0.955 AUC:    0.928 Z:    0.405 Rdelta:  0.00166 
#>  118 Number of features:   64 Max AUC:    0.955 AUC:    0.929 Z:    0.422 Rdelta:  0.00133 
#>  119 Number of features:   64 Max AUC:    0.955 AUC:    0.931 Z:    0.415 Rdelta:  0.00106 
#>  120 Number of features:   64 Max AUC:    0.955 AUC:    0.925 Z:    0.408 Rdelta:  0.00085 
#>  121 Number of features:   64 Max AUC:    0.955 AUC:    0.930 Z:    0.387 Rdelta:  0.00068 
#>  122 Number of features:   65 Max AUC:    0.955 AUC:    0.933 Z:    0.406 Rdelta:  0.01061 
#>  123 Number of features:   65 Max AUC:    0.955 AUC:    0.926 Z:    0.429 Rdelta:  0.00849 
#>  124 Number of features:   65 Max AUC:    0.955 AUC:    0.857 Z:    0.109 Rdelta:  0.00679 
#>  125 Number of features:   65 Max AUC:    0.955 AUC:    0.919 Z:    0.293 Rdelta:  0.00543 
#>  126 Number of features:   65 Max AUC:    0.955 AUC:    0.919 Z:    0.309 Rdelta:  0.00435 
#>  127 Number of features:   65 Max AUC:    0.955 AUC:    0.931 Z:    0.356 Rdelta:  0.00348 
#>  128 Number of features:   65 Max AUC:    0.955 AUC:    0.916 Z:    0.338 Rdelta:  0.00278 
#>  129 Number of features:   66 Max AUC:    0.955 AUC:    0.935 Z:    0.343 Rdelta:  0.01250 
#>  130 Number of features:   66 Max AUC:    0.955 AUC:    0.925 Z:    0.307 Rdelta:  0.01000 
#>  131 Number of features:   67 Max AUC:    0.955 AUC:    0.932 Z:    0.354 Rdelta:  0.01900 
#>  132 Number of features:   67 Max AUC:    0.955 AUC:    0.863 Z:    0.437 Rdelta:  0.01520 
#>  133 Number of features:   67 Max AUC:    0.955 AUC:    0.925 Z:    0.262 Rdelta:  0.01216 
#>  134 Number of features:   67 Max AUC:    0.955 AUC:    0.926 Z:    0.382 Rdelta:  0.00973 
#>  135 Number of features:   67 Max AUC:    0.955 AUC:    0.904 Z:    0.358 Rdelta:  0.00778 
#>  136 Number of features:   67 Max AUC:    0.955 AUC:    0.912 Z:    0.402 Rdelta:  0.00623 
#>  137 Number of features:   67 Max AUC:    0.955 AUC:    0.909 Z:    0.306 Rdelta:  0.00498 
#>  138 Number of features:   67 Max AUC:    0.955 AUC:    0.914 Z:    0.337 Rdelta:  0.00399 
#>  139 Number of features:   67 Max AUC:    0.955 AUC:    0.929 Z:    0.400 Rdelta:  0.00319 
#>  140 Number of features:   67 Max AUC:    0.955 AUC:    0.877 Z:    0.307 Rdelta:  0.00255 
#>  141 Number of features:   67 Max AUC:    0.955 AUC:    0.920 Z:    0.275 Rdelta:  0.00204 
#>  142 Number of features:   67 Max AUC:    0.955 AUC:    0.921 Z:    0.366 Rdelta:  0.00163 
#>  143 Number of features:   67 Max AUC:    0.955 AUC:    0.883 Z:    0.409 Rdelta:  0.00131 
#>  144 Number of features:   68 Max AUC:    0.955 AUC:    0.933 Z:    0.296 Rdelta:  0.01118 
#>  145 Number of features:   68 Max AUC:    0.955 AUC:    0.900 Z:    0.350 Rdelta:  0.00894 
#>  146 Number of features:   68 Max AUC:    0.955 AUC:    0.926 Z:    0.462 Rdelta:  0.00715 
#>  147 Number of features:   68 Max AUC:    0.955 AUC:    0.925 Z:    0.301 Rdelta:  0.00572 
#>  148 Number of features:   68 Max AUC:    0.955 AUC:    0.928 Z:    0.374 Rdelta:  0.00458 
#>  149 Number of features:   68 Max AUC:    0.955 AUC:    0.929 Z:    0.296 Rdelta:  0.00366 
#>  150 Number of features:   69 Max AUC:    0.955 AUC:    0.932 Z:    0.389 Rdelta:  0.01330 
#>  151 Number of features:   69 Max AUC:    0.955 AUC:    0.903 Z:    0.302 Rdelta:  0.01064 
#>  152 Number of features:   69 Max AUC:    0.955 AUC:    0.928 Z:    0.277 Rdelta:  0.00851 
#>  153 Number of features:   69 Max AUC:    0.955 AUC:    0.923 Z:    0.307 Rdelta:  0.00681 
#>  154 Number of features:   69 Max AUC:    0.955 AUC:    0.930 Z:    0.306 Rdelta:  0.00545 
#>  155 Number of features:   69 Max AUC:    0.955 AUC:    0.926 Z:    0.311 Rdelta:  0.00436 
#>  156 Number of features:   69 Max AUC:    0.955 AUC:    0.917 Z:    0.295 Rdelta:  0.00349 
#>  157 Number of features:   69 Max AUC:    0.955 AUC:    0.907 Z:    0.323 Rdelta:  0.00279 
#>  158 Number of features:   69 Max AUC:    0.955 AUC:    0.928 Z:    0.381 Rdelta:  0.00223 
#>  159 Number of features:   70 Max AUC:    0.955 AUC:    0.934 Z:    0.374 Rdelta:  0.01201 
#>  160 Number of features:   71 Max AUC:    0.955 AUC:    0.934 Z:    0.431 Rdelta:  0.02081 
#>  161 Number of features:   71 Max AUC:    0.955 AUC:    0.928 Z:    0.318 Rdelta:  0.01665 
#>  162 Number of features:   71 Max AUC:    0.955 AUC:    0.923 Z:    0.246 Rdelta:  0.01332 
#>  163 Number of features:   71 Max AUC:    0.955 AUC:    0.925 Z:    0.326 Rdelta:  0.01065 
#>  164 Number of features:   71 Max AUC:    0.955 AUC:    0.920 Z:    0.347 Rdelta:  0.00852 
#>  165 Number of features:   71 Max AUC:    0.955 AUC:    0.922 Z:    0.384 Rdelta:  0.00682 
#>  166 Number of features:   71 Max AUC:    0.955 AUC:    0.927 Z:    0.340 Rdelta:  0.00545 
#>  167 Number of features:   71 Max AUC:    0.955 AUC:    0.931 Z:    0.291 Rdelta:  0.00436 
#>  168 Number of features:   71 Max AUC:    0.955 AUC:    0.910 Z:    0.337 Rdelta:  0.00349 
#>  169 Number of features:   72 Max AUC:    0.955 AUC:    0.933 Z:    0.347 Rdelta:  0.01314 
#>  170 Number of features:   72 Max AUC:    0.955 AUC:    0.929 Z:    0.429 Rdelta:  0.01051 
#>  171 Number of features:   72 Max AUC:    0.955 AUC:    0.924 Z:    0.398 Rdelta:  0.00841 
#>  172 Number of features:   72 Max AUC:    0.955 AUC:    0.928 Z:    0.406 Rdelta:  0.00673 
#>  173 Number of features:   72 Max AUC:    0.955 AUC:    0.906 Z:    0.336 Rdelta:  0.00538 
#>  174 Number of features:   72 Max AUC:    0.955 AUC:    0.922 Z:    0.282 Rdelta:  0.00431 
#>  175 Number of features:   72 Max AUC:    0.955 AUC:    0.928 Z:    0.387 Rdelta:  0.00345 
#>  176 Number of features:   72 Max AUC:    0.955 AUC:    0.926 Z:    0.285 Rdelta:  0.00276 
#>  177 Number of features:   72 Max AUC:    0.955 AUC:    0.922 Z:    0.369 Rdelta:  0.00220 
#>  178 Number of features:   72 Max AUC:    0.955 AUC:    0.916 Z:    0.398 Rdelta:  0.00176 
#>  179 Number of features:   72 Max AUC:    0.955 AUC:    0.928 Z:    0.392 Rdelta:  0.00141 
#>  180 Number of features:   72 Max AUC:    0.955 AUC:    0.928 Z:    0.337 Rdelta:  0.00113 
#>  181 Number of features:   72 Max AUC:    0.955 AUC:    0.922 Z:    0.440 Rdelta:  0.00090 
#>  182 Number of features:   72 Max AUC:    0.955 AUC:    0.906 Z:    0.382 Rdelta:  0.00072 
#>  183 Number of features:   72 Max AUC:    0.955 AUC:    0.915 Z:    0.286 Rdelta:  0.00058 
#>  184 Number of features:   72 Max AUC:    0.955 AUC:    0.903 Z:    0.427 Rdelta:  0.00046 
#>  185 Number of features:   72 Max AUC:    0.955 AUC:    0.922 Z:    0.360 Rdelta:  0.00037 
#>  186 Number of features:   72 Max AUC:    0.955 AUC:    0.930 Z:    0.317 Rdelta:  0.00030 
#>  187 Number of features:   72 Max AUC:    0.955 AUC:    0.925 Z:    0.400 Rdelta:  0.00024 
#>  188 Number of features:   72 Max AUC:    0.955 AUC:    0.919 Z:    0.218 Rdelta:  0.00019 
#>  189 Number of features:   72 Max AUC:    0.955 AUC:    0.908 Z:    0.308 Rdelta:  0.00015 
#>  190 Number of features:   72 Max AUC:    0.955 AUC:    0.914 Z:    0.381 Rdelta:  0.00012 
#>  191 Number of features:   72 Max AUC:    0.955 AUC:    0.916 Z:    0.272 Rdelta:  0.00010
#>    user  system elapsed 
#>  127.22    0.00  127.26
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))


system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#>    7 Number of features:    7 Max AUC:    0.321 AUC:    0.321 Z:   -0.467 Rdelta:  0.10000 
#>    8 Number of features:    7 Max AUC:    0.321 AUC:    0.283 Z:   -0.607 Rdelta:  0.08000 
#>    9 Number of features:    8 Max AUC:    0.323 AUC:    0.323 Z:   -0.369 Rdelta:  0.08200 
#>   10 Number of features:    9 Max AUC:    0.326 AUC:    0.326 Z:   -0.506 Rdelta:  0.08380 
#>   11 Number of features:   10 Max AUC:    0.326 AUC:    0.325 Z:   -0.502 Rdelta:  0.08542 
#>   12 Number of features:   10 Max AUC:    0.326 AUC:    0.309 Z:   -0.519 Rdelta:  0.06834 
#>   13 Number of features:   10 Max AUC:    0.326 AUC:    0.309 Z:   -0.544 Rdelta:  0.05467 
#>   14 Number of features:   10 Max AUC:    0.326 AUC:    0.316 Z:   -0.465 Rdelta:  0.04374 
#>   15 Number of features:   10 Max AUC:    0.326 AUC:    0.309 Z:   -0.538 Rdelta:  0.03499 
#>   16 Number of features:   10 Max AUC:    0.326 AUC:    0.291 Z:   -0.530 Rdelta:  0.02799 
#>   17 Number of features:   10 Max AUC:    0.326 AUC:    0.293 Z:   -0.600 Rdelta:  0.02239 
#>   18 Number of features:   11 Max AUC:    0.336 AUC:    0.336 Z:   -0.454 Rdelta:  0.03015 
#>   19 Number of features:   12 Max AUC:    0.336 AUC:    0.334 Z:   -0.464 Rdelta:  0.03714 
#>   20 Number of features:   13 Max AUC:    0.338 AUC:    0.338 Z:   -0.434 Rdelta:  0.04342 
#>   21 Number of features:   13 Max AUC:    0.338 AUC:    0.300 Z:   -0.537 Rdelta:  0.03474 
#>   22 Number of features:   13 Max AUC:    0.338 AUC:    0.304 Z:   -0.530 Rdelta:  0.02779 
#>   23 Number of features:   14 Max AUC:    0.338 AUC:    0.334 Z:   -0.480 Rdelta:  0.03501 
#>   24 Number of features:   15 Max AUC:    0.448 AUC:    0.448 Z:   -0.062 Rdelta:  0.04151 
#>   25 Number of features:   15 Max AUC:    0.448 AUC:    0.431 Z:   -0.016 Rdelta:  0.03321 
#>   26 Number of features:   15 Max AUC:    0.448 AUC:    0.437 Z:   -0.136 Rdelta:  0.02657 
#>   27 Number of features:   16 Max AUC:    0.448 AUC:    0.444 Z:   -0.131 Rdelta:  0.03391 
#>   28 Number of features:   16 Max AUC:    0.448 AUC:    0.434 Z:   -0.068 Rdelta:  0.02713 
#>   29 Number of features:   16 Max AUC:    0.448 AUC:    0.428 Z:   -0.194 Rdelta:  0.02170 
#>   30 Number of features:   16 Max AUC:    0.448 AUC:    0.427 Z:   -0.104 Rdelta:  0.01736 
#>   31 Number of features:   16 Max AUC:    0.448 AUC:    0.435 Z:   -0.184 Rdelta:  0.01389 
#>   32 Number of features:   16 Max AUC:    0.448 AUC:    0.437 Z:   -0.146 Rdelta:  0.01111 
#>   33 Number of features:   17 Max AUC:    0.448 AUC:    0.446 Z:   -0.042 Rdelta:  0.02000 
#>   34 Number of features:   17 Max AUC:    0.448 AUC:    0.426 Z:   -0.090 Rdelta:  0.01600 
#>   35 Number of features:   17 Max AUC:    0.448 AUC:    0.430 Z:   -0.140 Rdelta:  0.01280 
#>   36 Number of features:   17 Max AUC:    0.448 AUC:    0.434 Z:   -0.144 Rdelta:  0.01024 
#>   37 Number of features:   17 Max AUC:    0.448 AUC:    0.417 Z:   -0.183 Rdelta:  0.00819 
#>   38 Number of features:   17 Max AUC:    0.448 AUC:    0.417 Z:   -0.196 Rdelta:  0.00655 
#>   39 Number of features:   17 Max AUC:    0.448 AUC:    0.413 Z:   -0.117 Rdelta:  0.00524 
#>   40 Number of features:   17 Max AUC:    0.448 AUC:    0.439 Z:   -0.086 Rdelta:  0.00419 
#>   41 Number of features:   17 Max AUC:    0.448 AUC:    0.432 Z:   -0.080 Rdelta:  0.00336 
#>   42 Number of features:   18 Max AUC:    0.448 AUC:    0.447 Z:   -0.056 Rdelta:  0.01302 
#>   43 Number of features:   18 Max AUC:    0.448 AUC:    0.425 Z:   -0.151 Rdelta:  0.01042 
#>   44 Number of features:   18 Max AUC:    0.448 AUC:    0.425 Z:   -0.189 Rdelta:  0.00833 
#>   45 Number of features:   18 Max AUC:    0.448 AUC:    0.403 Z:   -0.199 Rdelta:  0.00667 
#>   46 Number of features:   18 Max AUC:    0.448 AUC:    0.411 Z:   -0.234 Rdelta:  0.00533 
#>   47 Number of features:   18 Max AUC:    0.448 AUC:    0.419 Z:   -0.215 Rdelta:  0.00427 
#>   48 Number of features:   18 Max AUC:    0.448 AUC:    0.440 Z:   -0.079 Rdelta:  0.00341 
#>   49 Number of features:   19 Max AUC:    0.482 AUC:    0.482 Z:    0.017 Rdelta:  0.01307 
#>   50 Number of features:   20 Max AUC:    0.482 AUC:    0.482 Z:    0.005 Rdelta:  0.02176 
#>   51 Number of features:   20 Max AUC:    0.482 AUC:    0.472 Z:   -0.002 Rdelta:  0.01741 
#>   52 Number of features:   21 Max AUC:    0.494 AUC:    0.494 Z:    0.022 Rdelta:  0.02567 
#>   53 Number of features:   21 Max AUC:    0.494 AUC:    0.474 Z:   -0.002 Rdelta:  0.02054 
#>   54 Number of features:   21 Max AUC:    0.494 AUC:    0.472 Z:    0.005 Rdelta:  0.01643 
#>   55 Number of features:   21 Max AUC:    0.494 AUC:    0.459 Z:   -0.017 Rdelta:  0.01314 
#>   56 Number of features:   21 Max AUC:    0.494 AUC:    0.450 Z:   -0.045 Rdelta:  0.01051 
#>   57 Number of features:   21 Max AUC:    0.494 AUC:    0.452 Z:   -0.015 Rdelta:  0.00841 
#>   58 Number of features:   21 Max AUC:    0.494 AUC:    0.470 Z:   -0.056 Rdelta:  0.00673 
#>   59 Number of features:   21 Max AUC:    0.494 AUC:    0.457 Z:    0.001 Rdelta:  0.00538 
#>   60 Number of features:   21 Max AUC:    0.494 AUC:    0.479 Z:    0.014 Rdelta:  0.00431 
#>   61 Number of features:   21 Max AUC:    0.494 AUC:    0.441 Z:   -0.106 Rdelta:  0.00345 
#>   62 Number of features:   21 Max AUC:    0.494 AUC:    0.487 Z:    0.017 Rdelta:  0.00276 
#>   63 Number of features:   21 Max AUC:    0.494 AUC:    0.421 Z:   -0.061 Rdelta:  0.00221 
#>   64 Number of features:   21 Max AUC:    0.494 AUC:    0.468 Z:   -0.002 Rdelta:  0.00176 
#>   65 Number of features:   21 Max AUC:    0.494 AUC:    0.450 Z:   -0.019 Rdelta:  0.00141 
#>   66 Number of features:   21 Max AUC:    0.494 AUC:    0.458 Z:   -0.061 Rdelta:  0.00113 
#>   67 Number of features:   21 Max AUC:    0.494 AUC:    0.439 Z:   -0.004 Rdelta:  0.00090 
#>   68 Number of features:   21 Max AUC:    0.494 AUC:    0.462 Z:   -0.007 Rdelta:  0.00072 
#>   69 Number of features:   21 Max AUC:    0.494 AUC:    0.440 Z:   -0.023 Rdelta:  0.00058 
#>   70 Number of features:   21 Max AUC:    0.494 AUC:    0.441 Z:   -0.132 Rdelta:  0.00046 
#>   71 Number of features:   21 Max AUC:    0.494 AUC:    0.462 Z:   -0.004 Rdelta:  0.00037 
#>   72 Number of features:   21 Max AUC:    0.494 AUC:    0.474 Z:    0.011 Rdelta:  0.00030 
#>   73 Number of features:   21 Max AUC:    0.494 AUC:    0.464 Z:    0.009 Rdelta:  0.00024 
#>   74 Number of features:   21 Max AUC:    0.494 AUC:    0.459 Z:   -0.019 Rdelta:  0.00019 
#>   75 Number of features:   21 Max AUC:    0.494 AUC:    0.474 Z:    0.000 Rdelta:  0.00015 
#>   76 Number of features:   21 Max AUC:    0.494 AUC:    0.459 Z:   -0.017 Rdelta:  0.00012 
#>   77 Number of features:   21 Max AUC:    0.494 AUC:    0.477 Z:    0.035 Rdelta:  0.00010
#>    user  system elapsed 
#>   21.34    0.00   21.36
testDistance_control  <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#>    7 Number of features:    7 Max AUC:    0.733 AUC:    0.733 Z:    1.279 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.733 AUC:    0.720 Z:    1.491 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.733 AUC:    0.715 Z:    1.383 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.762 AUC:    0.762 Z:    1.620 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.781 AUC:    0.781 Z:    1.532 Rdelta:  0.10000 
#>   12 Number of features:   11 Max AUC:    0.781 AUC:    0.755 Z:    1.497 Rdelta:  0.08000 
#>   13 Number of features:   12 Max AUC:    0.792 AUC:    0.792 Z:    1.742 Rdelta:  0.08200 
#>   14 Number of features:   13 Max AUC:    0.804 AUC:    0.804 Z:    1.665 Rdelta:  0.08380 
#>   15 Number of features:   14 Max AUC:    0.821 AUC:    0.821 Z:    1.880 Rdelta:  0.08542 
#>   16 Number of features:   15 Max AUC:    0.825 AUC:    0.825 Z:    0.806 Rdelta:  0.08688 
#>   17 Number of features:   16 Max AUC:    0.825 AUC:    0.825 Z:    0.326 Rdelta:  0.08819 
#>   18 Number of features:   17 Max AUC:    0.832 AUC:    0.832 Z:    0.407 Rdelta:  0.08937 
#>   19 Number of features:   18 Max AUC:    0.832 AUC:    0.825 Z:    0.458 Rdelta:  0.09043 
#>   20 Number of features:   19 Max AUC:    0.840 AUC:    0.840 Z:    0.447 Rdelta:  0.09139 
#>   21 Number of features:   20 Max AUC:    0.840 AUC:    0.840 Z:    0.310 Rdelta:  0.09225 
#>   22 Number of features:   20 Max AUC:    0.840 AUC:    0.823 Z:    0.388 Rdelta:  0.07380 
#>   23 Number of features:   21 Max AUC:    0.840 AUC:    0.831 Z:    0.313 Rdelta:  0.07642 
#>   24 Number of features:   21 Max AUC:    0.840 AUC:    0.813 Z:    0.349 Rdelta:  0.06114 
#>   25 Number of features:   22 Max AUC:    0.841 AUC:    0.841 Z:    0.341 Rdelta:  0.06502 
#>   26 Number of features:   23 Max AUC:    0.841 AUC:    0.833 Z:    0.359 Rdelta:  0.06852 
#>   27 Number of features:   24 Max AUC:    0.841 AUC:    0.841 Z:    0.410 Rdelta:  0.07167 
#>   28 Number of features:   25 Max AUC:    0.856 AUC:    0.856 Z:    0.303 Rdelta:  0.07450 
#>   29 Number of features:   26 Max AUC:    0.856 AUC:    0.851 Z:    0.376 Rdelta:  0.07705 
#>   30 Number of features:   26 Max AUC:    0.856 AUC:    0.840 Z:    0.307 Rdelta:  0.06164 
#>   31 Number of features:   26 Max AUC:    0.856 AUC:    0.844 Z:    0.328 Rdelta:  0.04931 
#>   32 Number of features:   27 Max AUC:    0.856 AUC:    0.850 Z:    0.309 Rdelta:  0.05438 
#>   33 Number of features:   28 Max AUC:    0.856 AUC:    0.853 Z:    0.306 Rdelta:  0.05894 
#>   34 Number of features:   28 Max AUC:    0.856 AUC:    0.843 Z:    0.307 Rdelta:  0.04715 
#>   35 Number of features:   29 Max AUC:    0.856 AUC:    0.850 Z:    0.338 Rdelta:  0.05244 
#>   36 Number of features:   30 Max AUC:    0.856 AUC:    0.848 Z:    0.313 Rdelta:  0.05720 
#>   37 Number of features:   31 Max AUC:    0.862 AUC:    0.862 Z:    0.294 Rdelta:  0.06148 
#>   38 Number of features:   32 Max AUC:    0.862 AUC:    0.861 Z:    0.326 Rdelta:  0.06533 
#>   39 Number of features:   33 Max AUC:    0.866 AUC:    0.866 Z:    0.380 Rdelta:  0.06880 
#>   40 Number of features:   34 Max AUC:    0.867 AUC:    0.867 Z:    0.330 Rdelta:  0.07192 
#>   41 Number of features:   34 Max AUC:    0.867 AUC:    0.856 Z:    0.363 Rdelta:  0.05753 
#>   42 Number of features:   34 Max AUC:    0.867 AUC:    0.853 Z:    0.378 Rdelta:  0.04603 
#>   43 Number of features:   34 Max AUC:    0.867 AUC:    0.849 Z:    0.397 Rdelta:  0.03682 
#>   44 Number of features:   35 Max AUC:    0.867 AUC:    0.859 Z:    0.383 Rdelta:  0.04314 
#>   45 Number of features:   36 Max AUC:    0.867 AUC:    0.862 Z:    0.328 Rdelta:  0.04882 
#>   46 Number of features:   36 Max AUC:    0.867 AUC:    0.845 Z:    0.355 Rdelta:  0.03906 
#>   47 Number of features:   36 Max AUC:    0.867 AUC:    0.850 Z:    0.404 Rdelta:  0.03125 
#>   48 Number of features:   36 Max AUC:    0.867 AUC:    0.850 Z:    0.366 Rdelta:  0.02500 
#>   49 Number of features:   36 Max AUC:    0.867 AUC:    0.828 Z:    0.371 Rdelta:  0.02000 
#>   50 Number of features:   36 Max AUC:    0.867 AUC:    0.844 Z:    0.405 Rdelta:  0.01600 
#>   51 Number of features:   37 Max AUC:    0.867 AUC:    0.857 Z:    0.374 Rdelta:  0.02440 
#>   52 Number of features:   37 Max AUC:    0.867 AUC:    0.845 Z:    0.370 Rdelta:  0.01952 
#>   53 Number of features:   38 Max AUC:    0.867 AUC:    0.857 Z:    0.430 Rdelta:  0.02757 
#>   54 Number of features:   38 Max AUC:    0.867 AUC:    0.853 Z:    0.403 Rdelta:  0.02205 
#>   55 Number of features:   39 Max AUC:    0.867 AUC:    0.857 Z:    0.338 Rdelta:  0.02985 
#>   56 Number of features:   40 Max AUC:    0.867 AUC:    0.855 Z:    0.408 Rdelta:  0.03686 
#>   57 Number of features:   40 Max AUC:    0.867 AUC:    0.847 Z:    0.374 Rdelta:  0.02949 
#>   58 Number of features:   40 Max AUC:    0.867 AUC:    0.844 Z:    0.348 Rdelta:  0.02359 
#>   59 Number of features:   41 Max AUC:    0.867 AUC:    0.853 Z:    0.353 Rdelta:  0.03123 
#>   60 Number of features:   42 Max AUC:    0.867 AUC:    0.853 Z:    0.368 Rdelta:  0.03811 
#>   61 Number of features:   42 Max AUC:    0.867 AUC:    0.846 Z:    0.459 Rdelta:  0.03049 
#>   62 Number of features:   42 Max AUC:    0.867 AUC:    0.842 Z:    0.363 Rdelta:  0.02439 
#>   63 Number of features:   42 Max AUC:    0.867 AUC:    0.852 Z:    0.241 Rdelta:  0.01951 
#>   64 Number of features:   42 Max AUC:    0.867 AUC:    0.834 Z:    0.379 Rdelta:  0.01561 
#>   65 Number of features:   43 Max AUC:    0.867 AUC:    0.858 Z:    0.411 Rdelta:  0.02405 
#>   66 Number of features:   43 Max AUC:    0.867 AUC:    0.836 Z:    0.419 Rdelta:  0.01924 
#>   67 Number of features:   43 Max AUC:    0.867 AUC:    0.838 Z:    0.438 Rdelta:  0.01539 
#>   68 Number of features:   44 Max AUC:    0.867 AUC:    0.860 Z:    0.379 Rdelta:  0.02385 
#>   69 Number of features:   45 Max AUC:    0.867 AUC:    0.853 Z:    0.332 Rdelta:  0.03147 
#>   70 Number of features:   45 Max AUC:    0.867 AUC:    0.839 Z:    0.400 Rdelta:  0.02517 
#>   71 Number of features:   46 Max AUC:    0.867 AUC:    0.852 Z:    0.370 Rdelta:  0.03266 
#>   72 Number of features:   46 Max AUC:    0.867 AUC:    0.840 Z:    0.378 Rdelta:  0.02612 
#>   73 Number of features:   46 Max AUC:    0.867 AUC:    0.847 Z:    0.355 Rdelta:  0.02090 
#>   74 Number of features:   46 Max AUC:    0.867 AUC:    0.846 Z:    0.400 Rdelta:  0.01672 
#>   75 Number of features:   46 Max AUC:    0.867 AUC:    0.825 Z:    0.348 Rdelta:  0.01338 
#>   76 Number of features:   46 Max AUC:    0.867 AUC:    0.834 Z:    0.380 Rdelta:  0.01070 
#>   77 Number of features:   47 Max AUC:    0.867 AUC:    0.853 Z:    0.400 Rdelta:  0.01963 
#>   78 Number of features:   47 Max AUC:    0.867 AUC:    0.824 Z:    0.404 Rdelta:  0.01570 
#>   79 Number of features:   47 Max AUC:    0.867 AUC:    0.837 Z:    0.451 Rdelta:  0.01256 
#>   80 Number of features:   47 Max AUC:    0.867 AUC:    0.834 Z:    0.418 Rdelta:  0.01005 
#>   81 Number of features:   47 Max AUC:    0.867 AUC:    0.842 Z:    0.449 Rdelta:  0.00804 
#>   82 Number of features:   48 Max AUC:    0.867 AUC:    0.850 Z:    0.405 Rdelta:  0.01724 
#>   83 Number of features:   48 Max AUC:    0.867 AUC:    0.825 Z:    0.457 Rdelta:  0.01379 
#>   84 Number of features:   48 Max AUC:    0.867 AUC:    0.836 Z:    0.450 Rdelta:  0.01103 
#>   85 Number of features:   48 Max AUC:    0.867 AUC:    0.839 Z:    0.439 Rdelta:  0.00883 
#>   86 Number of features:   48 Max AUC:    0.867 AUC:    0.847 Z:    0.442 Rdelta:  0.00706 
#>   87 Number of features:   48 Max AUC:    0.867 AUC:    0.751 Z:    0.482 Rdelta:  0.00565 
#>   88 Number of features:   48 Max AUC:    0.867 AUC:    0.831 Z:    0.465 Rdelta:  0.00452 
#>   89 Number of features:   49 Max AUC:    0.867 AUC:    0.849 Z:    0.500 Rdelta:  0.01407 
#>   90 Number of features:   49 Max AUC:    0.867 AUC:    0.839 Z:    0.461 Rdelta:  0.01125 
#>   91 Number of features:   49 Max AUC:    0.867 AUC:    0.846 Z:    0.460 Rdelta:  0.00900 
#>   92 Number of features:   49 Max AUC:    0.867 AUC:    0.840 Z:    0.450 Rdelta:  0.00720 
#>   93 Number of features:   49 Max AUC:    0.867 AUC:    0.838 Z:    0.442 Rdelta:  0.00576 
#>   94 Number of features:   49 Max AUC:    0.867 AUC:    0.842 Z:    0.423 Rdelta:  0.00461 
#>   95 Number of features:   49 Max AUC:    0.867 AUC:    0.828 Z:    0.425 Rdelta:  0.00369 
#>   96 Number of features:   49 Max AUC:    0.867 AUC:    0.837 Z:    0.443 Rdelta:  0.00295 
#>   97 Number of features:   49 Max AUC:    0.867 AUC:    0.803 Z:    0.461 Rdelta:  0.00236 
#>   98 Number of features:   49 Max AUC:    0.867 AUC:    0.759 Z:    0.459 Rdelta:  0.00189 
#>   99 Number of features:   49 Max AUC:    0.867 AUC:    0.848 Z:    0.451 Rdelta:  0.00151 
#>  100 Number of features:   49 Max AUC:    0.867 AUC:    0.840 Z:    0.520 Rdelta:  0.00121 
#>  101 Number of features:   49 Max AUC:    0.867 AUC:    0.836 Z:    0.400 Rdelta:  0.00097 
#>  102 Number of features:   49 Max AUC:    0.867 AUC:    0.824 Z:    0.489 Rdelta:  0.00077 
#>  103 Number of features:   49 Max AUC:    0.867 AUC:    0.837 Z:    0.316 Rdelta:  0.00062 
#>  104 Number of features:   49 Max AUC:    0.867 AUC:    0.785 Z:    0.456 Rdelta:  0.00049 
#>  105 Number of features:   49 Max AUC:    0.867 AUC:    0.833 Z:    0.415 Rdelta:  0.00040 
#>  106 Number of features:   49 Max AUC:    0.867 AUC:    0.803 Z:    0.299 Rdelta:  0.00032 
#>  107 Number of features:   49 Max AUC:    0.867 AUC:    0.835 Z:    0.395 Rdelta:  0.00025 
#>  108 Number of features:   49 Max AUC:    0.867 AUC:    0.847 Z:    0.492 Rdelta:  0.00020 
#>  109 Number of features:   49 Max AUC:    0.867 AUC:    0.845 Z:    0.448 Rdelta:  0.00016 
#>  110 Number of features:   49 Max AUC:    0.867 AUC:    0.839 Z:    0.516 Rdelta:  0.00013 
#>  111 Number of features:   49 Max AUC:    0.867 AUC:    0.830 Z:    0.447 Rdelta:  0.00010 
#>  112 Number of features:   49 Max AUC:    0.867 AUC:    0.836 Z:    0.553 Rdelta:  0.00008
#>    user  system elapsed 
#>   53.15    0.00   53.20
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################


varlist <- names(arceneCVThree$bagging$frequencyTable)
#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#>    7 Number of features:    7 Max AUC:    0.480 AUC:    0.480 Z:   -0.174 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.488 AUC:    0.488 Z:   -0.092 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.528 AUC:    0.528 Z:    0.109 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.539 AUC:    0.539 Z:    0.161 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.558 AUC:    0.558 Z:    0.212 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.566 AUC:    0.566 Z:    0.247 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.573 AUC:    0.573 Z:    0.240 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.582 AUC:    0.582 Z:    0.309 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.582 AUC:    0.577 Z:    0.279 Rdelta:  0.10000 
#>   16 Number of features:   15 Max AUC:    0.582 AUC:    0.567 Z:    0.329 Rdelta:  0.08000 
#>   17 Number of features:   16 Max AUC:    0.582 AUC:    0.579 Z:    0.326 Rdelta:  0.08200 
#>   18 Number of features:   17 Max AUC:    0.586 AUC:    0.586 Z:    0.330 Rdelta:  0.08380 
#>   19 Number of features:   17 Max AUC:    0.586 AUC:    0.566 Z:    0.271 Rdelta:  0.06704 
#>   20 Number of features:   18 Max AUC:    0.586 AUC:    0.584 Z:    0.311 Rdelta:  0.07034 
#>   21 Number of features:   18 Max AUC:    0.586 AUC:    0.574 Z:    0.362 Rdelta:  0.05627 
#>   22 Number of features:   19 Max AUC:    0.704 AUC:    0.704 Z:    1.287 Rdelta:  0.06064 
#>   23 Number of features:   20 Max AUC:    0.704 AUC:    0.702 Z:    1.362 Rdelta:  0.06458 
#>   24 Number of features:   21 Max AUC:    0.708 AUC:    0.708 Z:    1.376 Rdelta:  0.06812 
#>   25 Number of features:   22 Max AUC:    0.711 AUC:    0.711 Z:    1.386 Rdelta:  0.07131 
#>   26 Number of features:   22 Max AUC:    0.711 AUC:    0.702 Z:    1.252 Rdelta:  0.05705 
#>   27 Number of features:   23 Max AUC:    0.711 AUC:    0.704 Z:    1.320 Rdelta:  0.06134 
#>   28 Number of features:   24 Max AUC:    0.711 AUC:    0.706 Z:    1.288 Rdelta:  0.06521 
#>   29 Number of features:   24 Max AUC:    0.711 AUC:    0.689 Z:    1.331 Rdelta:  0.05217 
#>   30 Number of features:   24 Max AUC:    0.711 AUC:    0.682 Z:    1.208 Rdelta:  0.04173 
#>   31 Number of features:   24 Max AUC:    0.711 AUC:    0.701 Z:    1.276 Rdelta:  0.03339 
#>   32 Number of features:   24 Max AUC:    0.711 AUC:    0.691 Z:    1.246 Rdelta:  0.02671 
#>   33 Number of features:   24 Max AUC:    0.711 AUC:    0.693 Z:    1.300 Rdelta:  0.02137 
#>   34 Number of features:   24 Max AUC:    0.711 AUC:    0.691 Z:    1.130 Rdelta:  0.01709 
#>   35 Number of features:   24 Max AUC:    0.711 AUC:    0.699 Z:    1.290 Rdelta:  0.01368 
#>   36 Number of features:   25 Max AUC:    0.711 AUC:    0.700 Z:    1.324 Rdelta:  0.02231 
#>   37 Number of features:   26 Max AUC:    0.711 AUC:    0.709 Z:    1.379 Rdelta:  0.03008 
#>   38 Number of features:   27 Max AUC:    0.711 AUC:    0.706 Z:    1.233 Rdelta:  0.03707 
#>   39 Number of features:   27 Max AUC:    0.711 AUC:    0.695 Z:    1.234 Rdelta:  0.02966 
#>   40 Number of features:   27 Max AUC:    0.711 AUC:    0.676 Z:    1.060 Rdelta:  0.02372 
#>   41 Number of features:   28 Max AUC:    0.735 AUC:    0.735 Z:    1.244 Rdelta:  0.03135 
#>   42 Number of features:   29 Max AUC:    0.738 AUC:    0.738 Z:    1.314 Rdelta:  0.03822 
#>   43 Number of features:   30 Max AUC:    0.738 AUC:    0.732 Z:    1.309 Rdelta:  0.04439 
#>   44 Number of features:   30 Max AUC:    0.738 AUC:    0.729 Z:    1.252 Rdelta:  0.03552 
#>   45 Number of features:   30 Max AUC:    0.738 AUC:    0.730 Z:    1.230 Rdelta:  0.02841 
#>   46 Number of features:   30 Max AUC:    0.738 AUC:    0.730 Z:    1.176 Rdelta:  0.02273 
#>   47 Number of features:   31 Max AUC:    0.738 AUC:    0.731 Z:    1.230 Rdelta:  0.03046 
#>   48 Number of features:   31 Max AUC:    0.738 AUC:    0.729 Z:    1.225 Rdelta:  0.02437 
#>   49 Number of features:   32 Max AUC:    0.766 AUC:    0.766 Z:    1.441 Rdelta:  0.03193 
#>   50 Number of features:   33 Max AUC:    0.775 AUC:    0.775 Z:    1.597 Rdelta:  0.03874 
#>   51 Number of features:   34 Max AUC:    0.775 AUC:    0.772 Z:    1.567 Rdelta:  0.04486 
#>   52 Number of features:   34 Max AUC:    0.775 AUC:    0.766 Z:    1.591 Rdelta:  0.03589 
#>   53 Number of features:   35 Max AUC:    0.775 AUC:    0.774 Z:    1.519 Rdelta:  0.04230 
#>   54 Number of features:   35 Max AUC:    0.775 AUC:    0.764 Z:    1.566 Rdelta:  0.03384 
#>   55 Number of features:   36 Max AUC:    0.786 AUC:    0.786 Z:    1.727 Rdelta:  0.04046 
#>   56 Number of features:   36 Max AUC:    0.786 AUC:    0.778 Z:    1.690 Rdelta:  0.03237 
#>   57 Number of features:   37 Max AUC:    0.786 AUC:    0.785 Z:    1.736 Rdelta:  0.03913 
#>   58 Number of features:   37 Max AUC:    0.786 AUC:    0.778 Z:    1.681 Rdelta:  0.03130 
#>   59 Number of features:   38 Max AUC:    0.786 AUC:    0.785 Z:    1.712 Rdelta:  0.03817 
#>   60 Number of features:   38 Max AUC:    0.786 AUC:    0.774 Z:    1.589 Rdelta:  0.03054 
#>   61 Number of features:   39 Max AUC:    0.786 AUC:    0.782 Z:    1.674 Rdelta:  0.03748 
#>   62 Number of features:   39 Max AUC:    0.786 AUC:    0.768 Z:    1.654 Rdelta:  0.02999 
#>   63 Number of features:   40 Max AUC:    0.786 AUC:    0.781 Z:    1.673 Rdelta:  0.03699 
#>   64 Number of features:   40 Max AUC:    0.786 AUC:    0.773 Z:    1.684 Rdelta:  0.02959 
#>   65 Number of features:   41 Max AUC:    0.786 AUC:    0.781 Z:    1.646 Rdelta:  0.03663 
#>   66 Number of features:   42 Max AUC:    0.786 AUC:    0.779 Z:    1.672 Rdelta:  0.04297 
#>   67 Number of features:   42 Max AUC:    0.786 AUC:    0.767 Z:    1.656 Rdelta:  0.03437 
#>   68 Number of features:   43 Max AUC:    0.786 AUC:    0.777 Z:    1.685 Rdelta:  0.04094 
#>   69 Number of features:   44 Max AUC:    0.786 AUC:    0.785 Z:    1.798 Rdelta:  0.04684 
#>   70 Number of features:   45 Max AUC:    0.786 AUC:    0.782 Z:    1.790 Rdelta:  0.05216 
#>   71 Number of features:   46 Max AUC:    0.812 AUC:    0.812 Z:    1.901 Rdelta:  0.05694 
#>   72 Number of features:   46 Max AUC:    0.812 AUC:    0.801 Z:    1.821 Rdelta:  0.04555 
#>   73 Number of features:   47 Max AUC:    0.812 AUC:    0.812 Z:    1.918 Rdelta:  0.05100 
#>   74 Number of features:   48 Max AUC:    0.814 AUC:    0.814 Z:    1.948 Rdelta:  0.05590 
#>   75 Number of features:   49 Max AUC:    0.814 AUC:    0.808 Z:    1.915 Rdelta:  0.06031 
#>   76 Number of features:   50 Max AUC:    0.814 AUC:    0.806 Z:    1.869 Rdelta:  0.06428 
#>   77 Number of features:   51 Max AUC:    0.814 AUC:    0.806 Z:    1.848 Rdelta:  0.06785 
#>   78 Number of features:   51 Max AUC:    0.814 AUC:    0.798 Z:    1.899 Rdelta:  0.05428 
#>   79 Number of features:   51 Max AUC:    0.814 AUC:    0.799 Z:    1.849 Rdelta:  0.04342 
#>   80 Number of features:   51 Max AUC:    0.814 AUC:    0.804 Z:    1.864 Rdelta:  0.03474 
#>   81 Number of features:   52 Max AUC:    0.814 AUC:    0.806 Z:    1.823 Rdelta:  0.04127 
#>   82 Number of features:   53 Max AUC:    0.814 AUC:    0.808 Z:    1.857 Rdelta:  0.04714 
#>   83 Number of features:   53 Max AUC:    0.814 AUC:    0.750 Z:    1.478 Rdelta:  0.03771 
#>   84 Number of features:   54 Max AUC:    0.814 AUC:    0.806 Z:    1.840 Rdelta:  0.04394 
#>   85 Number of features:   55 Max AUC:    0.814 AUC:    0.806 Z:    1.898 Rdelta:  0.04955 
#>   86 Number of features:   55 Max AUC:    0.814 AUC:    0.798 Z:    1.821 Rdelta:  0.03964 
#>   87 Number of features:   55 Max AUC:    0.814 AUC:    0.796 Z:    1.817 Rdelta:  0.03171 
#>   88 Number of features:   55 Max AUC:    0.814 AUC:    0.799 Z:    1.899 Rdelta:  0.02537 
#>   89 Number of features:   55 Max AUC:    0.814 AUC:    0.794 Z:    1.780 Rdelta:  0.02029 
#>   90 Number of features:   56 Max AUC:    0.814 AUC:    0.805 Z:    1.842 Rdelta:  0.02826 
#>   91 Number of features:   56 Max AUC:    0.814 AUC:    0.798 Z:    1.852 Rdelta:  0.02261 
#>   92 Number of features:   56 Max AUC:    0.814 AUC:    0.788 Z:    1.833 Rdelta:  0.01809 
#>   93 Number of features:   56 Max AUC:    0.814 AUC:    0.793 Z:    1.826 Rdelta:  0.01447 
#>   94 Number of features:   56 Max AUC:    0.814 AUC:    0.787 Z:    1.775 Rdelta:  0.01158 
#>   95 Number of features:   56 Max AUC:    0.814 AUC:    0.791 Z:    1.787 Rdelta:  0.00926 
#>   96 Number of features:   56 Max AUC:    0.814 AUC:    0.793 Z:    1.764 Rdelta:  0.00741 
#>   97 Number of features:   56 Max AUC:    0.814 AUC:    0.802 Z:    1.881 Rdelta:  0.00593 
#>   98 Number of features:   56 Max AUC:    0.814 AUC:    0.793 Z:    1.810 Rdelta:  0.00474 
#>   99 Number of features:   56 Max AUC:    0.814 AUC:    0.782 Z:    1.763 Rdelta:  0.00379 
#>  100 Number of features:   56 Max AUC:    0.814 AUC:    0.791 Z:    1.792 Rdelta:  0.00303 
#>  101 Number of features:   56 Max AUC:    0.814 AUC:    0.803 Z:    1.828 Rdelta:  0.00243 
#>  102 Number of features:   57 Max AUC:    0.814 AUC:    0.804 Z:    1.856 Rdelta:  0.01219 
#>  103 Number of features:   57 Max AUC:    0.814 AUC:    0.797 Z:    1.850 Rdelta:  0.00975 
#>  104 Number of features:   57 Max AUC:    0.814 AUC:    0.789 Z:    1.859 Rdelta:  0.00780 
#>  105 Number of features:   57 Max AUC:    0.814 AUC:    0.794 Z:    1.821 Rdelta:  0.00624 
#>  106 Number of features:   57 Max AUC:    0.814 AUC:    0.802 Z:    1.929 Rdelta:  0.00499 
#>  107 Number of features:   58 Max AUC:    0.814 AUC:    0.811 Z:    1.909 Rdelta:  0.01449 
#>  108 Number of features:   58 Max AUC:    0.814 AUC:    0.792 Z:    1.833 Rdelta:  0.01159 
#>  109 Number of features:   58 Max AUC:    0.814 AUC:    0.801 Z:    1.904 Rdelta:  0.00927 
#>  110 Number of features:   59 Max AUC:    0.816 AUC:    0.816 Z:    1.959 Rdelta:  0.01835 
#>  111 Number of features:   59 Max AUC:    0.816 AUC:    0.804 Z:    1.871 Rdelta:  0.01468 
#>  112 Number of features:   60 Max AUC:    0.816 AUC:    0.810 Z:    1.973 Rdelta:  0.02321 
#>  113 Number of features:   60 Max AUC:    0.816 AUC:    0.800 Z:    1.651 Rdelta:  0.01857 
#>  114 Number of features:   60 Max AUC:    0.816 AUC:    0.798 Z:    1.924 Rdelta:  0.01485 
#>  115 Number of features:   60 Max AUC:    0.816 AUC:    0.807 Z:    1.971 Rdelta:  0.01188 
#>  116 Number of features:   60 Max AUC:    0.816 AUC:    0.807 Z:    1.970 Rdelta:  0.00951 
#>  117 Number of features:   61 Max AUC:    0.816 AUC:    0.812 Z:    2.044 Rdelta:  0.01856 
#>  118 Number of features:   61 Max AUC:    0.816 AUC:    0.806 Z:    1.972 Rdelta:  0.01484 
#>  119 Number of features:   62 Max AUC:    0.820 AUC:    0.820 Z:    2.071 Rdelta:  0.02336 
#>  120 Number of features:   63 Max AUC:    0.824 AUC:    0.824 Z:    2.094 Rdelta:  0.03102 
#>  121 Number of features:   64 Max AUC:    0.824 AUC:    0.817 Z:    2.064 Rdelta:  0.03792 
#>  122 Number of features:   64 Max AUC:    0.824 AUC:    0.809 Z:    2.051 Rdelta:  0.03034 
#>  123 Number of features:   64 Max AUC:    0.824 AUC:    0.803 Z:    1.909 Rdelta:  0.02427 
#>  124 Number of features:   64 Max AUC:    0.824 AUC:    0.810 Z:    2.067 Rdelta:  0.01942 
#>  125 Number of features:   65 Max AUC:    0.826 AUC:    0.826 Z:    2.075 Rdelta:  0.02747 
#>  126 Number of features:   65 Max AUC:    0.826 AUC:    0.809 Z:    2.062 Rdelta:  0.02198 
#>  127 Number of features:   66 Max AUC:    0.826 AUC:    0.822 Z:    1.763 Rdelta:  0.02978 
#>  128 Number of features:   67 Max AUC:    0.828 AUC:    0.828 Z:    1.829 Rdelta:  0.03680 
#>  129 Number of features:   68 Max AUC:    0.831 AUC:    0.831 Z:    1.872 Rdelta:  0.04312 
#>  130 Number of features:   68 Max AUC:    0.831 AUC:    0.819 Z:    1.837 Rdelta:  0.03450 
#>  131 Number of features:   68 Max AUC:    0.831 AUC:    0.780 Z:    1.456 Rdelta:  0.02760 
#>  132 Number of features:   68 Max AUC:    0.831 AUC:    0.818 Z:    1.851 Rdelta:  0.02208 
#>  133 Number of features:   69 Max AUC:    0.831 AUC:    0.827 Z:    1.898 Rdelta:  0.02987 
#>  134 Number of features:   70 Max AUC:    0.831 AUC:    0.828 Z:    1.873 Rdelta:  0.03688 
#>  135 Number of features:   71 Max AUC:    0.831 AUC:    0.822 Z:    1.868 Rdelta:  0.04320 
#>  136 Number of features:   71 Max AUC:    0.831 AUC:    0.769 Z:    1.567 Rdelta:  0.03456 
#>  137 Number of features:   72 Max AUC:    0.831 AUC:    0.831 Z:    1.863 Rdelta:  0.04110 
#>  138 Number of features:   73 Max AUC:    0.831 AUC:    0.824 Z:    1.879 Rdelta:  0.04699 
#>  139 Number of features:   73 Max AUC:    0.831 AUC:    0.821 Z:    1.884 Rdelta:  0.03759 
#>  140 Number of features:   73 Max AUC:    0.831 AUC:    0.817 Z:    1.813 Rdelta:  0.03007 
#>  141 Number of features:   74 Max AUC:    0.831 AUC:    0.823 Z:    1.833 Rdelta:  0.03707 
#>  142 Number of features:   74 Max AUC:    0.831 AUC:    0.813 Z:    1.790 Rdelta:  0.02965 
#>  143 Number of features:   74 Max AUC:    0.831 AUC:    0.819 Z:    1.798 Rdelta:  0.02372 
#>  144 Number of features:   74 Max AUC:    0.831 AUC:    0.819 Z:    1.815 Rdelta:  0.01898 
#>  145 Number of features:   74 Max AUC:    0.831 AUC:    0.770 Z:    1.484 Rdelta:  0.01518 
#>  146 Number of features:   74 Max AUC:    0.831 AUC:    0.819 Z:    1.774 Rdelta:  0.01215 
#>  147 Number of features:   74 Max AUC:    0.831 AUC:    0.731 Z:    1.077 Rdelta:  0.00972 
#>  148 Number of features:   74 Max AUC:    0.831 AUC:    0.819 Z:    1.812 Rdelta:  0.00777 
#>  149 Number of features:   75 Max AUC:    0.832 AUC:    0.832 Z:    1.862 Rdelta:  0.01700 
#>  150 Number of features:   76 Max AUC:    0.832 AUC:    0.825 Z:    1.842 Rdelta:  0.02530 
#>  151 Number of features:   76 Max AUC:    0.832 AUC:    0.727 Z:    1.077 Rdelta:  0.02024 
#>  152 Number of features:   76 Max AUC:    0.832 AUC:    0.796 Z:    1.801 Rdelta:  0.01619 
#>  153 Number of features:   76 Max AUC:    0.832 AUC:    0.819 Z:    1.829 Rdelta:  0.01295 
#>  154 Number of features:   76 Max AUC:    0.832 AUC:    0.751 Z:    1.386 Rdelta:  0.01036 
#>  155 Number of features:   77 Max AUC:    0.832 AUC:    0.825 Z:    1.831 Rdelta:  0.01933 
#>  156 Number of features:   77 Max AUC:    0.832 AUC:    0.817 Z:    1.820 Rdelta:  0.01546 
#>  157 Number of features:   77 Max AUC:    0.832 AUC:    0.819 Z:    1.837 Rdelta:  0.01237 
#>  158 Number of features:   77 Max AUC:    0.832 AUC:    0.775 Z:    1.547 Rdelta:  0.00989 
#>  159 Number of features:   77 Max AUC:    0.832 AUC:    0.820 Z:    1.823 Rdelta:  0.00792 
#>  160 Number of features:   77 Max AUC:    0.832 AUC:    0.809 Z:    1.775 Rdelta:  0.00633 
#>  161 Number of features:   77 Max AUC:    0.832 AUC:    0.812 Z:    1.755 Rdelta:  0.00507 
#>  162 Number of features:   77 Max AUC:    0.832 AUC:    0.813 Z:    1.708 Rdelta:  0.00405 
#>  163 Number of features:   77 Max AUC:    0.832 AUC:    0.817 Z:    1.840 Rdelta:  0.00324 
#>  164 Number of features:   77 Max AUC:    0.832 AUC:    0.813 Z:    1.773 Rdelta:  0.00259 
#>  165 Number of features:   78 Max AUC:    0.832 AUC:    0.824 Z:    1.830 Rdelta:  0.01233 
#>  166 Number of features:   78 Max AUC:    0.832 AUC:    0.816 Z:    1.826 Rdelta:  0.00987 
#>  167 Number of features:   78 Max AUC:    0.832 AUC:    0.807 Z:    1.837 Rdelta:  0.00789 
#>  168 Number of features:   79 Max AUC:    0.832 AUC:    0.829 Z:    1.866 Rdelta:  0.01710 
#>  169 Number of features:   80 Max AUC:    0.832 AUC:    0.825 Z:    1.902 Rdelta:  0.02539 
#>  170 Number of features:   80 Max AUC:    0.832 AUC:    0.808 Z:    1.789 Rdelta:  0.02032 
#>  171 Number of features:   80 Max AUC:    0.832 AUC:    0.819 Z:    1.798 Rdelta:  0.01625 
#>  172 Number of features:   81 Max AUC:    0.832 AUC:    0.824 Z:    1.865 Rdelta:  0.02463 
#>  173 Number of features:   82 Max AUC:    0.841 AUC:    0.841 Z:    1.969 Rdelta:  0.03216 
#>  174 Number of features:   83 Max AUC:    0.841 AUC:    0.836 Z:    1.994 Rdelta:  0.03895 
#>  175 Number of features:   84 Max AUC:    0.841 AUC:    0.836 Z:    1.958 Rdelta:  0.04505 
#>  176 Number of features:   84 Max AUC:    0.841 AUC:    0.806 Z:    1.772 Rdelta:  0.03604 
#>  177 Number of features:   84 Max AUC:    0.841 AUC:    0.803 Z:    1.781 Rdelta:  0.02883 
#>  178 Number of features:   85 Max AUC:    0.841 AUC:    0.837 Z:    1.898 Rdelta:  0.03595 
#>  179 Number of features:   86 Max AUC:    0.841 AUC:    0.841 Z:    1.881 Rdelta:  0.04236 
#>  180 Number of features:   86 Max AUC:    0.841 AUC:    0.831 Z:    1.827 Rdelta:  0.03388 
#>  181 Number of features:   86 Max AUC:    0.841 AUC:    0.755 Z:    1.497 Rdelta:  0.02711 
#>  182 Number of features:   86 Max AUC:    0.841 AUC:    0.750 Z:    1.373 Rdelta:  0.02169 
#>  183 Number of features:   86 Max AUC:    0.841 AUC:    0.826 Z:    1.820 Rdelta:  0.01735 
#>  184 Number of features:   86 Max AUC:    0.841 AUC:    0.833 Z:    1.849 Rdelta:  0.01388 
#>  185 Number of features:   87 Max AUC:    0.841 AUC:    0.838 Z:    1.865 Rdelta:  0.02249 
#>  186 Number of features:   88 Max AUC:    0.841 AUC:    0.838 Z:    1.867 Rdelta:  0.03024 
#>  187 Number of features:   88 Max AUC:    0.841 AUC:    0.832 Z:    1.812 Rdelta:  0.02419 
#>  188 Number of features:   88 Max AUC:    0.841 AUC:    0.831 Z:    1.704 Rdelta:  0.01935 
#>  189 Number of features:   88 Max AUC:    0.841 AUC:    0.822 Z:    1.791 Rdelta:  0.01548 
#>  190 Number of features:   89 Max AUC:    0.841 AUC:    0.836 Z:    1.824 Rdelta:  0.02394 
#>  191 Number of features:   90 Max AUC:    0.841 AUC:    0.833 Z:    1.889 Rdelta:  0.03154 
#>  192 Number of features:   91 Max AUC:    0.841 AUC:    0.836 Z:    1.868 Rdelta:  0.03839 
#>  193 Number of features:   91 Max AUC:    0.841 AUC:    0.783 Z:    1.621 Rdelta:  0.03071 
#>  194 Number of features:   92 Max AUC:    0.841 AUC:    0.837 Z:    1.856 Rdelta:  0.03764 
#>  195 Number of features:   93 Max AUC:    0.841 AUC:    0.835 Z:    1.867 Rdelta:  0.04388 
#>  196 Number of features:   94 Max AUC:    0.845 AUC:    0.845 Z:    1.890 Rdelta:  0.04949 
#>  197 Number of features:   94 Max AUC:    0.845 AUC:    0.834 Z:    1.856 Rdelta:  0.03959 
#>  198 Number of features:   94 Max AUC:    0.845 AUC:    0.789 Z:    1.556 Rdelta:  0.03167 
#>  199 Number of features:   94 Max AUC:    0.845 AUC:    0.828 Z:    1.847 Rdelta:  0.02534 
#>  200 Number of features:   95 Max AUC:    0.846 AUC:    0.846 Z:    1.859 Rdelta:  0.03280 
#>  201 Number of features:   95 Max AUC:    0.846 AUC:    0.828 Z:    1.845 Rdelta:  0.02624 
#>  202 Number of features:   95 Max AUC:    0.846 AUC:    0.837 Z:    1.840 Rdelta:  0.02099 
#>  203 Number of features:   95 Max AUC:    0.846 AUC:    0.835 Z:    1.834 Rdelta:  0.01680 
#>  204 Number of features:   95 Max AUC:    0.846 AUC:    0.829 Z:    1.808 Rdelta:  0.01344 
#>  205 Number of features:   95 Max AUC:    0.846 AUC:    0.828 Z:    1.837 Rdelta:  0.01075 
#>  206 Number of features:   96 Max AUC:    0.846 AUC:    0.837 Z:    1.863 Rdelta:  0.01967 
#>  207 Number of features:   96 Max AUC:    0.846 AUC:    0.837 Z:    1.902 Rdelta:  0.01574 
#>  208 Number of features:   96 Max AUC:    0.846 AUC:    0.831 Z:    1.828 Rdelta:  0.01259 
#>  209 Number of features:   96 Max AUC:    0.846 AUC:    0.750 Z:    1.317 Rdelta:  0.01007 
#>  210 Number of features:   96 Max AUC:    0.846 AUC:    0.827 Z:    1.843 Rdelta:  0.00806 
#>  211 Number of features:   96 Max AUC:    0.846 AUC:    0.836 Z:    1.882 Rdelta:  0.00645 
#>  212 Number of features:   97 Max AUC:    0.846 AUC:    0.838 Z:    1.818 Rdelta:  0.01580 
#>  213 Number of features:   98 Max AUC:    0.846 AUC:    0.838 Z:    1.905 Rdelta:  0.02422 
#>  214 Number of features:   98 Max AUC:    0.846 AUC:    0.831 Z:    1.831 Rdelta:  0.01938 
#>  215 Number of features:   98 Max AUC:    0.846 AUC:    0.823 Z:    1.719 Rdelta:  0.01550 
#>  216 Number of features:   98 Max AUC:    0.846 AUC:    0.813 Z:    1.730 Rdelta:  0.01240 
#>  217 Number of features:   98 Max AUC:    0.846 AUC:    0.818 Z:    1.842 Rdelta:  0.00992 
#>  218 Number of features:   98 Max AUC:    0.846 AUC:    0.805 Z:    1.801 Rdelta:  0.00794 
#>  219 Number of features:   98 Max AUC:    0.846 AUC:    0.803 Z:    1.767 Rdelta:  0.00635 
#>  220 Number of features:   98 Max AUC:    0.846 AUC:    0.833 Z:    1.851 Rdelta:  0.00508 
#>  221 Number of features:   98 Max AUC:    0.846 AUC:    0.828 Z:    1.842 Rdelta:  0.00406 
#>  222 Number of features:   99 Max AUC:    0.846 AUC:    0.843 Z:    1.834 Rdelta:  0.01366 
#>  223 Number of features:   99 Max AUC:    0.846 AUC:    0.822 Z:    1.806 Rdelta:  0.01093 
#>  224 Number of features:   99 Max AUC:    0.846 AUC:    0.836 Z:    1.866 Rdelta:  0.00874 
#>  225 Number of features:   99 Max AUC:    0.846 AUC:    0.823 Z:    1.861 Rdelta:  0.00699 
#>  226 Number of features:   99 Max AUC:    0.846 AUC:    0.824 Z:    1.878 Rdelta:  0.00559 
#>  227 Number of features:   99 Max AUC:    0.846 AUC:    0.836 Z:    1.822 Rdelta:  0.00448 
#>  228 Number of features:   99 Max AUC:    0.846 AUC:    0.829 Z:    1.795 Rdelta:  0.00358 
#>  229 Number of features:   99 Max AUC:    0.846 AUC:    0.818 Z:    1.730 Rdelta:  0.00286 
#>  230 Number of features:   99 Max AUC:    0.846 AUC:    0.806 Z:    1.720 Rdelta:  0.00229 
#>  231 Number of features:  100 Max AUC:    0.846 AUC:    0.840 Z:    1.840 Rdelta:  0.01206 
#>  232 Number of features:  100 Max AUC:    0.846 AUC:    0.831 Z:    1.872 Rdelta:  0.00965 
#>  233 Number of features:  100 Max AUC:    0.846 AUC:    0.745 Z:    1.394 Rdelta:  0.00772 
#>  234 Number of features:  100 Max AUC:    0.846 AUC:    0.828 Z:    1.869 Rdelta:  0.00618 
#>  235 Number of features:  100 Max AUC:    0.846 AUC:    0.801 Z:    1.732 Rdelta:  0.00494 
#>  236 Number of features:  100 Max AUC:    0.846 AUC:    0.733 Z:    1.346 Rdelta:  0.00395 
#>  237 Number of features:  100 Max AUC:    0.846 AUC:    0.836 Z:    1.923 Rdelta:  0.00316 
#>  238 Number of features:  100 Max AUC:    0.846 AUC:    0.836 Z:    1.889 Rdelta:  0.00253 
#>  239 Number of features:  101 Max AUC:    0.846 AUC:    0.841 Z:    1.872 Rdelta:  0.01228 
#>  240 Number of features:  101 Max AUC:    0.846 AUC:    0.821 Z:    1.777 Rdelta:  0.00982 
#>  241 Number of features:  101 Max AUC:    0.846 AUC:    0.834 Z:    1.874 Rdelta:  0.00786 
#>  242 Number of features:  101 Max AUC:    0.846 AUC:    0.830 Z:    1.852 Rdelta:  0.00629 
#>  243 Number of features:  101 Max AUC:    0.846 AUC:    0.834 Z:    1.844 Rdelta:  0.00503 
#>  244 Number of features:  102 Max AUC:    0.846 AUC:    0.838 Z:    1.867 Rdelta:  0.01453 
#>  245 Number of features:  102 Max AUC:    0.846 AUC:    0.833 Z:    1.855 Rdelta:  0.01162 
#>  246 Number of features:  102 Max AUC:    0.846 AUC:    0.800 Z:    1.749 Rdelta:  0.00930 
#>  247 Number of features:  102 Max AUC:    0.846 AUC:    0.836 Z:    1.876 Rdelta:  0.00744 
#>  248 Number of features:  102 Max AUC:    0.846 AUC:    0.835 Z:    1.870 Rdelta:  0.00595 
#>  249 Number of features:  102 Max AUC:    0.846 AUC:    0.835 Z:    1.849 Rdelta:  0.00476 
#>  250 Number of features:  102 Max AUC:    0.846 AUC:    0.750 Z:    1.503 Rdelta:  0.00381 
#>  251 Number of features:  102 Max AUC:    0.846 AUC:    0.832 Z:    1.802 Rdelta:  0.00305 
#>  252 Number of features:  102 Max AUC:    0.846 AUC:    0.820 Z:    1.837 Rdelta:  0.00244 
#>  253 Number of features:  102 Max AUC:    0.846 AUC:    0.797 Z:    1.812 Rdelta:  0.00195 
#>  254 Number of features:  102 Max AUC:    0.846 AUC:    0.823 Z:    1.877 Rdelta:  0.00156 
#>  255 Number of features:  102 Max AUC:    0.846 AUC:    0.774 Z:    1.534 Rdelta:  0.00125 
#>  256 Number of features:  102 Max AUC:    0.846 AUC:    0.827 Z:    1.895 Rdelta:  0.00100 
#>  257 Number of features:  102 Max AUC:    0.846 AUC:    0.816 Z:    1.627 Rdelta:  0.00080 
#>  258 Number of features:  102 Max AUC:    0.846 AUC:    0.708 Z:    1.344 Rdelta:  0.00064 
#>  259 Number of features:  102 Max AUC:    0.846 AUC:    0.829 Z:    1.822 Rdelta:  0.00051 
#>  260 Number of features:  102 Max AUC:    0.846 AUC:    0.771 Z:    1.563 Rdelta:  0.00041 
#>  261 Number of features:  102 Max AUC:    0.846 AUC:    0.748 Z:    1.294 Rdelta:  0.00033 
#>  262 Number of features:  102 Max AUC:    0.846 AUC:    0.833 Z:    1.841 Rdelta:  0.00026 
#>  263 Number of features:  102 Max AUC:    0.846 AUC:    0.831 Z:    1.851 Rdelta:  0.00021 
#>  264 Number of features:  102 Max AUC:    0.846 AUC:    0.826 Z:    1.863 Rdelta:  0.00017 
#>  265 Number of features:  103 Max AUC:    0.846 AUC:    0.840 Z:    1.850 Rdelta:  0.01015 
#>  266 Number of features:  103 Max AUC:    0.846 AUC:    0.827 Z:    1.814 Rdelta:  0.00812 
#>  267 Number of features:  103 Max AUC:    0.846 AUC:    0.830 Z:    1.848 Rdelta:  0.00650 
#>  268 Number of features:  103 Max AUC:    0.846 AUC:    0.824 Z:    1.775 Rdelta:  0.00520 
#>  269 Number of features:  103 Max AUC:    0.846 AUC:    0.820 Z:    1.772 Rdelta:  0.00416 
#>  270 Number of features:  103 Max AUC:    0.846 AUC:    0.821 Z:    1.794 Rdelta:  0.00333 
#>  271 Number of features:  103 Max AUC:    0.846 AUC:    0.827 Z:    1.730 Rdelta:  0.00266 
#>  272 Number of features:  103 Max AUC:    0.846 AUC:    0.825 Z:    1.873 Rdelta:  0.00213 
#>  273 Number of features:  104 Max AUC:    0.846 AUC:    0.840 Z:    1.880 Rdelta:  0.01192 
#>  274 Number of features:  104 Max AUC:    0.846 AUC:    0.768 Z:    1.467 Rdelta:  0.00953 
#>  275 Number of features:  104 Max AUC:    0.846 AUC:    0.761 Z:    1.482 Rdelta:  0.00763 
#>  276 Number of features:  104 Max AUC:    0.846 AUC:    0.766 Z:    1.495 Rdelta:  0.00610 
#>  277 Number of features:  104 Max AUC:    0.846 AUC:    0.784 Z:    1.503 Rdelta:  0.00488 
#>  278 Number of features:  104 Max AUC:    0.846 AUC:    0.800 Z:    1.646 Rdelta:  0.00390 
#>  279 Number of features:  104 Max AUC:    0.846 AUC:    0.768 Z:    1.572 Rdelta:  0.00312 
#>  280 Number of features:  104 Max AUC:    0.846 AUC:    0.836 Z:    1.861 Rdelta:  0.00250 
#>  281 Number of features:  104 Max AUC:    0.846 AUC:    0.748 Z:    1.013 Rdelta:  0.00200 
#>  282 Number of features:  104 Max AUC:    0.846 AUC:    0.836 Z:    1.900 Rdelta:  0.00160 
#>  283 Number of features:  104 Max AUC:    0.846 AUC:    0.819 Z:    1.850 Rdelta:  0.00128 
#>  284 Number of features:  104 Max AUC:    0.846 AUC:    0.798 Z:    1.671 Rdelta:  0.00102 
#>  285 Number of features:  104 Max AUC:    0.846 AUC:    0.828 Z:    1.831 Rdelta:  0.00082 
#>  286 Number of features:  104 Max AUC:    0.846 AUC:    0.778 Z:    1.532 Rdelta:  0.00066 
#>  287 Number of features:  104 Max AUC:    0.846 AUC:    0.796 Z:    1.603 Rdelta:  0.00052 
#>  288 Number of features:  104 Max AUC:    0.846 AUC:    0.812 Z:    1.685 Rdelta:  0.00042 
#>  289 Number of features:  104 Max AUC:    0.846 AUC:    0.739 Z:    1.351 Rdelta:  0.00034 
#>  290 Number of features:  104 Max AUC:    0.846 AUC:    0.818 Z:    1.798 Rdelta:  0.00027 
#>  291 Number of features:  104 Max AUC:    0.846 AUC:    0.831 Z:    1.720 Rdelta:  0.00021 
#>  292 Number of features:  104 Max AUC:    0.846 AUC:    0.796 Z:    1.669 Rdelta:  0.00017 
#>  293 Number of features:  104 Max AUC:    0.846 AUC:    0.812 Z:    1.763 Rdelta:  0.00014 
#>  294 Number of features:  104 Max AUC:    0.846 AUC:    0.706 Z:    0.827 Rdelta:  0.00011 
#>  295 Number of features:  104 Max AUC:    0.846 AUC:    0.823 Z:    1.790 Rdelta:  0.00009
#>    user  system elapsed 
#>  246.84    0.00  246.99
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#>    7 Number of features:    7 Max AUC:    0.761 AUC:    0.761 Z:    1.054 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.768 AUC:    0.768 Z:    0.700 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.768 AUC:    0.755 Z:    0.661 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.772 AUC:    0.772 Z:    0.599 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.772 AUC:    0.765 Z:    0.779 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.772 AUC:    0.761 Z:    0.642 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.772 AUC:    0.763 Z:    0.361 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.772 AUC:    0.769 Z:    0.351 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.772 AUC:    0.767 Z:    0.422 Rdelta:  0.10000 
#>   16 Number of features:   15 Max AUC:    0.772 AUC:    0.748 Z:    0.289 Rdelta:  0.08000 
#>   17 Number of features:   16 Max AUC:    0.772 AUC:    0.759 Z:    0.507 Rdelta:  0.08200 
#>   18 Number of features:   17 Max AUC:    0.781 AUC:    0.781 Z:    0.346 Rdelta:  0.08380 
#>   19 Number of features:   17 Max AUC:    0.781 AUC:    0.760 Z:    0.437 Rdelta:  0.06704 
#>   20 Number of features:   18 Max AUC:    0.781 AUC:    0.779 Z:    0.467 Rdelta:  0.07034 
#>   21 Number of features:   18 Max AUC:    0.781 AUC:    0.767 Z:    0.325 Rdelta:  0.05627 
#>   22 Number of features:   19 Max AUC:    0.781 AUC:    0.779 Z:    0.382 Rdelta:  0.06064 
#>   23 Number of features:   20 Max AUC:    0.781 AUC:    0.777 Z:    0.286 Rdelta:  0.06458 
#>   24 Number of features:   21 Max AUC:    0.783 AUC:    0.783 Z:    0.442 Rdelta:  0.06812 
#>   25 Number of features:   22 Max AUC:    0.783 AUC:    0.783 Z:    0.426 Rdelta:  0.07131 
#>   26 Number of features:   23 Max AUC:    0.794 AUC:    0.794 Z:    0.506 Rdelta:  0.07418 
#>   27 Number of features:   24 Max AUC:    0.794 AUC:    0.789 Z:    0.470 Rdelta:  0.07676 
#>   28 Number of features:   25 Max AUC:    0.803 AUC:    0.803 Z:    0.470 Rdelta:  0.07908 
#>   29 Number of features:   26 Max AUC:    0.803 AUC:    0.801 Z:    0.459 Rdelta:  0.08118 
#>   30 Number of features:   26 Max AUC:    0.803 AUC:    0.781 Z:    0.355 Rdelta:  0.06494 
#>   31 Number of features:   27 Max AUC:    0.803 AUC:    0.802 Z:    0.290 Rdelta:  0.06845 
#>   32 Number of features:   27 Max AUC:    0.803 AUC:    0.787 Z:    0.432 Rdelta:  0.05476 
#>   33 Number of features:   27 Max AUC:    0.803 AUC:    0.784 Z:    0.246 Rdelta:  0.04381 
#>   34 Number of features:   27 Max AUC:    0.803 AUC:    0.748 Z:    0.503 Rdelta:  0.03504 
#>   35 Number of features:   27 Max AUC:    0.803 AUC:    0.784 Z:    0.308 Rdelta:  0.02804 
#>   36 Number of features:   27 Max AUC:    0.803 AUC:    0.794 Z:    0.187 Rdelta:  0.02243 
#>   37 Number of features:   27 Max AUC:    0.803 AUC:    0.788 Z:    0.357 Rdelta:  0.01794 
#>   38 Number of features:   27 Max AUC:    0.803 AUC:    0.782 Z:    0.383 Rdelta:  0.01435 
#>   39 Number of features:   27 Max AUC:    0.803 AUC:    0.777 Z:    0.258 Rdelta:  0.01148 
#>   40 Number of features:   27 Max AUC:    0.803 AUC:    0.735 Z:    0.237 Rdelta:  0.00919 
#>   41 Number of features:   27 Max AUC:    0.803 AUC:    0.764 Z:    0.426 Rdelta:  0.00735 
#>   42 Number of features:   28 Max AUC:    0.803 AUC:    0.798 Z:    0.407 Rdelta:  0.01661 
#>   43 Number of features:   29 Max AUC:    0.803 AUC:    0.800 Z:    0.377 Rdelta:  0.02495 
#>   44 Number of features:   30 Max AUC:    0.812 AUC:    0.812 Z:    0.359 Rdelta:  0.03246 
#>   45 Number of features:   30 Max AUC:    0.812 AUC:    0.801 Z:    0.327 Rdelta:  0.02597 
#>   46 Number of features:   30 Max AUC:    0.812 AUC:    0.743 Z:    0.313 Rdelta:  0.02077 
#>   47 Number of features:   30 Max AUC:    0.812 AUC:    0.784 Z:    0.470 Rdelta:  0.01662 
#>   48 Number of features:   30 Max AUC:    0.812 AUC:    0.795 Z:    0.335 Rdelta:  0.01329 
#>   49 Number of features:   30 Max AUC:    0.812 AUC:    0.791 Z:    0.552 Rdelta:  0.01064 
#>   50 Number of features:   30 Max AUC:    0.812 AUC:    0.792 Z:    0.362 Rdelta:  0.00851 
#>   51 Number of features:   31 Max AUC:    0.812 AUC:    0.807 Z:    0.502 Rdelta:  0.01766 
#>   52 Number of features:   32 Max AUC:    0.812 AUC:    0.811 Z:    0.361 Rdelta:  0.02589 
#>   53 Number of features:   33 Max AUC:    0.812 AUC:    0.800 Z:    0.639 Rdelta:  0.03330 
#>   54 Number of features:   34 Max AUC:    0.812 AUC:    0.812 Z:    0.403 Rdelta:  0.03997 
#>   55 Number of features:   34 Max AUC:    0.812 AUC:    0.788 Z:    0.451 Rdelta:  0.03198 
#>   56 Number of features:   35 Max AUC:    0.815 AUC:    0.815 Z:    0.598 Rdelta:  0.03878 
#>   57 Number of features:   35 Max AUC:    0.815 AUC:    0.800 Z:    0.423 Rdelta:  0.03102 
#>   58 Number of features:   35 Max AUC:    0.815 AUC:    0.798 Z:    0.421 Rdelta:  0.02482 
#>   59 Number of features:   35 Max AUC:    0.815 AUC:    0.788 Z:    0.460 Rdelta:  0.01986 
#>   60 Number of features:   35 Max AUC:    0.815 AUC:    0.789 Z:    0.361 Rdelta:  0.01588 
#>   61 Number of features:   35 Max AUC:    0.815 AUC:    0.758 Z:    0.511 Rdelta:  0.01271 
#>   62 Number of features:   35 Max AUC:    0.815 AUC:    0.770 Z:    0.600 Rdelta:  0.01017 
#>   63 Number of features:   36 Max AUC:    0.815 AUC:    0.809 Z:    0.345 Rdelta:  0.01915 
#>   64 Number of features:   36 Max AUC:    0.815 AUC:    0.791 Z:    0.485 Rdelta:  0.01532 
#>   65 Number of features:   36 Max AUC:    0.815 AUC:    0.793 Z:    0.648 Rdelta:  0.01226 
#>   66 Number of features:   36 Max AUC:    0.815 AUC:    0.776 Z:    0.485 Rdelta:  0.00980 
#>   67 Number of features:   36 Max AUC:    0.815 AUC:    0.746 Z:    0.344 Rdelta:  0.00784 
#>   68 Number of features:   37 Max AUC:    0.815 AUC:    0.811 Z:    0.404 Rdelta:  0.01706 
#>   69 Number of features:   37 Max AUC:    0.815 AUC:    0.786 Z:    0.189 Rdelta:  0.01365 
#>   70 Number of features:   37 Max AUC:    0.815 AUC:    0.795 Z:    0.321 Rdelta:  0.01092 
#>   71 Number of features:   37 Max AUC:    0.815 AUC:    0.792 Z:    0.377 Rdelta:  0.00873 
#>   72 Number of features:   37 Max AUC:    0.815 AUC:    0.786 Z:    0.365 Rdelta:  0.00699 
#>   73 Number of features:   37 Max AUC:    0.815 AUC:    0.772 Z:    0.689 Rdelta:  0.00559 
#>   74 Number of features:   37 Max AUC:    0.815 AUC:    0.765 Z:    0.451 Rdelta:  0.00447 
#>   75 Number of features:   37 Max AUC:    0.815 AUC:    0.785 Z:    0.525 Rdelta:  0.00358 
#>   76 Number of features:   37 Max AUC:    0.815 AUC:    0.802 Z:    0.517 Rdelta:  0.00286 
#>   77 Number of features:   37 Max AUC:    0.815 AUC:    0.777 Z:    0.565 Rdelta:  0.00229 
#>   78 Number of features:   37 Max AUC:    0.815 AUC:    0.794 Z:    0.408 Rdelta:  0.00183 
#>   79 Number of features:   37 Max AUC:    0.815 AUC:    0.796 Z:    0.481 Rdelta:  0.00147 
#>   80 Number of features:   38 Max AUC:    0.815 AUC:    0.812 Z:    0.336 Rdelta:  0.01132 
#>   81 Number of features:   39 Max AUC:    0.821 AUC:    0.821 Z:    0.356 Rdelta:  0.02019 
#>   82 Number of features:   39 Max AUC:    0.821 AUC:    0.807 Z:    0.425 Rdelta:  0.01615 
#>   83 Number of features:   39 Max AUC:    0.821 AUC:    0.800 Z:    0.242 Rdelta:  0.01292 
#>   84 Number of features:   39 Max AUC:    0.821 AUC:    0.806 Z:    0.358 Rdelta:  0.01034 
#>   85 Number of features:   39 Max AUC:    0.821 AUC:    0.796 Z:    0.529 Rdelta:  0.00827 
#>   86 Number of features:   39 Max AUC:    0.821 AUC:    0.803 Z:    0.521 Rdelta:  0.00661 
#>   87 Number of features:   39 Max AUC:    0.821 AUC:    0.800 Z:    0.317 Rdelta:  0.00529 
#>   88 Number of features:   39 Max AUC:    0.821 AUC:    0.786 Z:    0.397 Rdelta:  0.00423 
#>   89 Number of features:   39 Max AUC:    0.821 AUC:    0.788 Z:    0.533 Rdelta:  0.00339 
#>   90 Number of features:   39 Max AUC:    0.821 AUC:    0.795 Z:    0.480 Rdelta:  0.00271 
#>   91 Number of features:   39 Max AUC:    0.821 AUC:    0.793 Z:    0.520 Rdelta:  0.00217 
#>   92 Number of features:   39 Max AUC:    0.821 AUC:    0.776 Z:    0.354 Rdelta:  0.00173 
#>   93 Number of features:   39 Max AUC:    0.821 AUC:    0.803 Z:    0.264 Rdelta:  0.00139 
#>   94 Number of features:   40 Max AUC:    0.821 AUC:    0.811 Z:    0.489 Rdelta:  0.01125 
#>   95 Number of features:   41 Max AUC:    0.828 AUC:    0.828 Z:    0.406 Rdelta:  0.02012 
#>   96 Number of features:   41 Max AUC:    0.828 AUC:    0.800 Z:    0.429 Rdelta:  0.01610 
#>   97 Number of features:   41 Max AUC:    0.828 AUC:    0.809 Z:    0.371 Rdelta:  0.01288 
#>   98 Number of features:   42 Max AUC:    0.834 AUC:    0.834 Z:    0.358 Rdelta:  0.02159 
#>   99 Number of features:   42 Max AUC:    0.834 AUC:    0.782 Z:    0.402 Rdelta:  0.01727 
#>  100 Number of features:   42 Max AUC:    0.834 AUC:    0.801 Z:    0.244 Rdelta:  0.01382 
#>  101 Number of features:   43 Max AUC:    0.834 AUC:    0.825 Z:    0.497 Rdelta:  0.02244 
#>  102 Number of features:   44 Max AUC:    0.837 AUC:    0.837 Z:    0.389 Rdelta:  0.03019 
#>  103 Number of features:   45 Max AUC:    0.837 AUC:    0.830 Z:    0.492 Rdelta:  0.03717 
#>  104 Number of features:   45 Max AUC:    0.837 AUC:    0.821 Z:    0.464 Rdelta:  0.02974 
#>  105 Number of features:   45 Max AUC:    0.837 AUC:    0.819 Z:    0.461 Rdelta:  0.02379 
#>  106 Number of features:   45 Max AUC:    0.837 AUC:    0.814 Z:    0.445 Rdelta:  0.01903 
#>  107 Number of features:   45 Max AUC:    0.837 AUC:    0.826 Z:    0.381 Rdelta:  0.01523 
#>  108 Number of features:   46 Max AUC:    0.837 AUC:    0.828 Z:    0.511 Rdelta:  0.02370 
#>  109 Number of features:   47 Max AUC:    0.840 AUC:    0.840 Z:    0.458 Rdelta:  0.03133 
#>  110 Number of features:   48 Max AUC:    0.840 AUC:    0.840 Z:    0.386 Rdelta:  0.03820 
#>  111 Number of features:   49 Max AUC:    0.840 AUC:    0.832 Z:    0.580 Rdelta:  0.04438 
#>  112 Number of features:   49 Max AUC:    0.840 AUC:    0.830 Z:    0.406 Rdelta:  0.03550 
#>  113 Number of features:   49 Max AUC:    0.840 AUC:    0.805 Z:    0.425 Rdelta:  0.02840 
#>  114 Number of features:   49 Max AUC:    0.840 AUC:    0.824 Z:    0.369 Rdelta:  0.02272 
#>  115 Number of features:   50 Max AUC:    0.844 AUC:    0.844 Z:    0.218 Rdelta:  0.03045 
#>  116 Number of features:   51 Max AUC:    0.844 AUC:    0.836 Z:    0.509 Rdelta:  0.03741 
#>  117 Number of features:   51 Max AUC:    0.844 AUC:    0.809 Z:    0.477 Rdelta:  0.02992 
#>  118 Number of features:   51 Max AUC:    0.844 AUC:    0.803 Z:    0.489 Rdelta:  0.02394 
#>  119 Number of features:   51 Max AUC:    0.844 AUC:    0.819 Z:    0.395 Rdelta:  0.01915 
#>  120 Number of features:   51 Max AUC:    0.844 AUC:    0.811 Z:    0.370 Rdelta:  0.01532 
#>  121 Number of features:   51 Max AUC:    0.844 AUC:    0.820 Z:    0.422 Rdelta:  0.01226 
#>  122 Number of features:   52 Max AUC:    0.846 AUC:    0.846 Z:    0.377 Rdelta:  0.02103 
#>  123 Number of features:   53 Max AUC:    0.846 AUC:    0.836 Z:    0.498 Rdelta:  0.02893 
#>  124 Number of features:   53 Max AUC:    0.846 AUC:    0.835 Z:    0.415 Rdelta:  0.02314 
#>  125 Number of features:   53 Max AUC:    0.846 AUC:    0.824 Z:    0.498 Rdelta:  0.01851 
#>  126 Number of features:   53 Max AUC:    0.846 AUC:    0.831 Z:    0.514 Rdelta:  0.01481 
#>  127 Number of features:   53 Max AUC:    0.846 AUC:    0.748 Z:    0.311 Rdelta:  0.01185 
#>  128 Number of features:   53 Max AUC:    0.846 AUC:    0.825 Z:    0.394 Rdelta:  0.00948 
#>  129 Number of features:   53 Max AUC:    0.846 AUC:    0.821 Z:    0.526 Rdelta:  0.00758 
#>  130 Number of features:   53 Max AUC:    0.846 AUC:    0.754 Z:    0.414 Rdelta:  0.00607 
#>  131 Number of features:   54 Max AUC:    0.852 AUC:    0.852 Z:    0.547 Rdelta:  0.01546 
#>  132 Number of features:   54 Max AUC:    0.852 AUC:    0.822 Z:    0.282 Rdelta:  0.01237 
#>  133 Number of features:   54 Max AUC:    0.852 AUC:    0.817 Z:    0.600 Rdelta:  0.00989 
#>  134 Number of features:   54 Max AUC:    0.852 AUC:    0.809 Z:    0.450 Rdelta:  0.00792 
#>  135 Number of features:   54 Max AUC:    0.852 AUC:    0.841 Z:    0.446 Rdelta:  0.00633 
#>  136 Number of features:   54 Max AUC:    0.852 AUC:    0.773 Z:    0.390 Rdelta:  0.00507 
#>  137 Number of features:   55 Max AUC:    0.852 AUC:    0.846 Z:    0.392 Rdelta:  0.01456 
#>  138 Number of features:   55 Max AUC:    0.852 AUC:    0.784 Z:    0.055 Rdelta:  0.01165 
#>  139 Number of features:   55 Max AUC:    0.852 AUC:    0.807 Z:    0.251 Rdelta:  0.00932 
#>  140 Number of features:   55 Max AUC:    0.852 AUC:    0.806 Z:    0.279 Rdelta:  0.00745 
#>  141 Number of features:   55 Max AUC:    0.852 AUC:    0.824 Z:    0.240 Rdelta:  0.00596 
#>  142 Number of features:   55 Max AUC:    0.852 AUC:    0.810 Z:    0.471 Rdelta:  0.00477 
#>  143 Number of features:   55 Max AUC:    0.852 AUC:    0.827 Z:    0.377 Rdelta:  0.00382 
#>  144 Number of features:   55 Max AUC:    0.852 AUC:    0.821 Z:    0.138 Rdelta:  0.00305 
#>  145 Number of features:   55 Max AUC:    0.852 AUC:    0.836 Z:    0.214 Rdelta:  0.00244 
#>  146 Number of features:   55 Max AUC:    0.852 AUC:    0.826 Z:    0.525 Rdelta:  0.00195 
#>  147 Number of features:   55 Max AUC:    0.852 AUC:    0.830 Z:    0.183 Rdelta:  0.00156 
#>  148 Number of features:   55 Max AUC:    0.852 AUC:    0.791 Z:    0.351 Rdelta:  0.00125 
#>  149 Number of features:   55 Max AUC:    0.852 AUC:    0.840 Z:    0.422 Rdelta:  0.00100 
#>  150 Number of features:   55 Max AUC:    0.852 AUC:    0.805 Z:    0.348 Rdelta:  0.00080 
#>  151 Number of features:   55 Max AUC:    0.852 AUC:    0.825 Z:    0.486 Rdelta:  0.00064 
#>  152 Number of features:   55 Max AUC:    0.852 AUC:    0.829 Z:    0.483 Rdelta:  0.00051 
#>  153 Number of features:   55 Max AUC:    0.852 AUC:    0.822 Z:    0.430 Rdelta:  0.00041 
#>  154 Number of features:   55 Max AUC:    0.852 AUC:    0.813 Z:    0.423 Rdelta:  0.00033 
#>  155 Number of features:   55 Max AUC:    0.852 AUC:    0.841 Z:    0.420 Rdelta:  0.00026 
#>  156 Number of features:   55 Max AUC:    0.852 AUC:    0.831 Z:    0.460 Rdelta:  0.00021 
#>  157 Number of features:   55 Max AUC:    0.852 AUC:    0.818 Z:    0.224 Rdelta:  0.00017 
#>  158 Number of features:   55 Max AUC:    0.852 AUC:    0.801 Z:    0.376 Rdelta:  0.00013 
#>  159 Number of features:   55 Max AUC:    0.852 AUC:    0.812 Z:    0.423 Rdelta:  0.00011 
#>  160 Number of features:   55 Max AUC:    0.852 AUC:    0.831 Z:    0.475 Rdelta:  0.00009
#>    user  system elapsed 
#>   80.68    0.00   80.75
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))

testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
 
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#>    7 Number of features:    7 Max AUC:    0.859 AUC:    0.859 Z:    1.076 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.892 AUC:    0.892 Z:    0.542 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.910 AUC:    0.910 Z:    0.651 Rdelta:  0.10000 
#>   10 Number of features:   10 Max AUC:    0.914 AUC:    0.914 Z:    0.710 Rdelta:  0.10000 
#>   11 Number of features:   11 Max AUC:    0.914 AUC:    0.908 Z:    0.711 Rdelta:  0.10000 
#>   12 Number of features:   12 Max AUC:    0.914 AUC:    0.905 Z:    0.699 Rdelta:  0.10000 
#>   13 Number of features:   13 Max AUC:    0.914 AUC:    0.909 Z:    0.675 Rdelta:  0.10000 
#>   14 Number of features:   14 Max AUC:    0.914 AUC:    0.906 Z:    0.610 Rdelta:  0.10000 
#>   15 Number of features:   15 Max AUC:    0.914 AUC:    0.905 Z:    0.543 Rdelta:  0.10000 
#>   16 Number of features:   16 Max AUC:    0.914 AUC:    0.906 Z:    0.525 Rdelta:  0.10000 
#>   17 Number of features:   17 Max AUC:    0.914 AUC:    0.906 Z:    0.579 Rdelta:  0.10000 
#>   18 Number of features:   18 Max AUC:    0.917 AUC:    0.917 Z:    0.648 Rdelta:  0.10000 
#>   19 Number of features:   19 Max AUC:    0.932 AUC:    0.932 Z:    0.576 Rdelta:  0.10000 
#>   20 Number of features:   20 Max AUC:    0.932 AUC:    0.926 Z:    0.516 Rdelta:  0.10000 
#>   21 Number of features:   21 Max AUC:    0.942 AUC:    0.942 Z:    0.383 Rdelta:  0.10000 
#>   22 Number of features:   22 Max AUC:    0.942 AUC:    0.933 Z:    0.531 Rdelta:  0.10000 
#>   23 Number of features:   23 Max AUC:    0.942 AUC:    0.933 Z:    0.422 Rdelta:  0.10000 
#>   24 Number of features:   24 Max AUC:    0.942 AUC:    0.934 Z:    0.414 Rdelta:  0.10000 
#>   25 Number of features:   25 Max AUC:    0.942 AUC:    0.933 Z:    0.484 Rdelta:  0.10000 
#>   26 Number of features:   26 Max AUC:    0.942 AUC:    0.932 Z:    0.377 Rdelta:  0.10000 
#>   27 Number of features:   27 Max AUC:    0.942 AUC:    0.940 Z:    0.441 Rdelta:  0.10000 
#>   28 Number of features:   28 Max AUC:    0.942 AUC:    0.940 Z:    0.536 Rdelta:  0.10000 
#>   29 Number of features:   29 Max AUC:    0.942 AUC:    0.934 Z:    0.346 Rdelta:  0.10000 
#>   30 Number of features:   30 Max AUC:    0.942 AUC:    0.940 Z:    0.368 Rdelta:  0.10000 
#>   31 Number of features:   31 Max AUC:    0.942 AUC:    0.940 Z:    0.343 Rdelta:  0.10000 
#>   32 Number of features:   32 Max AUC:    0.951 AUC:    0.951 Z:    0.371 Rdelta:  0.10000 
#>   33 Number of features:   33 Max AUC:    0.951 AUC:    0.947 Z:    0.486 Rdelta:  0.10000 
#>   34 Number of features:   33 Max AUC:    0.951 AUC:    0.932 Z:    0.414 Rdelta:  0.08000 
#>   35 Number of features:   34 Max AUC:    0.951 AUC:    0.944 Z:    0.532 Rdelta:  0.08200 
#>   36 Number of features:   35 Max AUC:    0.951 AUC:    0.945 Z:    0.230 Rdelta:  0.08380 
#>   37 Number of features:   36 Max AUC:    0.951 AUC:    0.943 Z:    0.381 Rdelta:  0.08542 
#>   38 Number of features:   36 Max AUC:    0.951 AUC:    0.937 Z:    0.357 Rdelta:  0.06834 
#>   39 Number of features:   37 Max AUC:    0.951 AUC:    0.944 Z:    0.395 Rdelta:  0.07150 
#>   40 Number of features:   38 Max AUC:    0.951 AUC:    0.948 Z:    0.461 Rdelta:  0.07435 
#>   41 Number of features:   38 Max AUC:    0.951 AUC:    0.934 Z:    0.246 Rdelta:  0.05948 
#>   42 Number of features:   39 Max AUC:    0.951 AUC:    0.946 Z:    0.434 Rdelta:  0.06353 
#>   43 Number of features:   40 Max AUC:    0.951 AUC:    0.947 Z:    0.293 Rdelta:  0.06718 
#>   44 Number of features:   41 Max AUC:    0.951 AUC:    0.949 Z:    0.489 Rdelta:  0.07046 
#>   45 Number of features:   42 Max AUC:    0.951 AUC:    0.948 Z:    0.362 Rdelta:  0.07342 
#>   46 Number of features:   43 Max AUC:    0.951 AUC:    0.945 Z:    0.432 Rdelta:  0.07607 
#>   47 Number of features:   44 Max AUC:    0.951 AUC:    0.946 Z:    0.587 Rdelta:  0.07847 
#>   48 Number of features:   45 Max AUC:    0.951 AUC:    0.940 Z:    0.436 Rdelta:  0.08062 
#>   49 Number of features:   46 Max AUC:    0.951 AUC:    0.945 Z:    0.494 Rdelta:  0.08256 
#>   50 Number of features:   47 Max AUC:    0.951 AUC:    0.945 Z:    0.534 Rdelta:  0.08430 
#>   51 Number of features:   48 Max AUC:    0.951 AUC:    0.940 Z:    0.547 Rdelta:  0.08587 
#>   52 Number of features:   49 Max AUC:    0.951 AUC:    0.941 Z:    0.379 Rdelta:  0.08728 
#>   53 Number of features:   50 Max AUC:    0.951 AUC:    0.947 Z:    0.475 Rdelta:  0.08856 
#>   54 Number of features:   51 Max AUC:    0.956 AUC:    0.956 Z:    0.546 Rdelta:  0.08970 
#>   55 Number of features:   52 Max AUC:    0.956 AUC:    0.950 Z:    0.676 Rdelta:  0.09073 
#>   56 Number of features:   53 Max AUC:    0.956 AUC:    0.948 Z:    0.426 Rdelta:  0.09166 
#>   57 Number of features:   54 Max AUC:    0.956 AUC:    0.956 Z:    0.681 Rdelta:  0.09249 
#>   58 Number of features:   54 Max AUC:    0.956 AUC:    0.925 Z:    0.357 Rdelta:  0.07399 
#>   59 Number of features:   54 Max AUC:    0.956 AUC:    0.939 Z:    0.526 Rdelta:  0.05919 
#>   60 Number of features:   54 Max AUC:    0.956 AUC:    0.939 Z:    0.441 Rdelta:  0.04736 
#>   61 Number of features:   54 Max AUC:    0.956 AUC:    0.906 Z:    0.404 Rdelta:  0.03788 
#>   62 Number of features:   54 Max AUC:    0.956 AUC:    0.937 Z:    0.492 Rdelta:  0.03031 
#>   63 Number of features:   54 Max AUC:    0.956 AUC:    0.938 Z:    0.492 Rdelta:  0.02425 
#>   64 Number of features:   54 Max AUC:    0.956 AUC:    0.936 Z:    0.569 Rdelta:  0.01940 
#>   65 Number of features:   54 Max AUC:    0.956 AUC:    0.929 Z:    0.479 Rdelta:  0.01552 
#>   66 Number of features:   54 Max AUC:    0.956 AUC:    0.925 Z:    0.397 Rdelta:  0.01241 
#>   67 Number of features:   54 Max AUC:    0.956 AUC:    0.939 Z:    0.525 Rdelta:  0.00993 
#>   68 Number of features:   54 Max AUC:    0.956 AUC:    0.940 Z:    0.509 Rdelta:  0.00794 
#>   69 Number of features:   55 Max AUC:    0.956 AUC:    0.948 Z:    0.579 Rdelta:  0.01715 
#>   70 Number of features:   55 Max AUC:    0.956 AUC:    0.943 Z:    0.479 Rdelta:  0.01372 
#>   71 Number of features:   55 Max AUC:    0.956 AUC:    0.928 Z:    0.444 Rdelta:  0.01098 
#>   72 Number of features:   55 Max AUC:    0.956 AUC:    0.925 Z:    0.396 Rdelta:  0.00878 
#>   73 Number of features:   55 Max AUC:    0.956 AUC:    0.931 Z:    0.427 Rdelta:  0.00702 
#>   74 Number of features:   55 Max AUC:    0.956 AUC:    0.945 Z:    0.741 Rdelta:  0.00562 
#>   75 Number of features:   55 Max AUC:    0.956 AUC:    0.934 Z:    0.473 Rdelta:  0.00450 
#>   76 Number of features:   55 Max AUC:    0.956 AUC:    0.941 Z:    0.536 Rdelta:  0.00360 
#>   77 Number of features:   55 Max AUC:    0.956 AUC:    0.946 Z:    0.513 Rdelta:  0.00288 
#>   78 Number of features:   55 Max AUC:    0.956 AUC:    0.943 Z:    0.654 Rdelta:  0.00230 
#>   79 Number of features:   55 Max AUC:    0.956 AUC:    0.939 Z:    0.617 Rdelta:  0.00184 
#>   80 Number of features:   55 Max AUC:    0.956 AUC:    0.933 Z:    0.427 Rdelta:  0.00147 
#>   81 Number of features:   55 Max AUC:    0.956 AUC:    0.937 Z:    0.426 Rdelta:  0.00118 
#>   82 Number of features:   55 Max AUC:    0.956 AUC:    0.943 Z:    0.480 Rdelta:  0.00094 
#>   83 Number of features:   55 Max AUC:    0.956 AUC:    0.941 Z:    0.600 Rdelta:  0.00075 
#>   84 Number of features:   55 Max AUC:    0.956 AUC:    0.933 Z:    0.456 Rdelta:  0.00060 
#>   85 Number of features:   55 Max AUC:    0.956 AUC:    0.944 Z:    0.668 Rdelta:  0.00048 
#>   86 Number of features:   55 Max AUC:    0.956 AUC:    0.932 Z:    0.438 Rdelta:  0.00039 
#>   87 Number of features:   55 Max AUC:    0.956 AUC:    0.943 Z:    0.491 Rdelta:  0.00031 
#>   88 Number of features:   55 Max AUC:    0.956 AUC:    0.945 Z:    0.559 Rdelta:  0.00025 
#>   89 Number of features:   55 Max AUC:    0.956 AUC:    0.925 Z:    0.495 Rdelta:  0.00020 
#>   90 Number of features:   55 Max AUC:    0.956 AUC:    0.944 Z:    0.473 Rdelta:  0.00016 
#>   91 Number of features:   55 Max AUC:    0.956 AUC:    0.940 Z:    0.558 Rdelta:  0.00013 
#>   92 Number of features:   55 Max AUC:    0.956 AUC:    0.939 Z:    0.331 Rdelta:  0.00010 
#>   93 Number of features:   55 Max AUC:    0.956 AUC:    0.938 Z:    0.453 Rdelta:  0.00008
#>    user  system elapsed 
#>   47.18    0.00   47.24
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))


system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#>    7 Number of features:    7 Max AUC:    0.384 AUC:    0.373 Z:   -0.449 Rdelta:  0.10000 
#>    8 Number of features:    7 Max AUC:    0.384 AUC:    0.329 Z:   -0.527 Rdelta:  0.08000 
#>    9 Number of features:    7 Max AUC:    0.384 AUC:    0.321 Z:   -0.487 Rdelta:  0.06400 
#>   10 Number of features:    8 Max AUC:    0.384 AUC:    0.377 Z:   -0.405 Rdelta:  0.06760 
#>   11 Number of features:    8 Max AUC:    0.384 AUC:    0.367 Z:   -0.414 Rdelta:  0.05408 
#>   12 Number of features:    8 Max AUC:    0.384 AUC:    0.347 Z:   -0.433 Rdelta:  0.04326 
#>   13 Number of features:    8 Max AUC:    0.384 AUC:    0.337 Z:   -0.485 Rdelta:  0.03461 
#>   14 Number of features:    9 Max AUC:    0.384 AUC:    0.368 Z:   -0.382 Rdelta:  0.04115 
#>   15 Number of features:   10 Max AUC:    0.384 AUC:    0.371 Z:   -0.412 Rdelta:  0.04704 
#>   16 Number of features:   10 Max AUC:    0.384 AUC:    0.337 Z:   -0.446 Rdelta:  0.03763 
#>   17 Number of features:   10 Max AUC:    0.384 AUC:    0.335 Z:   -0.438 Rdelta:  0.03010 
#>   18 Number of features:   11 Max AUC:    0.384 AUC:    0.380 Z:   -0.370 Rdelta:  0.03709 
#>   19 Number of features:   11 Max AUC:    0.384 AUC:    0.344 Z:   -0.459 Rdelta:  0.02967 
#>   20 Number of features:   11 Max AUC:    0.384 AUC:    0.344 Z:   -0.365 Rdelta:  0.02374 
#>   21 Number of features:   11 Max AUC:    0.384 AUC:    0.359 Z:   -0.459 Rdelta:  0.01899 
#>   22 Number of features:   12 Max AUC:    0.448 AUC:    0.448 Z:   -0.273 Rdelta:  0.02709 
#>   23 Number of features:   12 Max AUC:    0.448 AUC:    0.433 Z:   -0.139 Rdelta:  0.02167 
#>   24 Number of features:   12 Max AUC:    0.448 AUC:    0.428 Z:   -0.274 Rdelta:  0.01734 
#>   25 Number of features:   12 Max AUC:    0.448 AUC:    0.411 Z:   -0.347 Rdelta:  0.01387 
#>   26 Number of features:   12 Max AUC:    0.448 AUC:    0.440 Z:   -0.287 Rdelta:  0.01110 
#>   27 Number of features:   12 Max AUC:    0.448 AUC:    0.435 Z:   -0.340 Rdelta:  0.00888 
#>   28 Number of features:   13 Max AUC:    0.449 AUC:    0.449 Z:   -0.263 Rdelta:  0.01799 
#>   29 Number of features:   13 Max AUC:    0.449 AUC:    0.414 Z:   -0.354 Rdelta:  0.01439 
#>   30 Number of features:   13 Max AUC:    0.449 AUC:    0.420 Z:   -0.284 Rdelta:  0.01151 
#>   31 Number of features:   13 Max AUC:    0.449 AUC:    0.404 Z:   -0.356 Rdelta:  0.00921 
#>   32 Number of features:   13 Max AUC:    0.449 AUC:    0.420 Z:   -0.310 Rdelta:  0.00737 
#>   33 Number of features:   13 Max AUC:    0.449 AUC:    0.426 Z:   -0.277 Rdelta:  0.00589 
#>   34 Number of features:   13 Max AUC:    0.449 AUC:    0.433 Z:   -0.300 Rdelta:  0.00472 
#>   35 Number of features:   13 Max AUC:    0.449 AUC:    0.419 Z:   -0.267 Rdelta:  0.00377 
#>   36 Number of features:   14 Max AUC:    0.453 AUC:    0.453 Z:   -0.108 Rdelta:  0.01340 
#>   37 Number of features:   14 Max AUC:    0.453 AUC:    0.388 Z:   -0.368 Rdelta:  0.01072 
#>   38 Number of features:   14 Max AUC:    0.453 AUC:    0.416 Z:   -0.345 Rdelta:  0.00857 
#>   39 Number of features:   14 Max AUC:    0.453 AUC:    0.415 Z:   -0.301 Rdelta:  0.00686 
#>   40 Number of features:   14 Max AUC:    0.453 AUC:    0.434 Z:   -0.324 Rdelta:  0.00549 
#>   41 Number of features:   15 Max AUC:    0.486 AUC:    0.486 Z:   -0.028 Rdelta:  0.01494 
#>   42 Number of features:   15 Max AUC:    0.486 AUC:    0.459 Z:   -0.039 Rdelta:  0.01195 
#>   43 Number of features:   15 Max AUC:    0.486 AUC:    0.428 Z:   -0.085 Rdelta:  0.00956 
#>   44 Number of features:   15 Max AUC:    0.486 AUC:    0.448 Z:   -0.019 Rdelta:  0.00765 
#>   45 Number of features:   15 Max AUC:    0.486 AUC:    0.430 Z:   -0.029 Rdelta:  0.00612 
#>   46 Number of features:   15 Max AUC:    0.486 AUC:    0.425 Z:   -0.119 Rdelta:  0.00489 
#>   47 Number of features:   15 Max AUC:    0.486 AUC:    0.412 Z:   -0.112 Rdelta:  0.00392 
#>   48 Number of features:   15 Max AUC:    0.486 AUC:    0.441 Z:   -0.000 Rdelta:  0.00313 
#>   49 Number of features:   15 Max AUC:    0.486 AUC:    0.452 Z:   -0.016 Rdelta:  0.00251 
#>   50 Number of features:   15 Max AUC:    0.486 AUC:    0.413 Z:   -0.154 Rdelta:  0.00200 
#>   51 Number of features:   15 Max AUC:    0.486 AUC:    0.424 Z:   -0.095 Rdelta:  0.00160 
#>   52 Number of features:   15 Max AUC:    0.486 AUC:    0.429 Z:   -0.097 Rdelta:  0.00128 
#>   53 Number of features:   15 Max AUC:    0.486 AUC:    0.455 Z:   -0.105 Rdelta:  0.00103 
#>   54 Number of features:   15 Max AUC:    0.486 AUC:    0.444 Z:   -0.171 Rdelta:  0.00082 
#>   55 Number of features:   15 Max AUC:    0.486 AUC:    0.474 Z:   -0.052 Rdelta:  0.00066 
#>   56 Number of features:   15 Max AUC:    0.486 AUC:    0.439 Z:   -0.005 Rdelta:  0.00053 
#>   57 Number of features:   15 Max AUC:    0.486 AUC:    0.455 Z:    0.000 Rdelta:  0.00042 
#>   58 Number of features:   15 Max AUC:    0.486 AUC:    0.432 Z:   -0.049 Rdelta:  0.00034 
#>   59 Number of features:   15 Max AUC:    0.486 AUC:    0.438 Z:   -0.018 Rdelta:  0.00027 
#>   60 Number of features:   15 Max AUC:    0.486 AUC:    0.404 Z:   -0.097 Rdelta:  0.00022 
#>   61 Number of features:   16 Max AUC:    0.503 AUC:    0.503 Z:    0.004 Rdelta:  0.01019 
#>   62 Number of features:   17 Max AUC:    0.521 AUC:    0.521 Z:    0.058 Rdelta:  0.01917 
#>   63 Number of features:   17 Max AUC:    0.521 AUC:    0.466 Z:   -0.087 Rdelta:  0.01534 
#>   64 Number of features:   17 Max AUC:    0.521 AUC:    0.444 Z:   -0.045 Rdelta:  0.01227 
#>   65 Number of features:   17 Max AUC:    0.521 AUC:    0.472 Z:   -0.099 Rdelta:  0.00982 
#>   66 Number of features:   17 Max AUC:    0.521 AUC:    0.476 Z:   -0.012 Rdelta:  0.00785 
#>   67 Number of features:   17 Max AUC:    0.521 AUC:    0.496 Z:    0.012 Rdelta:  0.00628 
#>   68 Number of features:   17 Max AUC:    0.521 AUC:    0.477 Z:   -0.008 Rdelta:  0.00503 
#>   69 Number of features:   17 Max AUC:    0.521 AUC:    0.503 Z:   -0.004 Rdelta:  0.00402 
#>   70 Number of features:   17 Max AUC:    0.521 AUC:    0.486 Z:   -0.022 Rdelta:  0.00322 
#>   71 Number of features:   17 Max AUC:    0.521 AUC:    0.481 Z:   -0.093 Rdelta:  0.00257 
#>   72 Number of features:   17 Max AUC:    0.521 AUC:    0.469 Z:   -0.021 Rdelta:  0.00206 
#>   73 Number of features:   17 Max AUC:    0.521 AUC:    0.489 Z:    0.031 Rdelta:  0.00165 
#>   74 Number of features:   17 Max AUC:    0.521 AUC:    0.438 Z:   -0.121 Rdelta:  0.00132 
#>   75 Number of features:   17 Max AUC:    0.521 AUC:    0.481 Z:    0.001 Rdelta:  0.00105 
#>   76 Number of features:   17 Max AUC:    0.521 AUC:    0.476 Z:   -0.016 Rdelta:  0.00084 
#>   77 Number of features:   17 Max AUC:    0.521 AUC:    0.453 Z:   -0.080 Rdelta:  0.00067 
#>   78 Number of features:   17 Max AUC:    0.521 AUC:    0.448 Z:   -0.051 Rdelta:  0.00054 
#>   79 Number of features:   17 Max AUC:    0.521 AUC:    0.471 Z:   -0.025 Rdelta:  0.00043 
#>   80 Number of features:   17 Max AUC:    0.521 AUC:    0.508 Z:    0.034 Rdelta:  0.00035 
#>   81 Number of features:   17 Max AUC:    0.521 AUC:    0.485 Z:    0.014 Rdelta:  0.00028 
#>   82 Number of features:   17 Max AUC:    0.521 AUC:    0.512 Z:    0.012 Rdelta:  0.00022 
#>   83 Number of features:   17 Max AUC:    0.521 AUC:    0.481 Z:   -0.015 Rdelta:  0.00018 
#>   84 Number of features:   17 Max AUC:    0.521 AUC:    0.481 Z:   -0.019 Rdelta:  0.00014 
#>   85 Number of features:   17 Max AUC:    0.521 AUC:    0.456 Z:   -0.036 Rdelta:  0.00011 
#>   86 Number of features:   17 Max AUC:    0.521 AUC:    0.466 Z:   -0.029 Rdelta:  0.00009
#>    user  system elapsed 
#>   21.68    0.00   21.73
testDistance_control  <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))

pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))

system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#>    7 Number of features:    7 Max AUC:    0.751 AUC:    0.751 Z:    1.276 Rdelta:  0.10000 
#>    8 Number of features:    8 Max AUC:    0.768 AUC:    0.768 Z:    0.850 Rdelta:  0.10000 
#>    9 Number of features:    9 Max AUC:    0.792 AUC:    0.792 Z:    1.086 Rdelta:  0.10000 
#>   10 Number of features:    9 Max AUC:    0.792 AUC:    0.761 Z:    0.947 Rdelta:  0.08000 
#>   11 Number of features:   10 Max AUC:    0.792 AUC:    0.790 Z:    0.984 Rdelta:  0.08200 
#>   12 Number of features:   11 Max AUC:    0.792 AUC:    0.781 Z:    1.022 Rdelta:  0.08380 
#>   13 Number of features:   12 Max AUC:    0.792 AUC:    0.786 Z:    0.546 Rdelta:  0.08542 
#>   14 Number of features:   13 Max AUC:    0.792 AUC:    0.774 Z:    0.580 Rdelta:  0.08688 
#>   15 Number of features:   14 Max AUC:    0.792 AUC:    0.776 Z:    0.657 Rdelta:  0.08819 
#>   16 Number of features:   14 Max AUC:    0.792 AUC:    0.767 Z:    0.180 Rdelta:  0.07055 
#>   17 Number of features:   15 Max AUC:    0.792 AUC:    0.776 Z:    0.581 Rdelta:  0.07350 
#>   18 Number of features:   16 Max AUC:    0.796 AUC:    0.796 Z:    0.446 Rdelta:  0.07615 
#>   19 Number of features:   17 Max AUC:    0.805 AUC:    0.805 Z:    0.449 Rdelta:  0.07853 
#>   20 Number of features:   17 Max AUC:    0.805 AUC:    0.784 Z:    0.520 Rdelta:  0.06283 
#>   21 Number of features:   18 Max AUC:    0.824 AUC:    0.824 Z:    0.594 Rdelta:  0.06654 
#>   22 Number of features:   18 Max AUC:    0.824 AUC:    0.808 Z:    0.517 Rdelta:  0.05323 
#>   23 Number of features:   19 Max AUC:    0.824 AUC:    0.821 Z:    0.485 Rdelta:  0.05791 
#>   24 Number of features:   20 Max AUC:    0.824 AUC:    0.822 Z:    0.632 Rdelta:  0.06212 
#>   25 Number of features:   21 Max AUC:    0.824 AUC:    0.824 Z:    0.491 Rdelta:  0.06591 
#>   26 Number of features:   22 Max AUC:    0.825 AUC:    0.825 Z:    0.487 Rdelta:  0.06932 
#>   27 Number of features:   23 Max AUC:    0.840 AUC:    0.840 Z:    0.641 Rdelta:  0.07239 
#>   28 Number of features:   24 Max AUC:    0.840 AUC:    0.834 Z:    0.495 Rdelta:  0.07515 
#>   29 Number of features:   24 Max AUC:    0.840 AUC:    0.826 Z:    0.470 Rdelta:  0.06012 
#>   30 Number of features:   25 Max AUC:    0.840 AUC:    0.837 Z:    0.488 Rdelta:  0.06411 
#>   31 Number of features:   26 Max AUC:    0.840 AUC:    0.834 Z:    0.630 Rdelta:  0.06770 
#>   32 Number of features:   27 Max AUC:    0.843 AUC:    0.843 Z:    0.507 Rdelta:  0.07093 
#>   33 Number of features:   27 Max AUC:    0.843 AUC:    0.828 Z:    0.420 Rdelta:  0.05674 
#>   34 Number of features:   27 Max AUC:    0.843 AUC:    0.808 Z:    0.576 Rdelta:  0.04539 
#>   35 Number of features:   28 Max AUC:    0.848 AUC:    0.848 Z:    0.542 Rdelta:  0.05085 
#>   36 Number of features:   28 Max AUC:    0.848 AUC:    0.836 Z:    0.496 Rdelta:  0.04068 
#>   37 Number of features:   29 Max AUC:    0.848 AUC:    0.845 Z:    0.689 Rdelta:  0.04661 
#>   38 Number of features:   30 Max AUC:    0.848 AUC:    0.844 Z:    0.516 Rdelta:  0.05195 
#>   39 Number of features:   31 Max AUC:    0.848 AUC:    0.841 Z:    0.508 Rdelta:  0.05676 
#>   40 Number of features:   31 Max AUC:    0.848 AUC:    0.798 Z:    0.425 Rdelta:  0.04541 
#>   41 Number of features:   31 Max AUC:    0.848 AUC:    0.790 Z:    0.034 Rdelta:  0.03632 
#>   42 Number of features:   32 Max AUC:    0.848 AUC:    0.843 Z:    0.421 Rdelta:  0.04269 
#>   43 Number of features:   33 Max AUC:    0.848 AUC:    0.836 Z:    0.510 Rdelta:  0.04842 
#>   44 Number of features:   34 Max AUC:    0.848 AUC:    0.845 Z:    0.388 Rdelta:  0.05358 
#>   45 Number of features:   34 Max AUC:    0.848 AUC:    0.832 Z:    0.499 Rdelta:  0.04286 
#>   46 Number of features:   34 Max AUC:    0.848 AUC:    0.800 Z:    0.526 Rdelta:  0.03429 
#>   47 Number of features:   35 Max AUC:    0.850 AUC:    0.850 Z:    0.543 Rdelta:  0.04086 
#>   48 Number of features:   35 Max AUC:    0.850 AUC:    0.835 Z:    0.394 Rdelta:  0.03269 
#>   49 Number of features:   36 Max AUC:    0.850 AUC:    0.843 Z:    0.412 Rdelta:  0.03942 
#>   50 Number of features:   36 Max AUC:    0.850 AUC:    0.834 Z:    0.412 Rdelta:  0.03154 
#>   51 Number of features:   36 Max AUC:    0.850 AUC:    0.834 Z:    0.533 Rdelta:  0.02523 
#>   52 Number of features:   36 Max AUC:    0.850 AUC:    0.837 Z:    0.447 Rdelta:  0.02018 
#>   53 Number of features:   37 Max AUC:    0.852 AUC:    0.852 Z:    0.421 Rdelta:  0.02817 
#>   54 Number of features:   38 Max AUC:    0.852 AUC:    0.849 Z:    0.317 Rdelta:  0.03535 
#>   55 Number of features:   38 Max AUC:    0.852 AUC:    0.840 Z:    0.446 Rdelta:  0.02828 
#>   56 Number of features:   39 Max AUC:    0.852 AUC:    0.844 Z:    0.504 Rdelta:  0.03545 
#>   57 Number of features:   39 Max AUC:    0.852 AUC:    0.835 Z:    0.616 Rdelta:  0.02836 
#>   58 Number of features:   39 Max AUC:    0.852 AUC:    0.830 Z:    0.532 Rdelta:  0.02269 
#>   59 Number of features:   39 Max AUC:    0.852 AUC:    0.840 Z:    0.347 Rdelta:  0.01815 
#>   60 Number of features:   39 Max AUC:    0.852 AUC:    0.841 Z:    0.393 Rdelta:  0.01452 
#>   61 Number of features:   39 Max AUC:    0.852 AUC:    0.791 Z:    0.575 Rdelta:  0.01162 
#>   62 Number of features:   39 Max AUC:    0.852 AUC:    0.827 Z:    0.419 Rdelta:  0.00929 
#>   63 Number of features:   39 Max AUC:    0.852 AUC:    0.838 Z:    0.393 Rdelta:  0.00743 
#>   64 Number of features:   39 Max AUC:    0.852 AUC:    0.821 Z:    0.356 Rdelta:  0.00595 
#>   65 Number of features:   39 Max AUC:    0.852 AUC:    0.835 Z:    0.498 Rdelta:  0.00476 
#>   66 Number of features:   40 Max AUC:    0.852 AUC:    0.841 Z:    0.588 Rdelta:  0.01428 
#>   67 Number of features:   40 Max AUC:    0.852 AUC:    0.799 Z:    0.385 Rdelta:  0.01143 
#>   68 Number of features:   40 Max AUC:    0.852 AUC:    0.827 Z:    0.530 Rdelta:  0.00914 
#>   69 Number of features:   41 Max AUC:    0.852 AUC:    0.849 Z:    0.592 Rdelta:  0.01823 
#>   70 Number of features:   42 Max AUC:    0.852 AUC:    0.849 Z:    0.528 Rdelta:  0.02640 
#>   71 Number of features:   42 Max AUC:    0.852 AUC:    0.836 Z:    0.392 Rdelta:  0.02112 
#>   72 Number of features:   42 Max AUC:    0.852 AUC:    0.840 Z:    0.548 Rdelta:  0.01690 
#>   73 Number of features:   42 Max AUC:    0.852 AUC:    0.832 Z:    0.492 Rdelta:  0.01352 
#>   74 Number of features:   42 Max AUC:    0.852 AUC:    0.830 Z:    0.554 Rdelta:  0.01082 
#>   75 Number of features:   43 Max AUC:    0.852 AUC:    0.842 Z:    0.534 Rdelta:  0.01973 
#>   76 Number of features:   44 Max AUC:    0.856 AUC:    0.856 Z:    0.381 Rdelta:  0.02776 
#>   77 Number of features:   44 Max AUC:    0.856 AUC:    0.837 Z:    0.486 Rdelta:  0.02221 
#>   78 Number of features:   44 Max AUC:    0.856 AUC:    0.829 Z:    0.585 Rdelta:  0.01777 
#>   79 Number of features:   44 Max AUC:    0.856 AUC:    0.819 Z:    0.478 Rdelta:  0.01421 
#>   80 Number of features:   44 Max AUC:    0.856 AUC:    0.843 Z:    0.621 Rdelta:  0.01137 
#>   81 Number of features:   44 Max AUC:    0.856 AUC:    0.830 Z:    0.432 Rdelta:  0.00910 
#>   82 Number of features:   45 Max AUC:    0.856 AUC:    0.847 Z:    0.596 Rdelta:  0.01819 
#>   83 Number of features:   45 Max AUC:    0.856 AUC:    0.833 Z:    0.626 Rdelta:  0.01455 
#>   84 Number of features:   45 Max AUC:    0.856 AUC:    0.839 Z:    0.432 Rdelta:  0.01164 
#>   85 Number of features:   45 Max AUC:    0.856 AUC:    0.843 Z:    0.432 Rdelta:  0.00931 
#>   86 Number of features:   45 Max AUC:    0.856 AUC:    0.829 Z:    0.515 Rdelta:  0.00745 
#>   87 Number of features:   45 Max AUC:    0.856 AUC:    0.826 Z:    0.449 Rdelta:  0.00596 
#>   88 Number of features:   45 Max AUC:    0.856 AUC:    0.822 Z:    0.414 Rdelta:  0.00477 
#>   89 Number of features:   45 Max AUC:    0.856 AUC:    0.813 Z:    0.518 Rdelta:  0.00381 
#>   90 Number of features:   45 Max AUC:    0.856 AUC:    0.826 Z:    0.539 Rdelta:  0.00305 
#>   91 Number of features:   45 Max AUC:    0.856 AUC:    0.831 Z:    0.432 Rdelta:  0.00244 
#>   92 Number of features:   45 Max AUC:    0.856 AUC:    0.834 Z:    0.451 Rdelta:  0.00195 
#>   93 Number of features:   45 Max AUC:    0.856 AUC:    0.835 Z:    0.588 Rdelta:  0.00156 
#>   94 Number of features:   46 Max AUC:    0.856 AUC:    0.855 Z:    0.313 Rdelta:  0.01141 
#>   95 Number of features:   46 Max AUC:    0.856 AUC:    0.844 Z:    0.434 Rdelta:  0.00912 
#>   96 Number of features:   46 Max AUC:    0.856 AUC:    0.838 Z:    0.509 Rdelta:  0.00730 
#>   97 Number of features:   46 Max AUC:    0.856 AUC:    0.829 Z:    0.491 Rdelta:  0.00584 
#>   98 Number of features:   47 Max AUC:    0.856 AUC:    0.845 Z:    0.486 Rdelta:  0.01526 
#>   99 Number of features:   48 Max AUC:    0.856 AUC:    0.846 Z:    0.419 Rdelta:  0.02373 
#>  100 Number of features:   48 Max AUC:    0.856 AUC:    0.825 Z:    0.478 Rdelta:  0.01898 
#>  101 Number of features:   48 Max AUC:    0.856 AUC:    0.832 Z:    0.369 Rdelta:  0.01519 
#>  102 Number of features:   48 Max AUC:    0.856 AUC:    0.844 Z:    0.363 Rdelta:  0.01215 
#>  103 Number of features:   48 Max AUC:    0.856 AUC:    0.828 Z:    0.503 Rdelta:  0.00972 
#>  104 Number of features:   48 Max AUC:    0.856 AUC:    0.824 Z:    0.364 Rdelta:  0.00778 
#>  105 Number of features:   48 Max AUC:    0.856 AUC:    0.799 Z:    0.394 Rdelta:  0.00622 
#>  106 Number of features:   48 Max AUC:    0.856 AUC:    0.835 Z:    0.427 Rdelta:  0.00498 
#>  107 Number of features:   48 Max AUC:    0.856 AUC:    0.830 Z:    0.489 Rdelta:  0.00398 
#>  108 Number of features:   48 Max AUC:    0.856 AUC:    0.835 Z:    0.396 Rdelta:  0.00319 
#>  109 Number of features:   48 Max AUC:    0.856 AUC:    0.818 Z:    0.426 Rdelta:  0.00255 
#>  110 Number of features:   48 Max AUC:    0.856 AUC:    0.835 Z:    0.452 Rdelta:  0.00204 
#>  111 Number of features:   48 Max AUC:    0.856 AUC:    0.822 Z:    0.461 Rdelta:  0.00163 
#>  112 Number of features:   48 Max AUC:    0.856 AUC:    0.828 Z:    0.466 Rdelta:  0.00130 
#>  113 Number of features:   48 Max AUC:    0.856 AUC:    0.821 Z:    0.325 Rdelta:  0.00104 
#>  114 Number of features:   48 Max AUC:    0.856 AUC:    0.806 Z:    0.255 Rdelta:  0.00083 
#>  115 Number of features:   48 Max AUC:    0.856 AUC:    0.824 Z:    0.393 Rdelta:  0.00067 
#>  116 Number of features:   49 Max AUC:    0.856 AUC:    0.846 Z:    0.489 Rdelta:  0.01060 
#>  117 Number of features:   49 Max AUC:    0.856 AUC:    0.836 Z:    0.370 Rdelta:  0.00848 
#>  118 Number of features:   49 Max AUC:    0.856 AUC:    0.817 Z:    0.451 Rdelta:  0.00678 
#>  119 Number of features:   50 Max AUC:    0.856 AUC:    0.847 Z:    0.319 Rdelta:  0.01611 
#>  120 Number of features:   50 Max AUC:    0.856 AUC:    0.826 Z:    0.423 Rdelta:  0.01289 
#>  121 Number of features:   50 Max AUC:    0.856 AUC:    0.831 Z:    0.527 Rdelta:  0.01031 
#>  122 Number of features:   50 Max AUC:    0.856 AUC:    0.823 Z:    0.392 Rdelta:  0.00825 
#>  123 Number of features:   50 Max AUC:    0.856 AUC:    0.829 Z:    0.559 Rdelta:  0.00660 
#>  124 Number of features:   51 Max AUC:    0.862 AUC:    0.862 Z:    0.485 Rdelta:  0.01594 
#>  125 Number of features:   51 Max AUC:    0.862 AUC:    0.836 Z:    0.481 Rdelta:  0.01275 
#>  126 Number of features:   51 Max AUC:    0.862 AUC:    0.839 Z:    0.493 Rdelta:  0.01020 
#>  127 Number of features:   51 Max AUC:    0.862 AUC:    0.808 Z:    0.501 Rdelta:  0.00816 
#>  128 Number of features:   51 Max AUC:    0.862 AUC:    0.831 Z:    0.483 Rdelta:  0.00653 
#>  129 Number of features:   52 Max AUC:    0.862 AUC:    0.857 Z:    0.461 Rdelta:  0.01588 
#>  130 Number of features:   52 Max AUC:    0.862 AUC:    0.798 Z:    0.371 Rdelta:  0.01270 
#>  131 Number of features:   52 Max AUC:    0.862 AUC:    0.820 Z:    0.544 Rdelta:  0.01016 
#>  132 Number of features:   52 Max AUC:    0.862 AUC:    0.840 Z:    0.404 Rdelta:  0.00813 
#>  133 Number of features:   52 Max AUC:    0.862 AUC:    0.809 Z:    0.393 Rdelta:  0.00650 
#>  134 Number of features:   52 Max AUC:    0.862 AUC:    0.836 Z:    0.332 Rdelta:  0.00520 
#>  135 Number of features:   52 Max AUC:    0.862 AUC:    0.837 Z:    0.458 Rdelta:  0.00416 
#>  136 Number of features:   52 Max AUC:    0.862 AUC:    0.804 Z:    0.428 Rdelta:  0.00333 
#>  137 Number of features:   52 Max AUC:    0.862 AUC:    0.831 Z:    0.437 Rdelta:  0.00266 
#>  138 Number of features:   52 Max AUC:    0.862 AUC:    0.834 Z:    0.414 Rdelta:  0.00213 
#>  139 Number of features:   52 Max AUC:    0.862 AUC:    0.833 Z:    0.347 Rdelta:  0.00170 
#>  140 Number of features:   52 Max AUC:    0.862 AUC:    0.843 Z:    0.451 Rdelta:  0.00136 
#>  141 Number of features:   52 Max AUC:    0.862 AUC:    0.833 Z:    0.270 Rdelta:  0.00109 
#>  142 Number of features:   53 Max AUC:    0.862 AUC:    0.853 Z:    0.466 Rdelta:  0.01098 
#>  143 Number of features:   53 Max AUC:    0.862 AUC:    0.847 Z:    0.407 Rdelta:  0.00879 
#>  144 Number of features:   53 Max AUC:    0.862 AUC:    0.842 Z:    0.492 Rdelta:  0.00703 
#>  145 Number of features:   53 Max AUC:    0.862 AUC:    0.830 Z:    0.460 Rdelta:  0.00562 
#>  146 Number of features:   53 Max AUC:    0.862 AUC:    0.846 Z:    0.416 Rdelta:  0.00450 
#>  147 Number of features:   53 Max AUC:    0.862 AUC:    0.833 Z:    0.502 Rdelta:  0.00360 
#>  148 Number of features:   53 Max AUC:    0.862 AUC:    0.828 Z:    0.565 Rdelta:  0.00288 
#>  149 Number of features:   53 Max AUC:    0.862 AUC:    0.842 Z:    0.439 Rdelta:  0.00230 
#>  150 Number of features:   53 Max AUC:    0.862 AUC:    0.826 Z:    0.499 Rdelta:  0.00184 
#>  151 Number of features:   53 Max AUC:    0.862 AUC:    0.821 Z:    0.473 Rdelta:  0.00147 
#>  152 Number of features:   53 Max AUC:    0.862 AUC:    0.837 Z:    0.451 Rdelta:  0.00118 
#>  153 Number of features:   54 Max AUC:    0.862 AUC:    0.859 Z:    0.480 Rdelta:  0.01106 
#>  154 Number of features:   54 Max AUC:    0.862 AUC:    0.817 Z:    0.474 Rdelta:  0.00885 
#>  155 Number of features:   54 Max AUC:    0.862 AUC:    0.846 Z:    0.519 Rdelta:  0.00708 
#>  156 Number of features:   54 Max AUC:    0.862 AUC:    0.823 Z:    0.479 Rdelta:  0.00566 
#>  157 Number of features:   54 Max AUC:    0.862 AUC:    0.829 Z:    0.391 Rdelta:  0.00453 
#>  158 Number of features:   54 Max AUC:    0.862 AUC:    0.844 Z:    0.523 Rdelta:  0.00362 
#>  159 Number of features:   54 Max AUC:    0.862 AUC:    0.842 Z:    0.438 Rdelta:  0.00290 
#>  160 Number of features:   54 Max AUC:    0.862 AUC:    0.828 Z:    0.451 Rdelta:  0.00232 
#>  161 Number of features:   54 Max AUC:    0.862 AUC:    0.828 Z:    0.412 Rdelta:  0.00186 
#>  162 Number of features:   54 Max AUC:    0.862 AUC:    0.824 Z:    0.442 Rdelta:  0.00148 
#>  163 Number of features:   55 Max AUC:    0.862 AUC:    0.854 Z:    0.402 Rdelta:  0.01134 
#>  164 Number of features:   56 Max AUC:    0.862 AUC:    0.854 Z:    0.374 Rdelta:  0.02020 
#>  165 Number of features:   56 Max AUC:    0.862 AUC:    0.846 Z:    0.451 Rdelta:  0.01616 
#>  166 Number of features:   56 Max AUC:    0.862 AUC:    0.848 Z:    0.509 Rdelta:  0.01293 
#>  167 Number of features:   56 Max AUC:    0.862 AUC:    0.844 Z:    0.465 Rdelta:  0.01034 
#>  168 Number of features:   56 Max AUC:    0.862 AUC:    0.835 Z:    0.413 Rdelta:  0.00827 
#>  169 Number of features:   57 Max AUC:    0.862 AUC:    0.859 Z:    0.384 Rdelta:  0.01745 
#>  170 Number of features:   57 Max AUC:    0.862 AUC:    0.827 Z:    0.522 Rdelta:  0.01396 
#>  171 Number of features:   57 Max AUC:    0.862 AUC:    0.849 Z:    0.486 Rdelta:  0.01117 
#>  172 Number of features:   57 Max AUC:    0.862 AUC:    0.836 Z:    0.431 Rdelta:  0.00893 
#>  173 Number of features:   57 Max AUC:    0.862 AUC:    0.839 Z:    0.446 Rdelta:  0.00715 
#>  174 Number of features:   57 Max AUC:    0.862 AUC:    0.814 Z:    0.467 Rdelta:  0.00572 
#>  175 Number of features:   57 Max AUC:    0.862 AUC:    0.834 Z:    0.381 Rdelta:  0.00457 
#>  176 Number of features:   57 Max AUC:    0.862 AUC:    0.840 Z:    0.388 Rdelta:  0.00366 
#>  177 Number of features:   57 Max AUC:    0.862 AUC:    0.849 Z:    0.394 Rdelta:  0.00293 
#>  178 Number of features:   57 Max AUC:    0.862 AUC:    0.834 Z:    0.402 Rdelta:  0.00234 
#>  179 Number of features:   57 Max AUC:    0.862 AUC:    0.844 Z:    0.465 Rdelta:  0.00187 
#>  180 Number of features:   58 Max AUC:    0.862 AUC:    0.860 Z:    0.365 Rdelta:  0.01169 
#>  181 Number of features:   58 Max AUC:    0.862 AUC:    0.830 Z:    0.421 Rdelta:  0.00935 
#>  182 Number of features:   58 Max AUC:    0.862 AUC:    0.826 Z:    0.506 Rdelta:  0.00748 
#>  183 Number of features:   58 Max AUC:    0.862 AUC:    0.824 Z:    0.460 Rdelta:  0.00598 
#>  184 Number of features:   59 Max AUC:    0.862 AUC:    0.858 Z:    0.509 Rdelta:  0.01538 
#>  185 Number of features:   59 Max AUC:    0.862 AUC:    0.850 Z:    0.485 Rdelta:  0.01231 
#>  186 Number of features:   59 Max AUC:    0.862 AUC:    0.825 Z:    0.405 Rdelta:  0.00985 
#>  187 Number of features:   59 Max AUC:    0.862 AUC:    0.836 Z:    0.436 Rdelta:  0.00788 
#>  188 Number of features:   59 Max AUC:    0.862 AUC:    0.823 Z:    0.441 Rdelta:  0.00630 
#>  189 Number of features:   59 Max AUC:    0.862 AUC:    0.838 Z:    0.423 Rdelta:  0.00504 
#>  190 Number of features:   60 Max AUC:    0.862 AUC:    0.855 Z:    0.282 Rdelta:  0.01454 
#>  191 Number of features:   60 Max AUC:    0.862 AUC:    0.843 Z:    0.286 Rdelta:  0.01163 
#>  192 Number of features:   60 Max AUC:    0.862 AUC:    0.834 Z:    0.339 Rdelta:  0.00930 
#>  193 Number of features:   61 Max AUC:    0.862 AUC:    0.855 Z:    0.292 Rdelta:  0.01837 
#>  194 Number of features:   61 Max AUC:    0.862 AUC:    0.817 Z:    0.332 Rdelta:  0.01470 
#>  195 Number of features:   61 Max AUC:    0.862 AUC:    0.847 Z:    0.335 Rdelta:  0.01176 
#>  196 Number of features:   61 Max AUC:    0.862 AUC:    0.810 Z:    0.345 Rdelta:  0.00941 
#>  197 Number of features:   61 Max AUC:    0.862 AUC:    0.838 Z:    0.314 Rdelta:  0.00753 
#>  198 Number of features:   61 Max AUC:    0.862 AUC:    0.829 Z:    0.373 Rdelta:  0.00602 
#>  199 Number of features:   61 Max AUC:    0.862 AUC:    0.836 Z:    0.298 Rdelta:  0.00482 
#>  200 Number of features:   61 Max AUC:    0.862 AUC:    0.848 Z:    0.291 Rdelta:  0.00385 
#>  201 Number of features:   61 Max AUC:    0.862 AUC:    0.829 Z:    0.307 Rdelta:  0.00308 
#>  202 Number of features:   61 Max AUC:    0.862 AUC:    0.845 Z:    0.272 Rdelta:  0.00247 
#>  203 Number of features:   61 Max AUC:    0.862 AUC:    0.823 Z:    0.300 Rdelta:  0.00197 
#>  204 Number of features:   61 Max AUC:    0.862 AUC:    0.843 Z:    0.316 Rdelta:  0.00158 
#>  205 Number of features:   61 Max AUC:    0.862 AUC:    0.823 Z:    0.387 Rdelta:  0.00126 
#>  206 Number of features:   61 Max AUC:    0.862 AUC:    0.835 Z:    0.345 Rdelta:  0.00101 
#>  207 Number of features:   61 Max AUC:    0.862 AUC:    0.841 Z:    0.380 Rdelta:  0.00081 
#>  208 Number of features:   61 Max AUC:    0.862 AUC:    0.842 Z:    0.436 Rdelta:  0.00065 
#>  209 Number of features:   61 Max AUC:    0.862 AUC:    0.821 Z:    0.335 Rdelta:  0.00052 
#>  210 Number of features:   61 Max AUC:    0.862 AUC:    0.847 Z:    0.411 Rdelta:  0.00041 
#>  211 Number of features:   62 Max AUC:    0.862 AUC:    0.858 Z:    0.336 Rdelta:  0.01037 
#>  212 Number of features:   62 Max AUC:    0.862 AUC:    0.845 Z:    0.385 Rdelta:  0.00830 
#>  213 Number of features:   62 Max AUC:    0.862 AUC:    0.849 Z:    0.318 Rdelta:  0.00664 
#>  214 Number of features:   62 Max AUC:    0.862 AUC:    0.826 Z:    0.375 Rdelta:  0.00531 
#>  215 Number of features:   62 Max AUC:    0.862 AUC:    0.835 Z:    0.312 Rdelta:  0.00425 
#>  216 Number of features:   62 Max AUC:    0.862 AUC:    0.841 Z:    0.318 Rdelta:  0.00340 
#>  217 Number of features:   62 Max AUC:    0.862 AUC:    0.841 Z:    0.319 Rdelta:  0.00272 
#>  218 Number of features:   62 Max AUC:    0.862 AUC:    0.838 Z:    0.263 Rdelta:  0.00218 
#>  219 Number of features:   62 Max AUC:    0.862 AUC:    0.822 Z:    0.316 Rdelta:  0.00174 
#>  220 Number of features:   62 Max AUC:    0.862 AUC:    0.837 Z:    0.447 Rdelta:  0.00139 
#>  221 Number of features:   62 Max AUC:    0.862 AUC:    0.825 Z:    0.323 Rdelta:  0.00111 
#>  222 Number of features:   62 Max AUC:    0.862 AUC:    0.842 Z:    0.318 Rdelta:  0.00089 
#>  223 Number of features:   62 Max AUC:    0.862 AUC:    0.829 Z:    0.253 Rdelta:  0.00071 
#>  224 Number of features:   62 Max AUC:    0.862 AUC:    0.827 Z:    0.369 Rdelta:  0.00057 
#>  225 Number of features:   62 Max AUC:    0.862 AUC:    0.835 Z:    0.314 Rdelta:  0.00046 
#>  226 Number of features:   62 Max AUC:    0.862 AUC:    0.828 Z:    0.410 Rdelta:  0.00036 
#>  227 Number of features:   62 Max AUC:    0.862 AUC:    0.850 Z:    0.331 Rdelta:  0.00029 
#>  228 Number of features:   62 Max AUC:    0.862 AUC:    0.842 Z:    0.310 Rdelta:  0.00023 
#>  229 Number of features:   62 Max AUC:    0.862 AUC:    0.846 Z:    0.374 Rdelta:  0.00019 
#>  230 Number of features:   62 Max AUC:    0.862 AUC:    0.819 Z:    0.398 Rdelta:  0.00015 
#>  231 Number of features:   62 Max AUC:    0.862 AUC:    0.833 Z:    0.397 Rdelta:  0.00012 
#>  232 Number of features:   62 Max AUC:    0.862 AUC:    0.825 Z:    0.285 Rdelta:  0.00010
#>    user  system elapsed 
#>  136.02    0.00  136.12
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN") 
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))

ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################

sig_thesets <- c("Pearson","RMS","RMS_2","Manhatan")

bp <- barPlotCiError(as.matrix(sig_ACCtable),metricname="Accuracy",thesets=sig_thesets,themethod=c("Z>3","V5","V10","V10b"),main="Accuracy",args.legend = list(x = "bottomright"))


bp <- barPlotCiError(as.matrix(sig_errorcitable),metricname="Balanced Error",thesets=sig_thesets,themethod=c("Z>3","V5","V10","V10b"),main="Balanced Error",args.legend = list(x = "topright"))



  arceneCV <- FRESA.Model(formula = Labels ~ 1,data = arcene.norm,filter.p.value = 0.01,CVfolds = 3,repeats = 5,bswimsCycles=10,usrFitFun=svm)
#> Unadjusted size: 3373  Adjusted Size: 3535 
#> ..
#>  Vars: 10000 Size: 100 , Fraction=  0.168,  Average random size =  20.00, Size:400.00 
#> 
#>  Z:  2.575829 , Var Max:  3373 , s1: 10001 , s2: 4118 , Independent Size: 800 
#> [1] "V3365 + V7748 + V2556 + V1936 + V7513 + V4200 + V7212 + V2804 + V2256 + V52 + V271 + V9818 + V2264 + V4198 + V4352 + V1046 + V4295 + V6584 + V6567 + V2973 + V9402 + V2358 + V3592 + V729 + V6164 + V8026 + V6440 + V5936 + V762 + V22 + V4055 + V5321 + V3161 + V6692 + V7189 + V2533 + V8586 + V754 + V1184 + V6520"
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8899272 : Labels  ~ 1 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408 
#> 1 : 3364 : 0.86582 : Labels  ~ 1 + V5005 + V1476 + V9275 + V3708 + V9158 + V4584 + V6685 + V9213 + V5321 
#> 2 : 3355 : 0.8439689 : Labels  ~ 1 + V4290 + V3365 + V9215 + V9395 + V4011 + V7891 + V3675 
#> 3 : 3348 : 0.8424779 : Labels  ~ 1 + V7748 + V8368 + V5680 + V4406 + V1344 + V4352 + V8969 + V584 
#> 4 : 3340 : 0.8463496 : Labels  ~ 1 + V2556 + V9818 + V312 + V3161 + V729 + V762 
#> 5 : 3334 : 0.8192451 : Labels  ~ 1 + V8502 + V7272 + V5761 + V1248 + V7195 + V6472 
#> 6 : 3328 : 0.8345967 : Labels  ~ 1 + V6584 + V414 + V4973 + V4301 + V5454 + V723 + V5194 
#> 7 : 3321 : 0.8124393 : Labels  ~ 1 + V2309 + V436 + V8156 + V4326 + V9965 + V9919 + V711 
#> 8 : 3314 : 0.7881142 : Labels  ~ 1 + V1975 + V9617 + V1184 + V6688 + V1831 
#> 9 : 3309 : 0.8124757 : Labels  ~ 1 + V9027 + V8055 + V86 + V2515 + V3170 
#> 
#> Num. Models: 10  To Test: 69  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*CV pvalue    : 0.05 
#> Update    : Labels ~ 1 + V5005 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408 
#> At Accuray: Labels  ~ 1 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408 
#> B:SWiMS   : Labels  ~ 1 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408 
#> Loop : 1 Input Cases = 88 Input Control = 112 
#> Loop : 1 Train Cases = 58 Train Control = 74 
#> Loop : 1 Blind Cases = 30 Blind Control = 38 
#> K   : 11 KNN T Cases = 58 KNN T Control = 58 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8745541 : Labels  ~ 1 + V3628 + V9818 + V3161 + V1664 + V2597 + V7928 
#> 1 : 3367 : 0.8216551 : Labels  ~ 1 + V3365 + V8156 + V6198 + V3592 
#> 2 : 3363 : 0.7936555 : Labels  ~ 1 + V312 + V6584 + V729 
#> 3 : 3360 : 0.8451632 : Labels  ~ 1 + V5005 + V455 + V4584 + V52 + V9275 
#> 4 : 3355 : 0.7735905 : Labels  ~ 1 + V8368 + V1097 
#> 5 : 3353 : 0.7857353 : Labels  ~ 1 + V4960 + V9215 + V1128 
#> 6 : 3350 : 0.8322935 : Labels  ~ 1 + V414 + V9965 + V8981 + V723 
#> 7 : 3346 : 0.7671598 : Labels  ~ 1 + V376 + V256 + V7849 
#> 8 : 3343 : 0.794387 : Labels  ~ 1 + V1936 + V9027 + V6164 
#> 9 : 3340 : 0.8561705 : Labels  ~ 1 + V2309 + V1831 + V9395 + V9932 + V1476 
#> 
#> Num. Models: 10  To Test: 38  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V3628 + V5005 + V9818 + V3161 + V1664 + V2597 + V7928 
#> At Accuracy: Labels  ~ 1 + V3628 + V9818 + V3161 + V1664 + V2597 + V7928 
#> B:SWiMS    : Labels  ~ 1 + V3628 + V9818 + V3161 + V1664 + V2597 + V7928 
#> 
#> Num. Models: 320  To Test: 1115  TopFreq: 11.97959  Thrf: 0  Removed: 0 
#> ................................*Loop : 1 Blind Cases = 30 Blind Control = 38 Total = 68 Size Cases = 30 Size Control = 38 
#> Accumulated Models CV Accuracy        = 0.75 Sensitivity = 0.7333333 Specificity = 0.7631579 Forw. Ensemble Accuracy= 0.75 
#> Initial Model Accumulated CV Accuracy = 0.8529412 Sensitivity = 0.8 Specificity = 0.8947368 
#> Initial Model Bootstrapped Accuracy   = 0.8708198 Sensitivity = 0.8635691 Specificity = 0.8780704 
#> Current Model Bootstrapped Accuracy   = 0.8745541 Sensitivity = 0.8998216 Specificity = 0.8492866 
#> Current KNN Accuracy   = 0.7941176 Sensitivity = 0.9333333 Specificity = 0.6842105 
#> Initial KNN Accuracy   = 0.8088235 Sensitivity = 0.9 Specificity = 0.7368421 
#> Train Correlation:  0.7704895  Blind Correlation : 0.6820247 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    26    2
#>   TRUE     11   29
#> Loop : 2 Input Cases = 88 Input Control = 112 
#> Loop : 2 Train Cases = 59 Train Control = 75 
#> Loop : 2 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8468732 : Labels  ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629 
#> 1 : 3368 : 0.8424216 : Labels  ~ 1 + V7891 + V1975 + V4352 + V4301 + V9215 + V7062 + V5321 
#> 2 : 3361 : 0.8264052 : Labels  ~ 1 + V9213 + V9818 + V5982 
#> 3 : 3358 : 0.8649282 : Labels  ~ 1 + V8623 + V5 + V9275 + V1602 + V629 
#> 4 : 3353 : 0.8542654 : Labels  ~ 1 + V4290 + V469 + V3170 + V8055 + V5487 + V9276 + V2408 
#> 5 : 3346 : 0.8124814 : Labels  ~ 1 + V872 + V1046 + V5680 + V6685 
#> 6 : 3342 : 0.875781 : Labels  ~ 1 + V782 + V5417 + V4018 + V8245 + V6114 + V4564 
#> 7 : 3336 : 0.7950089 : Labels  ~ 1 + V4557 + V5761 + V9525 
#> 8 : 3333 : 0.8331371 : Labels  ~ 1 + V698 + V898 + V4685 + V9346 + V9805 
#> 9 : 3328 : 0.8004709 : Labels  ~ 1 + V1831 + V4200 + V3947 
#> 
#> Num. Models: 10  To Test: 48  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629 
#> At Accuracy: Labels  ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629 
#> 
#> Num. Models: 320  To Test: 1038  TopFreq: 9.342105  Thrf: 0  Removed: 0 
#> ................................*Loop : 2 Blind Cases = 29 Blind Control = 37 Total = 134 Size Cases = 59 Size Control = 75 
#> Accumulated Models CV Accuracy        = 0.7462687 Sensitivity = 0.7627119 Specificity = 0.7333333 Forw. Ensemble Accuracy= 0.7686567 
#> Initial Model Accumulated CV Accuracy = 0.8731343 Sensitivity = 0.8135593 Specificity = 0.92 
#> Initial Model Bootstrapped Accuracy   = 0.8780165 Sensitivity = 0.8893467 Specificity = 0.8666863 
#> Current Model Bootstrapped Accuracy   = 0.8468732 Sensitivity = 0.8822326 Specificity = 0.8115137 
#> Current KNN Accuracy   = 0.761194 Sensitivity = 0.9152542 Specificity = 0.64 
#> Initial KNN Accuracy   = 0.8134328 Sensitivity = 0.9322034 Specificity = 0.72 
#> Train Correlation:  0.7267996  Blind Correlation : 0.7669972 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    49    4
#>   TRUE     20   61
#> Loop : 3 Input Cases = 88 Input Control = 112 
#> Loop : 3 Train Cases = 59 Train Control = 75 
#> Loop : 3 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8440828 : Labels  ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597 
#> 1 : 3366 : 0.8376258 : Labels  ~ 1 + V6163 + V312 + V662 + V1046 + V4352 
#> 2 : 3361 : 0.7667949 : Labels  ~ 1 + V4215 + V3365 + V4069 
#> 3 : 3358 : 0.8481179 : Labels  ~ 1 + V2556 + V9833 + V6083 + V4564 + V4960 + V2818 + V2549 
#> 4 : 3351 : 0.7803738 : Labels  ~ 1 + V2052 + V8368 + V7212 + V9818 
#> 5 : 3347 : 0.792561 : Labels  ~ 1 + V2309 + V34 + V1865 
#> 6 : 3344 : 0.7642288 : Labels  ~ 1 + V7891 + V1762 + V9275 
#> 7 : 3341 : 0.8048128 : Labels  ~ 1 + V9617 + V4584 + V4290 + V867 
#> 8 : 3337 : 0.8217262 : Labels  ~ 1 + V414 + V5680 + V4295 + V3675 
#> 9 : 3333 : 0.7527023 : Labels  ~ 1 + V376 + V4326 
#> 
#> Num. Models: 10  To Test: 42  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597 
#> At Accuracy: Labels  ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597 
#> B:SWiMS    : Labels  ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597 
#> 
#> Num. Models: 320  To Test: 1184  TopFreq: 12.82353  Thrf: 0  Removed: 0 
#> ................................*Loop : 3 Blind Cases = 29 Blind Control = 37 Total = 200 Size Cases = 88 Size Control = 112 
#> Accumulated Models CV Accuracy        = 0.775 Sensitivity = 0.7613636 Specificity = 0.7857143 Forw. Ensemble Accuracy= 0.785 
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8522727 Specificity = 0.8928571 
#> Initial Model Bootstrapped Accuracy   = 0.8813858 Sensitivity = 0.8857898 Specificity = 0.8769818 
#> Current Model Bootstrapped Accuracy   = 0.8440828 Sensitivity = 0.8508876 Specificity = 0.8372781 
#> Current KNN Accuracy   = 0.755 Sensitivity = 0.9204545 Specificity = 0.625 
#> Initial KNN Accuracy   = 0.795 Sensitivity = 0.8863636 Specificity = 0.7232143 
#> Train Correlation:  0.7619706  Blind Correlation : 0.8150089 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    73    4
#>   TRUE     36   87
#> Loop : 4 Input Cases = 88 Input Control = 112 
#> Loop : 4 Train Cases = 58 Train Control = 74 
#> Loop : 4 Blind Cases = 30 Blind Control = 38 
#> K   : 11 KNN T Cases = 58 KNN T Control = 58 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8010386 : Labels  ~ 1 + V533 + V9275 + V3629 + V2529 
#> 1 : 3369 : 0.7609202 : Labels  ~ 1 + V5457 + V7378 + V9215 
#> 2 : 3366 : 0.7684854 : Labels  ~ 1 + V8089 + V1400 + V1831 
#> 3 : 3363 : 0.769265 : Labels  ~ 1 + V5796 + V872 + V9818 
#> 4 : 3360 : 0.8074304 : Labels  ~ 1 + V1516 + V4733 + V6584 + V2556 
#> 5 : 3356 : 0.7646269 : Labels  ~ 1 + V1510 
#> 6 : 3355 : 0.7598366 : Labels  ~ 1 + V7124 
#> 7 : 3354 : 0.8157042 : Labels  ~ 1 + V3952 + V9735 + V9965 + V4352 
#> 8 : 3350 : 0.779628 : Labels  ~ 1 + V256 + V4973 + V5801 
#> 9 : 3347 : 0.8365639 : Labels  ~ 1 + V6473 + V5005 + V1072 + V8156 + V7716 + V4522 
#> 
#> Num. Models: 10  To Test: 32  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V533 + V9275 + V3629 + V2529 
#> At Accuracy: Labels  ~ 1 + V533 + V9275 + V3629 + V2529 
#> B:SWiMS    : Labels  ~ 1 + V533 + V9275 + V3629 + V2529 
#> 
#> Num. Models: 320  To Test: 1115  TopFreq: 15.97826  Thrf: 0  Removed: 0 
#> ................................*Loop : 4 Blind Cases = 30 Blind Control = 38 Total = 268 Size Cases = 118 Size Control = 150 
#> Accumulated Models CV Accuracy        = 0.7649254 Sensitivity = 0.7457627 Specificity = 0.78 Forw. Ensemble Accuracy= 0.7835821 
#> Initial Model Accumulated CV Accuracy = 0.880597 Sensitivity = 0.8728814 Specificity = 0.8866667 
#> Initial Model Bootstrapped Accuracy   = 0.8573534 Sensitivity = 0.8603006 Specificity = 0.8544061 
#> Current Model Bootstrapped Accuracy   = 0.8010386 Sensitivity = 0.8181009 Specificity = 0.7839763 
#> Current KNN Accuracy   = 0.7350746 Sensitivity = 0.8389831 Specificity = 0.6533333 
#> Initial KNN Accuracy   = 0.7910448 Sensitivity = 0.8728814 Specificity = 0.7266667 
#> Train Correlation:  0.7686809  Blind Correlation : 0.6777112 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   102   15
#>   TRUE     45  106
#> Loop : 5 Input Cases = 88 Input Control = 112 
#> Loop : 5 Train Cases = 59 Train Control = 75 
#> Loop : 5 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7629046 : Labels  ~ 1 + V5005 + V6440 + V5400 + V9818 
#> 1 : 3369 : 0.8326397 : Labels  ~ 1 + V7513 + V7891 + V1831 + V2868 + V3161 + V2665 + V5321 
#> 2 : 3362 : 0.7637555 : Labels  ~ 1 + V723 + V2556 + V6408 + V9275 
#> 3 : 3358 : 0.8220191 : Labels  ~ 1 + V1936 + V4290 + V9215 + V8038 + V4564 + V7641 
#> 4 : 3352 : 0.7593355 : Labels  ~ 1 + V5473 + V8378 + V867 
#> 5 : 3349 : 0.7896674 : Labels  ~ 1 + V8502 + V7745 + V8156 + V1512 + V2358 
#> 6 : 3344 : 0.7560976 : Labels  ~ 1 + V819 + V764 + V9970 
#> 7 : 3341 : 0.7678046 : Labels  ~ 1 + V698 + V9395 + V6584 
#> 8 : 3338 : 0.7589418 : Labels  ~ 1 + V9485 + V2462 + V6163 
#> 9 : 3335 : 0.7833679 : Labels  ~ 1 + V7748 + V5761 + V3857 
#> 
#> Num. Models: 10  To Test: 41  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V6440 + V5400 + V9818 
#> At Accuracy: Labels  ~ 1 + V5005 + V6440 + V5400 + V9818 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V6440 + V5400 + V9818 
#> 
#> Num. Models: 320  To Test: 1113  TopFreq: 11.97059  Thrf: 0  Removed: 0 
#> ................................*Loop : 5 Blind Cases = 29 Blind Control = 37 Total = 334 Size Cases = 147 Size Control = 187 
#> Accumulated Models CV Accuracy        = 0.7814371 Sensitivity = 0.7823129 Specificity = 0.7807487 Forw. Ensemble Accuracy= 0.8053892 
#> Initial Model Accumulated CV Accuracy = 0.8772455 Sensitivity = 0.8571429 Specificity = 0.8930481 
#> Initial Model Bootstrapped Accuracy   = 0.8823874 Sensitivity = 0.8750731 Specificity = 0.8897016 
#> Current Model Bootstrapped Accuracy   = 0.7629046 Sensitivity = 0.7970254 Specificity = 0.7287839 
#> Current KNN Accuracy   = 0.7335329 Sensitivity = 0.8367347 Specificity = 0.6524064 
#> Initial KNN Accuracy   = 0.8053892 Sensitivity = 0.8911565 Specificity = 0.7379679 
#> Train Correlation:  0.6782263  Blind Correlation : 0.7907108 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   127   19
#>   TRUE     51  137
#> Loop : 6 Input Cases = 88 Input Control = 112 
#> Loop : 6 Train Cases = 59 Train Control = 75 
#> Loop : 6 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8891947 : Labels  ~ 1 + V7857 + V1831 + V6163 + V3987 + V8222 + V312 + V4564 
#> 1 : 3366 : 0.8425382 : Labels  ~ 1 + V8806 + V9884 + V7319 + V5107 + V2556 
#> 2 : 3361 : 0.8743799 : Labels  ~ 1 + V8368 + V7220 + V4584 + V9213 + V1184 
#> 3 : 3356 : 0.8182351 : Labels  ~ 1 + V86 + V1529 + V729 
#> 4 : 3353 : 0.8553922 : Labels  ~ 1 + V6428 + V6959 + V3365 + V376 + V3170 
#> 5 : 3348 : 0.8150805 : Labels  ~ 1 + V436 + V3014 + V4666 
#> 6 : 3345 : 0.8098653 : Labels  ~ 1 + V1476 + V4326 + V62 + V5346 
#> 7 : 3341 : 0.8319093 : Labels  ~ 1 + V7748 + V3272 + V5683 + V9276 + V6572 
#> 8 : 3336 : 0.8614406 : Labels  ~ 1 + V698 + V2309 + V1097 + V4301 + V4352 + V1397 + V6573 
#> 9 : 3329 : 0.8144764 : Labels  ~ 1 + V8048 + V4960 + V5761 + V1344 
#> 
#> Num. Models: 10  To Test: 48  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V7857 + V9884 + V1831 + V6163 + V3987 + V8222 + V312 + V6440 + V4564 + V630 
#> At Accuracy: Labels  ~ 1 + V7857 + V1831 + V6163 + V3987 + V8222 + V312 + V4564 
#> B:SWiMS    : Labels  ~ 1 + V7857 + V1831 + V6163 + V3987 + V8222 + V312 + V4564 
#> 
#> Num. Models: 320  To Test: 1030  TopFreq: 13.69388  Thrf: 0  Removed: 0 
#> ................................*Loop : 6 Blind Cases = 29 Blind Control = 37 Total = 400 Size Cases = 176 Size Control = 224 
#> Accumulated Models CV Accuracy        = 0.7675 Sensitivity = 0.7670455 Specificity = 0.7678571 Forw. Ensemble Accuracy= 0.7975 
#> Initial Model Accumulated CV Accuracy = 0.88 Sensitivity = 0.8636364 Specificity = 0.8928571 
#> Initial Model Bootstrapped Accuracy   = 0.887456 Sensitivity = 0.8889215 Specificity = 0.8859906 
#> Current Model Bootstrapped Accuracy   = 0.8891947 Sensitivity = 0.8878911 Specificity = 0.8904983 
#> Current KNN Accuracy   = 0.7325 Sensitivity = 0.8465909 Specificity = 0.6428571 
#> Initial KNN Accuracy   = 0.805 Sensitivity = 0.8920455 Specificity = 0.7366071 
#> Train Correlation:  0.8266013  Blind Correlation : 0.780691 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   152   19
#>   TRUE     61  168
#> Loop : 7 Input Cases = 88 Input Control = 112 
#> Loop : 7 Train Cases = 58 Train Control = 74 
#> Loop : 7 Blind Cases = 30 Blind Control = 38 
#> K   : 11 KNN T Cases = 58 KNN T Control = 58 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7811671 : Labels  ~ 1 + V1762 + V5005 + V2256 
#> 1 : 3370 : 0.8465171 : Labels  ~ 1 + V6403 + V3629 + V698 + V1831 + V729 + V6520 + V4738 
#> 2 : 3363 : 0.8510289 : Labels  ~ 1 + V4290 + V5796 + V8156 + V9070 + V5982 + V5147 + V1289 
#> 3 : 3356 : 0.8292358 : Labels  ~ 1 + V1400 + V7857 + V3014 + V3545 + V2438 
#> 4 : 3351 : 0.8390839 : Labels  ~ 1 + V1516 + V7748 + V9965 + V4908 + V3547 + V4708 
#> 5 : 3345 : 0.8704196 : Labels  ~ 1 + V1476 + V9275 + V723 + V1072 + V8720 + V2597 + V6567 + V9672 
#> 6 : 3337 : 0.8848098 : Labels  ~ 1 + V436 + V5400 + V9818 + V1584 + V2309 + V6594 + V716 
#> 7 : 3330 : 0.7756278 : Labels  ~ 1 + V7513 + V8806 + V9215 
#> 8 : 3327 : 0.8186054 : Labels  ~ 1 + V86 + V5761 + V6597 + V6688 
#> 9 : 3323 : 0.8217496 : Labels  ~ 1 + V7220 + V3952 + V3170 + V5680 + V3866 
#> 
#> Num. Models: 10  To Test: 55  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V1762 + V5005 + V2256 
#> At Accuracy: Labels  ~ 1 + V1762 + V5005 + V2256 
#> B:SWiMS    : Labels  ~ 1 + V1762 + V5005 + V2256 
#> 
#> Num. Models: 320  To Test: 1060  TopFreq: 16.5  Thrf: 0  Removed: 0 
#> ................................*Loop : 7 Blind Cases = 30 Blind Control = 38 Total = 468 Size Cases = 206 Size Control = 262 
#> Accumulated Models CV Accuracy        = 0.7692308 Sensitivity = 0.7524272 Specificity = 0.7824427 Forw. Ensemble Accuracy= 0.7970085 
#> Initial Model Accumulated CV Accuracy = 0.8824786 Sensitivity = 0.8543689 Specificity = 0.9045802 
#> Initial Model Bootstrapped Accuracy   = 0.873252 Sensitivity = 0.8809878 Specificity = 0.8655162 
#> Current Model Bootstrapped Accuracy   = 0.7811671 Sensitivity = 0.8414383 Specificity = 0.720896 
#> Current KNN Accuracy   = 0.7350427 Sensitivity = 0.8349515 Specificity = 0.6564885 
#> Initial KNN Accuracy   = 0.8119658 Sensitivity = 0.9029126 Specificity = 0.740458 
#> Train Correlation:  0.6099607  Blind Correlation : 0.7212658 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   183   23
#>   TRUE     73  189
#> Loop : 8 Input Cases = 88 Input Control = 112 
#> Loop : 8 Train Cases = 59 Train Control = 75 
#> Loop : 8 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8556473 : Labels  ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352 
#> 1 : 3367 : 0.7690033 : Labels  ~ 1 + V7891 + V4326 + V6083 
#> 2 : 3364 : 0.8061373 : Labels  ~ 1 + V6594 + V3014 + V3218 + V4301 + V2358 
#> 3 : 3359 : 0.7749488 : Labels  ~ 1 + V5808 + V9215 + V4900 
#> 4 : 3356 : 0.8195544 : Labels  ~ 1 + V3365 + V7319 + V8402 + V762 + V1046 
#> 5 : 3351 : 0.8335308 : Labels  ~ 1 + V8368 + V898 + V8117 + V3170 + V5774 + V5881 + V8640 
#> 6 : 3344 : 0.7900875 : Labels  ~ 1 + V4960 + V5761 + V5995 
#> 7 : 3341 : 0.7248244 : Labels  ~ 1 + V414 + V8055 
#> 8 : 3339 : 0.7323041 : Labels  ~ 1 + V2309 + V5680 
#> 9 : 3337 : 0.7914844 : Labels  ~ 1 + V5005 + V1831 + V754 + V2804 + V3778 
#> 
#> Num. Models: 10  To Test: 41  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352 
#> At Accuracy: Labels  ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352 
#> 
#> Num. Models: 320  To Test: 1115  TopFreq: 10.31579  Thrf: 0  Removed: 0 
#> ................................*Loop : 8 Blind Cases = 29 Blind Control = 37 Total = 534 Size Cases = 235 Size Control = 299 
#> Accumulated Models CV Accuracy        = 0.7771536 Sensitivity = 0.7659574 Specificity = 0.7859532 Forw. Ensemble Accuracy= 0.8089888 
#> Initial Model Accumulated CV Accuracy = 0.8895131 Sensitivity = 0.8723404 Specificity = 0.90301 
#> Initial Model Bootstrapped Accuracy   = 0.8608901 Sensitivity = 0.867374 Specificity = 0.8544061 
#> Current Model Bootstrapped Accuracy   = 0.8556473 Sensitivity = 0.846358 Specificity = 0.8649366 
#> Current KNN Accuracy   = 0.7453184 Sensitivity = 0.8382979 Specificity = 0.6722408 
#> Initial KNN Accuracy   = 0.8146067 Sensitivity = 0.8978723 Specificity = 0.7491639 
#> Train Correlation:  0.8315291  Blind Correlation : 0.8026093 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   211   28
#>   TRUE     79  216
#> Loop : 9 Input Cases = 88 Input Control = 112 
#> Loop : 9 Train Cases = 59 Train Control = 75 
#> Loop : 9 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8306878 : Labels  ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193 
#> 1 : 3368 : 0.8420124 : Labels  ~ 1 + V3628 + V8156 + V1476 + V3987 
#> 2 : 3364 : 0.8930771 : Labels  ~ 1 + V1055 + V3170 + V9659 + V6163 + V2880 + V7161 
#> 3 : 3358 : 0.8169487 : Labels  ~ 1 + V5457 + V3339 + V9818 
#> 4 : 3355 : 0.8121909 : Labels  ~ 1 + V7748 + V533 + V4414 + V9275 
#> 5 : 3351 : 0.8064469 : Labels  ~ 1 + V436 + V3206 + V723 + V9215 
#> 6 : 3347 : 0.798153 : Labels  ~ 1 + V6986 + V4733 + V1831 
#> 7 : 3344 : 0.7861305 : Labels  ~ 1 + V2085 + V872 + V9965 
#> 8 : 3341 : 0.8612001 : Labels  ~ 1 + V4040 + V2637 + V8849 + V4301 + V2597 
#> 9 : 3336 : 0.8018785 : Labels  ~ 1 + V6523 + V893 + V819 
#> 
#> Num. Models: 10  To Test: 40  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193 
#> At Accuracy: Labels  ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193 
#> B:SWiMS    : Labels  ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193 
#> 
#> Num. Models: 320  To Test: 1148  TopFreq: 11.40625  Thrf: 0  Removed: 0 
#> ................................*Loop : 9 Blind Cases = 29 Blind Control = 37 Total = 600 Size Cases = 264 Size Control = 336 
#> Accumulated Models CV Accuracy        = 0.77 Sensitivity = 0.7689394 Specificity = 0.7708333 Forw. Ensemble Accuracy= 0.7966667 
#> Initial Model Accumulated CV Accuracy = 0.885 Sensitivity = 0.8712121 Specificity = 0.8958333 
#> Initial Model Bootstrapped Accuracy   = 0.8694371 Sensitivity = 0.8614795 Specificity = 0.8773946 
#> Current Model Bootstrapped Accuracy   = 0.8306878 Sensitivity = 0.8677249 Specificity = 0.7936508 
#> Current KNN Accuracy   = 0.735 Sensitivity = 0.844697 Specificity = 0.6488095 
#> Initial KNN Accuracy   = 0.7933333 Sensitivity = 0.8901515 Specificity = 0.7172619 
#> Train Correlation:  0.7336195  Blind Correlation : 0.6606617 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   231   28
#>   TRUE     89  252
#> Loop : 10 Input Cases = 88 Input Control = 112 
#> Loop : 10 Train Cases = 58 Train Control = 74 
#> Loop : 10 Blind Cases = 30 Blind Control = 38 
#> K   : 11 KNN T Cases = 58 KNN T Control = 58 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8320962 : Labels  ~ 1 + V5005 + V9215 + V5 + V1184 
#> 1 : 3369 : 0.8314793 : Labels  ~ 1 + V9818 + V312 + V7849 + V4301 + V1289 
#> 2 : 3364 : 0.784416 : Labels  ~ 1 + V8156 + V8368 + V1936 
#> 3 : 3361 : 0.8240444 : Labels  ~ 1 + V5761 + V8806 + V9213 + V6688 
#> 4 : 3357 : 0.8162722 : Labels  ~ 1 + V1046 + V3365 + V5417 + V311 
#> 5 : 3353 : 0.8167777 : Labels  ~ 1 + V4960 + V9275 + V1248 + V7857 
#> 6 : 3349 : 0.8350118 : Labels  ~ 1 + V1831 + V2309 + V6111 + V698 + V666 
#> 7 : 3344 : 0.8424855 : Labels  ~ 1 + V7062 + V9617 + V4580 + V2515 + V7748 
#> 8 : 3339 : 0.7733076 : Labels  ~ 1 + V819 + V414 + V2785 
#> 9 : 3336 : 0.8511799 : Labels  ~ 1 + V4070 + V7584 + V86 + V9965 + V2973 + V241 
#> 
#> Num. Models: 10  To Test: 43  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V9215 + V5 + V1184 
#> At Accuracy: Labels  ~ 1 + V5005 + V9215 + V5 + V1184 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V9215 + V5 + V1184 
#> 
#> Num. Models: 320  To Test: 1037  TopFreq: 17.53333  Thrf: 0  Removed: 0 
#> ................................*Loop : 10 Blind Cases = 30 Blind Control = 38 Total = 668 Size Cases = 294 Size Control = 374 
#> Accumulated Models CV Accuracy        = 0.7724551 Sensitivity = 0.7619048 Specificity = 0.7807487 Forw. Ensemble Accuracy= 0.7964072 
#> Initial Model Accumulated CV Accuracy = 0.8907186 Sensitivity = 0.877551 Specificity = 0.9010695 
#> Initial Model Bootstrapped Accuracy   = 0.8719821 Sensitivity = 0.8769001 Specificity = 0.8670641 
#> Current Model Bootstrapped Accuracy   = 0.8320962 Sensitivity = 0.8660926 Specificity = 0.7980998 
#> Current KNN Accuracy   = 0.741018 Sensitivity = 0.8435374 Specificity = 0.6604278 
#> Initial KNN Accuracy   = 0.7904192 Sensitivity = 0.8741497 Specificity = 0.7245989 
#> Train Correlation:  0.77465  Blind Correlation : 0.8332634 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   262   31
#>   TRUE    100  275
#> Loop : 11 Input Cases = 88 Input Control = 112 
#> Loop : 11 Train Cases = 59 Train Control = 75 
#> Loop : 11 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8369016 : Labels  ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064 
#> 1 : 3367 : 0.7863938 : Labels  ~ 1 + V469 + V4584 + V9027 
#> 2 : 3364 : 0.8506647 : Labels  ~ 1 + V7928 + V4352 + V9884 + V8055 + V9234 + V4549 + V5466 
#> 3 : 3357 : 0.8146413 : Labels  ~ 1 + V723 + V4960 + V9275 + V6163 + V1865 
#> 4 : 3352 : 0.8071915 : Labels  ~ 1 + V698 + V8720 + V1097 + V6999 + V3257 
#> 5 : 3347 : 0.7612269 : Labels  ~ 1 + V1975 + V2168 + V414 + V22 
#> 6 : 3343 : 0.7723318 : Labels  ~ 1 + V4183 + V5680 + V5077 
#> 7 : 3340 : 0.7936716 : Labels  ~ 1 + V872 + V5378 + V9213 + V6009 
#> 8 : 3336 : 0.8002603 : Labels  ~ 1 + V5 + V9818 + V7402 + V3152 
#> 9 : 3332 : 0.771849 : Labels  ~ 1 + V782 + V4326 + V5487 + V2145 
#> 
#> Num. Models: 10  To Test: 45  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064 
#> At Accuracy: Labels  ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064 
#> B:SWiMS    : Labels  ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064 
#> 
#> Num. Models: 320  To Test: 1164  TopFreq: 9.418605  Thrf: 0  Removed: 0 
#> ................................*Loop : 11 Blind Cases = 29 Blind Control = 37 Total = 734 Size Cases = 323 Size Control = 411 
#> Accumulated Models CV Accuracy        = 0.7752044 Sensitivity = 0.7616099 Specificity = 0.7858881 Forw. Ensemble Accuracy= 0.7997275 
#> Initial Model Accumulated CV Accuracy = 0.886921 Sensitivity = 0.8854489 Specificity = 0.8880779 
#> Initial Model Bootstrapped Accuracy   = 0.8783824 Sensitivity = 0.8786798 Specificity = 0.878085 
#> Current Model Bootstrapped Accuracy   = 0.8369016 Sensitivity = 0.8614332 Specificity = 0.8123699 
#> Current KNN Accuracy   = 0.739782 Sensitivity = 0.8544892 Specificity = 0.649635 
#> Initial KNN Accuracy   = 0.7901907 Sensitivity = 0.879257 Specificity = 0.7201946 
#> Train Correlation:  0.7429644  Blind Correlation : 0.7657865 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   283   31
#>   TRUE    117  303
#> Loop : 12 Input Cases = 88 Input Control = 112 
#> Loop : 12 Train Cases = 59 Train Control = 75 
#> Loop : 12 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8321534 : Labels  ~ 1 + V2556 + V256 + V1055 + V6198 
#> 1 : 3369 : 0.8557185 : Labels  ~ 1 + V7891 + V9275 + V4158 + V9338 + V1198 + V2700 
#> 2 : 3363 : 0.8465332 : Labels  ~ 1 + V4290 + V9818 + V7272 + V4900 + V2294 + V8026 
#> 3 : 3357 : 0.8461425 : Labels  ~ 1 + V7748 + V729 + V4194 + V6511 + V6440 
#> 4 : 3352 : 0.8076923 : Labels  ~ 1 + V698 + V4069 + V7976 + V9215 
#> 5 : 3348 : 0.8350607 : Labels  ~ 1 + V8502 + V2256 + V4654 + V6584 + V7598 
#> 6 : 3343 : 0.8011995 : Labels  ~ 1 + V1476 + V3952 + V1831 + V2747 
#> 7 : 3339 : 0.852194 : Labels  ~ 1 + V3206 + V9965 + V6181 + V8156 + V7195 + V6180 
#> 8 : 3333 : 0.7685564 : Labels  ~ 1 + V5473 + V5761 + V4056 
#> 9 : 3330 : 0.7673253 : Labels  ~ 1 + V436 + V5680 + V3365 
#> 
#> Num. Models: 10  To Test: 46  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V256 + V1055 + V6198 
#> At Accuracy: Labels  ~ 1 + V2556 + V256 + V1055 + V6198 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V256 + V1055 + V6198 
#> 
#> Num. Models: 320  To Test: 1184  TopFreq: 12.39286  Thrf: 0  Removed: 0 
#> ................................*Loop : 12 Blind Cases = 29 Blind Control = 37 Total = 800 Size Cases = 352 Size Control = 448 
#> Accumulated Models CV Accuracy        = 0.7775 Sensitivity = 0.7727273 Specificity = 0.78125 Forw. Ensemble Accuracy= 0.805 
#> Initial Model Accumulated CV Accuracy = 0.88625 Sensitivity = 0.8863636 Specificity = 0.8861607 
#> Initial Model Bootstrapped Accuracy   = 0.8730417 Sensitivity = 0.8785102 Specificity = 0.8675732 
#> Current Model Bootstrapped Accuracy   = 0.8321534 Sensitivity = 0.8427729 Specificity = 0.8215339 
#> Current KNN Accuracy   = 0.73625 Sensitivity = 0.8551136 Specificity = 0.6428571 
#> Initial KNN Accuracy   = 0.78625 Sensitivity = 0.8863636 Specificity = 0.7075893 
#> Train Correlation:  0.7915136  Blind Correlation : 0.7823192 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   304   35
#>   TRUE    126  335
#> Loop : 13 Input Cases = 88 Input Control = 112 
#> Loop : 13 Train Cases = 58 Train Control = 74 
#> Loop : 13 Blind Cases = 30 Blind Control = 38 
#> K   : 11 KNN T Cases = 58 KNN T Control = 58 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8643585 : Labels  ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128 
#> 1 : 3367 : 0.8523031 : Labels  ~ 1 + V1529 + V4352 + V7857 + V9395 + V1046 + V629 + V7003 
#> 2 : 3360 : 0.8735955 : Labels  ~ 1 + V5825 + V5761 + V1476 + V2515 + V9213 
#> 3 : 3355 : 0.8834027 : Labels  ~ 1 + V3628 + V8806 + V4326 + V1248 + V3170 + V7220 
#> 4 : 3349 : 0.8729642 : Labels  ~ 1 + V436 + V3152 + V5417 + V7446 + V5139 + V6688 
#> 5 : 3343 : 0.8757476 : Labels  ~ 1 + V7748 + V5680 + V9104 + V6111 + V4301 
#> 6 : 3338 : 0.8751486 : Labels  ~ 1 + V698 + V9050 + V9818 + V6780 + V1289 + V3592 
#> 7 : 3332 : 0.845735 : Labels  ~ 1 + V4290 + V312 + V9063 + V7062 + V1667 
#> 8 : 3327 : 0.8229322 : Labels  ~ 1 + V8502 + V7899 + V9215 + V662 
#> 9 : 3323 : 0.8577778 : Labels  ~ 1 + V6428 + V3365 + V7849 + V8156 + V4580 
#> 
#> Num. Models: 10  To Test: 55  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128 
#> At Accuracy: Labels  ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128 
#> 
#> Num. Models: 320  To Test: 1098  TopFreq: 14.8125  Thrf: 0  Removed: 0 
#> ................................*Loop : 13 Blind Cases = 30 Blind Control = 38 Total = 868 Size Cases = 382 Size Control = 486 
#> Accumulated Models CV Accuracy        = 0.7753456 Sensitivity = 0.7670157 Specificity = 0.781893 Forw. Ensemble Accuracy= 0.8029954 
#> Initial Model Accumulated CV Accuracy = 0.8894009 Sensitivity = 0.8874346 Specificity = 0.8909465 
#> Initial Model Bootstrapped Accuracy   = 0.8701356 Sensitivity = 0.8711675 Specificity = 0.8691038 
#> Current Model Bootstrapped Accuracy   = 0.8643585 Sensitivity = 0.8755995 Specificity = 0.8531175 
#> Current KNN Accuracy   = 0.7327189 Sensitivity = 0.8507853 Specificity = 0.6399177 
#> Initial KNN Accuracy   = 0.7834101 Sensitivity = 0.8874346 Specificity = 0.7016461 
#> Train Correlation:  0.8638164  Blind Correlation : 0.6517158 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   331   37
#>   TRUE    138  362
#> Loop : 14 Input Cases = 88 Input Control = 112 
#> Loop : 14 Train Cases = 59 Train Control = 75 
#> Loop : 14 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7909224 : Labels  ~ 1 + V9215 + V7513 + V3365 
#> 1 : 3370 : 0.8374964 : Labels  ~ 1 + V1831 + V5400 + V8368 + V7831 
#> 2 : 3366 : 0.8321189 : Labels  ~ 1 + V8156 + V7212 + V414 + V5321 + V7883 
#> 3 : 3361 : 0.8468732 : Labels  ~ 1 + V723 + V2556 + V9818 + V7928 + V7402 
#> 4 : 3356 : 0.7827748 : Labels  ~ 1 + V7891 + V9965 + V1975 
#> 5 : 3353 : 0.8193018 : Labels  ~ 1 + V9275 + V469 + V312 + V9567 
#> 6 : 3349 : 0.8390351 : Labels  ~ 1 + V4960 + V6584 + V9585 + V6163 + V5698 
#> 7 : 3344 : 0.8036078 : Labels  ~ 1 + V9027 + V1097 + V7032 + V2638 
#> 8 : 3340 : 0.8199467 : Labels  ~ 1 + V7994 + V898 + V8411 + V711 + V5914 
#> 9 : 3335 : 0.8182624 : Labels  ~ 1 + V7272 + V4973 + V4326 + V2438 + V5995 
#> 
#> Num. Models: 10  To Test: 43  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V9215 + V7513 + V3365 
#> At Accuracy: Labels  ~ 1 + V9215 + V7513 + V3365 
#> B:SWiMS    : Labels  ~ 1 + V9215 + V7513 + V3365 
#> 
#> Num. Models: 320  To Test: 1115  TopFreq: 24.81081  Thrf: 1  Removed: 608 
#> ................................*Loop : 14 Blind Cases = 29 Blind Control = 37 Total = 934 Size Cases = 411 Size Control = 523 
#> Accumulated Models CV Accuracy        = 0.7719486 Sensitivity = 0.7639903 Specificity = 0.7782027 Forw. Ensemble Accuracy= 0.7987152 
#> Initial Model Accumulated CV Accuracy = 0.8897216 Sensitivity = 0.892944 Specificity = 0.8871893 
#> Initial Model Bootstrapped Accuracy   = 0.8686602 Sensitivity = 0.8765758 Specificity = 0.8607446 
#> Current Model Bootstrapped Accuracy   = 0.7909224 Sensitivity = 0.8333821 Specificity = 0.7484627 
#> Current KNN Accuracy   = 0.7291221 Sensitivity = 0.8515815 Specificity = 0.6328872 
#> Initial KNN Accuracy   = 0.7815846 Sensitivity = 0.8905109 Specificity = 0.6959847 
#> Train Correlation:  0.8035627  Blind Correlation : 0.7980587 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   354   38
#>   TRUE    150  392
#> Loop : 15 Input Cases = 88 Input Control = 112 
#> Loop : 15 Train Cases = 59 Train Control = 75 
#> Loop : 15 Blind Cases = 29 Blind Control = 37 
#> K   : 11 KNN T Cases = 59 KNN T Control = 59 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7390607 : Labels  ~ 1 + V1936 + V9215 + V7272 
#> 1 : 3370 : 0.7126723 : Labels  ~ 1 + V5005 
#> 2 : 3369 : 0.7598665 : Labels  ~ 1 + V5457 + V9818 + V4666 
#> 3 : 3366 : 0.794356 : Labels  ~ 1 + V533 + V6584 + V3206 + V4301 
#> 4 : 3362 : 0.7783909 : Labels  ~ 1 + V7891 + V9275 + V5400 + V3170 
#> 5 : 3358 : 0.7655565 : Labels  ~ 1 + V4290 + V6239 + V1097 + V2747 
#> 6 : 3354 : 0.8349572 : Labels  ~ 1 + V3352 + V4158 + V4738 + V218 + V1477 + V3983 + V9965 
#> 7 : 3347 : 0.8501742 : Labels  ~ 1 + V3365 + V4584 + V256 + V4564 + V3675 + V4198 
#> 8 : 3341 : 0.7691398 : Labels  ~ 1 + V1831 + V2242 + V2256 
#> 9 : 3338 : 0.7835447 : Labels  ~ 1 + V698 + V8744 + V5774 + V729 
#> 
#> Num. Models: 10  To Test: 39  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V1936 + V9215 + V7272 
#> At Accuracy: Labels  ~ 1 + V1936 + V9215 + V7272 
#> B:SWiMS    : Labels  ~ 1 + V1936 + V9215 + V7272 
#> 
#> Num. Models: 320  To Test: 1120  TopFreq: 9.909091  Thrf: 0  Removed: 0 
#> ................................*Loop : 15 Blind Cases = 29 Blind Control = 37 Total = 1000 Size Cases = 440 Size Control = 560 
#> Accumulated Models CV Accuracy        = 0.779 Sensitivity = 0.7659091 Specificity = 0.7892857 Forw. Ensemble Accuracy= 0.806 
#> Initial Model Accumulated CV Accuracy = 0.887 Sensitivity = 0.8818182 Specificity = 0.8910714 
#> Initial Model Bootstrapped Accuracy   = 0.876545 Sensitivity = 0.8878752 Specificity = 0.8652148 
#> Current Model Bootstrapped Accuracy   = 0.7390607 Sensitivity = 0.7922987 Specificity = 0.6858226 
#> Current KNN Accuracy   = 0.737 Sensitivity = 0.8613636 Specificity = 0.6392857 
#> Initial KNN Accuracy   = 0.784 Sensitivity = 0.8886364 Specificity = 0.7017857 
#> Train Correlation:  0.6784956  Blind Correlation : 0.7718401 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   381   38
#>   TRUE    164  417

#> 
#> Num. Models: 320  To Test: 1334  TopFreq: 13.58621  Thrf: 0  Removed: 0 
#> ................................*:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#
#> Num. Models: 101  To Test: 109  TopFreq: 99  Thrf: 0  Removed: 0 
#> ..........*

  save(arceneCV,file="ArceneV_001_3_5_wsvn.RDATA")

CVACCTable <- NULL
CVBETable <- NULL
arceneCV$cvObject$Models.testPrediction$usrFitFunction_Sel <- arceneCV$cvObject$Models.testPrediction$usrFitFunction_Sel -0.5
arceneCV$cvObject$Models.testPrediction$usrFitFunction <- arceneCV$cvObject$Models.testPrediction$usrFitFunction -0.5
pm <- plotModels.ROC(arceneCV$cvObject$LASSO.testPredictions,theCVfolds=3,main="CV LASSO",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="Prediction",main="BB:SWiMS",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="Ensemble.Forward",main="Forward Median",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="Forward.Selection.Bagged",main="Forward Bagged",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="usrFitFunction",main="SVM",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="usrFitFunction_Sel",main="SVM",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))

CVthesets <- c("LASSO","BSWIMS","Ensemble","Forward Bagging","SVM:Filterd","SVM:BSWIMS")
bp <- barPlotCiError(as.matrix(CVACCTable),metricname="Accuracy",thesets=CVthesets,themethod=c("CV"),main="Accuracy",args.legend = list(x = "bottomright"))


bp <- barPlotCiError(as.matrix(CVBETable),metricname="Balanced Error",thesets=CVthesets,themethod=c("CV"),main="Balanced Error",args.legend = list(x = "topright"))



  arceneCV10 <- FRESA.Model(formula = Labels ~ 1,data = arcene.norm,filter.p.value = 0.01,CVfolds = 10,repeats = 5,bswimsCycles=10,usrFitFun=svm)
#> Unadjusted size: 3373  Adjusted Size: 3535 
#> ..
#>  Vars: 10000 Size: 100 , Fraction=  0.136,  Average random size =  15.60, Size:312.00 
#> 
#>  Z:  2.575829 , Var Max:  3373 , s1: 10001 , s2: 4118 , Independent Size: 624 
#> [1] "V3365 + V7748 + V2556 + V1936 + V7513 + V4200 + V7212 + V2804 + V2256 + V52 + V271 + V9818 + V2264 + V4198 + V4352 + V9275 + V1046 + V4295 + V6584 + V6567 + V9402 + V2358 + V3592 + V729 + V6164 + V8026 + V6440 + V5936 + V762 + V22 + V4055 + V5321 + V3161 + V6692 + V7189 + V2533 + V8586 + V754 + V1184 + V6520"
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8570153 : Labels  ~ 1 + V5005 + V5680 + V130 + V2145 + V4290 + V1943 + V8245 
#> 1 : 3366 : 0.8208178 : Labels  ~ 1 + V698 + V3365 + V6163 + V6688 + V6584 + V1344 
#> 2 : 3360 : 0.9036778 : Labels  ~ 1 + V312 + V9275 + V4584 + V3161 + V9287 + V5321 + V2700 + V4198 + V3725 
#> 3 : 3351 : 0.8088065 : Labels  ~ 1 + V7891 + V9818 + V1975 + V6780 + V4352 
#> 4 : 3346 : 0.8592629 : Labels  ~ 1 + V8368 + V7748 + V9215 + V5400 + V729 + V8726 + V6948 + V5140 
#> 5 : 3338 : 0.8155512 : Labels  ~ 1 + V1476 + V2309 + V1831 + V9395 + V9268 
#> 6 : 3333 : 0.8557692 : Labels  ~ 1 + V436 + V4960 + V256 + V2515 + V3778 + V3592 + V1173 + V8835 
#> 7 : 3325 : 0.8320328 : Labels  ~ 1 + V2556 + V3014 + V414 + V5995 + V6083 + V4301 
#> 8 : 3319 : 0.8103516 : Labels  ~ 1 + V9617 + V5378 + V4973 + V22 + V3170 + V4900 
#> 9 : 3313 : 0.8310624 : Labels  ~ 1 + V8502 + V4326 + V8411 + V9027 + V1248 + V1046 + V6746 
#> 
#> Num. Models: 10  To Test: 67  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*CV pvalue    : 0.05 
#> Update    : Labels ~ 1 + V5005 + V1975 + V5680 + V130 + V2145 + V4290 + V1943 + V8245 
#> At Accuray: Labels  ~ 1 + V5005 + V5680 + V130 + V2145 + V4290 + V1943 + V8245 
#> B:SWiMS   : Labels  ~ 1 + V5005 + V5680 + V130 + V2145 + V4290 + V1943 + V8245 
#> Loop : 1 Input Cases = 88 Input Control = 112 
#> Loop : 1 Train Cases = 79 Train Control = 100 
#> Loop : 1 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8535801 : Labels  ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778 
#> 1 : 3366 : 0.8450751 : Labels  ~ 1 + V2556 + V9275 + V6111 + V5321 + V6163 + V3206 + V3170 
#> 2 : 3359 : 0.8385073 : Labels  ~ 1 + V7891 + V4584 + V698 + V7272 + V6584 + V880 + V1248 
#> 3 : 3352 : 0.8434631 : Labels  ~ 1 + V4290 + V3365 + V4326 + V9395 + V1344 + V22 
#> 4 : 3346 : 0.8225099 : Labels  ~ 1 + V7748 + V312 + V9215 + V1943 + V819 + V9086 
#> 5 : 3340 : 0.8453722 : Labels  ~ 1 + V2309 + V1831 + V5774 + V4406 + V2294 + V9965 + V6487 
#> 6 : 3333 : 0.7953992 : Labels  ~ 1 + V4960 + V729 + V436 
#> 7 : 3330 : 0.8057769 : Labels  ~ 1 + V6594 + V9213 + V5761 + V3015 + V9743 + V2358 
#> 8 : 3324 : 0.788609 : Labels  ~ 1 + V9617 + V4069 + V1320 + V4301 + V2064 
#> 9 : 3319 : 0.7946881 : Labels  ~ 1 + V1476 + V414 + V3708 + V5680 
#> 
#> Num. Models: 10  To Test: 58  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778 
#> At Accuracy: Labels  ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778 
#> 
#> Num. Models: 320  To Test: 1299  TopFreq: 13.97561  Thrf: 0  Removed: 0 
#> ................................*Loop : 1 Blind Cases = 9 Blind Control = 12 Total = 21 Size Cases = 9 Size Control = 12 
#> Accumulated Models CV Accuracy        = 0.8571429 Sensitivity = 0.8888889 Specificity = 0.8333333 Forw. Ensemble Accuracy= 0.8095238 
#> Initial Model Accumulated CV Accuracy = 0.8095238 Sensitivity = 0.8888889 Specificity = 0.75 
#> Initial Model Bootstrapped Accuracy   = 0.8636564 Sensitivity = 0.8797357 Specificity = 0.8475771 
#> Current Model Bootstrapped Accuracy   = 0.8535801 Sensitivity = 0.859898 Specificity = 0.8472622 
#> Current KNN Accuracy   = 0.6666667 Sensitivity = 1 Specificity = 0.4166667 
#> Initial KNN Accuracy   = 0.7142857 Sensitivity = 0.7777778 Specificity = 0.6666667 
#> Train Correlation:  0.7407675  Blind Correlation : 0.9012987 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE     5    0
#>   TRUE      6   10
#> Loop : 2 Input Cases = 88 Input Control = 112 
#> Loop : 2 Train Cases = 79 Train Control = 100 
#> Loop : 2 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8870609 : Labels  ~ 1 + V4194 + V9818 + V7857 + V4584 + V3161 + V4564 + V5489 + V6196 
#> 1 : 3365 : 0.8524156 : Labels  ~ 1 + V5400 + V5005 + V819 + V1184 + V7272 + V629 + V8193 
#> 2 : 3358 : 0.8203279 : Labels  ~ 1 + V7513 + V3170 + V5683 + V7748 
#> 3 : 3354 : 0.8306398 : Labels  ~ 1 + V1975 + V1936 + V9275 + V4301 + V6570 
#> 4 : 3349 : 0.8461624 : Labels  ~ 1 + V7212 + V436 + V9215 + V2358 + V9082 + V7284 
#> 5 : 3343 : 0.8821255 : Labels  ~ 1 + V86 + V723 + V898 + V8368 + V1584 + V5808 + V1198 
#> 6 : 3336 : 0.8437638 : Labels  ~ 1 + V8806 + V4326 + V3365 + V4406 + V762 
#> 7 : 3331 : 0.8449074 : Labels  ~ 1 + V1476 + V1097 + V5801 + V1055 + V7584 + V1046 
#> 8 : 3325 : 0.8340684 : Labels  ~ 1 + V4183 + V256 + V2309 + V4580 + V729 + V6882 
#> 9 : 3319 : 0.8049288 : Labels  ~ 1 + V698 + V7928 + V8055 + V3206 
#> 
#> Num. Models: 10  To Test: 58  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V4194 + V9818 + V7857 + V7513 + V4584 + V3161 + V4564 + V5489 + V6196 
#> At Accuracy: Labels  ~ 1 + V4194 + V9818 + V7857 + V4584 + V3161 + V4564 + V5489 + V6196 
#> B:SWiMS    : Labels  ~ 1 + V4194 + V9818 + V7857 + V4584 + V3161 + V4564 + V5489 + V6196 
#> 
#> Num. Models: 320  To Test: 1210  TopFreq: 11.86047  Thrf: 0  Removed: 0 
#> ................................*Loop : 2 Blind Cases = 9 Blind Control = 12 Total = 42 Size Cases = 18 Size Control = 24 
#> Accumulated Models CV Accuracy        = 0.6904762 Sensitivity = 0.6111111 Specificity = 0.75 Forw. Ensemble Accuracy= 0.7619048 
#> Initial Model Accumulated CV Accuracy = 0.7857143 Sensitivity = 0.7777778 Specificity = 0.7916667 
#> Initial Model Bootstrapped Accuracy   = 0.8649546 Sensitivity = 0.8817799 Specificity = 0.8481293 
#> Current Model Bootstrapped Accuracy   = 0.8870609 Sensitivity = 0.8955091 Specificity = 0.8786127 
#> Current KNN Accuracy   = 0.6904762 Sensitivity = 0.9444444 Specificity = 0.5 
#> Initial KNN Accuracy   = 0.7380952 Sensitivity = 0.8333333 Specificity = 0.6666667 
#> Train Correlation:  0.8028791  Blind Correlation : 0.4597403 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    13    0
#>   TRUE     12   17
#> Loop : 3 Input Cases = 88 Input Control = 112 
#> Loop : 3 Train Cases = 79 Train Control = 101 
#> Loop : 3 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8251189 : Labels  ~ 1 + V4685 + V9215 + V4158 + V8604 + V1344 
#> 1 : 3368 : 0.8607204 : Labels  ~ 1 + V2556 + V698 + V1831 + V5796 + V729 + V3206 + V3161 + V1184 
#> 2 : 3360 : 0.8077251 : Labels  ~ 1 + V7891 + V1400 + V4301 + V9818 + V6163 + V2747 
#> 3 : 3354 : 0.8536985 : Labels  ~ 1 + V4352 + V8411 + V3170 + V5761 + V6505 + V5321 + V4077 + V8245 + V3839 
#> 4 : 3345 : 0.8194962 : Labels  ~ 1 + V7748 + V8055 + V312 + V6688 + V7137 
#> 5 : 3340 : 0.8147988 : Labels  ~ 1 + V436 + V9275 + V9485 + V7272 + V7435 + V5139 
#> 6 : 3334 : 0.8508715 : Labels  ~ 1 + V7857 + V1055 + V8156 + V6959 + V3785 + V3347 + V1256 + V258 
#> 7 : 3326 : 0.7978723 : Labels  ~ 1 + V4290 + V6239 + V256 + V5982 + V4584 + V9525 
#> 8 : 3320 : 0.8155244 : Labels  ~ 1 + V4194 + V1476 + V1516 + V3014 + V2145 
#> 9 : 3315 : 0.8210821 : Labels  ~ 1 + V86 + V5680 + V3365 + V1248 + V3592 
#> 
#> Num. Models: 10  To Test: 63  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V698 + V4685 + V9215 + V4158 + V8604 + V1344 
#> At Accuracy: Labels  ~ 1 + V4685 + V9215 + V4158 + V8604 + V1344 
#> B:SWiMS    : Labels  ~ 1 + V4685 + V9215 + V4158 + V8604 + V1344 
#> 
#> Num. Models: 320  To Test: 1320  TopFreq: 10.73913  Thrf: 0  Removed: 0 
#> ................................*Loop : 3 Blind Cases = 9 Blind Control = 11 Total = 62 Size Cases = 27 Size Control = 35 
#> Accumulated Models CV Accuracy        = 0.7419355 Sensitivity = 0.6666667 Specificity = 0.8 Forw. Ensemble Accuracy= 0.8064516 
#> Initial Model Accumulated CV Accuracy = 0.8064516 Sensitivity = 0.8518519 Specificity = 0.7714286 
#> Initial Model Bootstrapped Accuracy   = 0.8515001 Sensitivity = 0.8776171 Specificity = 0.8253831 
#> Current Model Bootstrapped Accuracy   = 0.8251189 Sensitivity = 0.8785128 Specificity = 0.771725 
#> Current KNN Accuracy   = 0.7419355 Sensitivity = 0.962963 Specificity = 0.5714286 
#> Initial KNN Accuracy   = 0.7903226 Sensitivity = 0.8888889 Specificity = 0.7142857 
#> Train Correlation:  0.798572  Blind Correlation : 0.8781955 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    21    0
#>   TRUE     16   25
#> Loop : 4 Input Cases = 88 Input Control = 112 
#> Loop : 4 Train Cases = 79 Train Control = 101 
#> Loop : 4 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7993993 : Labels  ~ 1 + V5005 + V723 + V1831 + V1184 
#> 1 : 3369 : 0.8481834 : Labels  ~ 1 + V4070 + V9215 + V241 + V8368 + V698 + V2052 
#> 2 : 3363 : 0.8252618 : Labels  ~ 1 + V1936 + V3365 + V6163 + V1046 + V8245 + V1943 
#> 3 : 3357 : 0.8021622 : Labels  ~ 1 + V5400 + V312 + V5761 + V4301 
#> 4 : 3353 : 0.805453 : Labels  ~ 1 + V2309 + V9275 + V7513 + V3170 + V9276 
#> 5 : 3348 : 0.807254 : Labels  ~ 1 + V9617 + V4326 + V8806 + V1289 
#> 6 : 3344 : 0.8339806 : Labels  ~ 1 + V7748 + V4960 + V6584 + V7212 + V729 + V1344 + V3226 
#> 7 : 3337 : 0.804264 : Labels  ~ 1 + V7928 + V376 + V8156 + V9965 + V4352 + V4295 
#> 8 : 3331 : 0.8177468 : Labels  ~ 1 + V414 + V4584 + V436 + V9213 + V4198 
#> 9 : 3326 : 0.7970607 : Labels  ~ 1 + V2866 + V86 + V5680 + V3708 
#> 
#> Num. Models: 10  To Test: 51  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V723 + V1831 + V1184 
#> At Accuracy: Labels  ~ 1 + V5005 + V723 + V1831 + V1184 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V723 + V1831 + V1184 
#> 
#> Num. Models: 320  To Test: 1325  TopFreq: 14.35135  Thrf: 0  Removed: 0 
#> ................................*Loop : 4 Blind Cases = 9 Blind Control = 11 Total = 82 Size Cases = 36 Size Control = 46 
#> Accumulated Models CV Accuracy        = 0.7682927 Sensitivity = 0.6944444 Specificity = 0.826087 Forw. Ensemble Accuracy= 0.8170732 
#> Initial Model Accumulated CV Accuracy = 0.8170732 Sensitivity = 0.8333333 Specificity = 0.8043478 
#> Initial Model Bootstrapped Accuracy   = 0.8394375 Sensitivity = 0.8609113 Specificity = 0.8179638 
#> Current Model Bootstrapped Accuracy   = 0.7993993 Sensitivity = 0.8395194 Specificity = 0.7592791 
#> Current KNN Accuracy   = 0.7317073 Sensitivity = 0.9166667 Specificity = 0.5869565 
#> Initial KNN Accuracy   = 0.7682927 Sensitivity = 0.8611111 Specificity = 0.6956522 
#> Train Correlation:  0.7425085  Blind Correlation : 0.9593985 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    30    0
#>   TRUE     19   33
#> Loop : 5 Input Cases = 88 Input Control = 112 
#> Loop : 5 Train Cases = 79 Train Control = 101 
#> Loop : 5 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8138402 : Labels  ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585 
#> 1 : 3367 : 0.8247038 : Labels  ~ 1 + V5321 + V782 + V9215 + V4584 + V8368 + V3161 + V8193 
#> 2 : 3360 : 0.863806 : Labels  ~ 1 + V3365 + V6163 + V4352 + V3082 + V4564 + V3592 + V9275 + V6068 
#> 3 : 3352 : 0.8369987 : Labels  ~ 1 + V698 + V6584 + V9027 + V729 + V2438 + V311 
#> 4 : 3346 : 0.7518462 : Labels  ~ 1 + V9617 + V9818 + V6083 
#> 5 : 3343 : 0.8128138 : Labels  ~ 1 + V7748 + V4301 + V9395 + V5683 + V2556 
#> 6 : 3338 : 0.7816117 : Labels  ~ 1 + V1476 + V7272 + V5761 + V1762 
#> 7 : 3334 : 0.8122555 : Labels  ~ 1 + V4290 + V312 + V8156 + V6181 + V9965 + V5378 
#> 8 : 3328 : 0.8071413 : Labels  ~ 1 + V436 + V3014 + V414 + V8981 + V3170 
#> 9 : 3323 : 0.7515575 : Labels  ~ 1 + V8055 + V4960 + V1975 
#> 
#> Num. Models: 10  To Test: 53  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585 
#> At Accuracy: Labels  ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585 
#> 
#> Num. Models: 320  To Test: 1334  TopFreq: 12.37931  Thrf: 0  Removed: 0 
#> ................................*Loop : 5 Blind Cases = 9 Blind Control = 11 Total = 102 Size Cases = 45 Size Control = 57 
#> Accumulated Models CV Accuracy        = 0.7843137 Sensitivity = 0.6888889 Specificity = 0.8596491 Forw. Ensemble Accuracy= 0.8431373 
#> Initial Model Accumulated CV Accuracy = 0.8431373 Sensitivity = 0.8666667 Specificity = 0.8245614 
#> Initial Model Bootstrapped Accuracy   = 0.8385852 Sensitivity = 0.8628081 Specificity = 0.8143623 
#> Current Model Bootstrapped Accuracy   = 0.8138402 Sensitivity = 0.8507689 Specificity = 0.7769114 
#> Current KNN Accuracy   = 0.754902 Sensitivity = 0.9111111 Specificity = 0.6315789 
#> Initial KNN Accuracy   = 0.7745098 Sensitivity = 0.8444444 Specificity = 0.7192982 
#> Train Correlation:  0.7841209  Blind Correlation : 0.7203008 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    40    0
#>   TRUE     23   39
#> Loop : 6 Input Cases = 88 Input Control = 112 
#> Loop : 6 Train Cases = 79 Train Control = 101 
#> Loop : 6 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8574523 : Labels  ~ 1 + V7272 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726 
#> 1 : 3366 : 0.7991741 : Labels  ~ 1 + V7891 + V9818 + V1975 + V686 
#> 2 : 3362 : 0.8200173 : Labels  ~ 1 + V6594 + V1831 + V1248 + V8502 + V8835 
#> 3 : 3357 : 0.8251778 : Labels  ~ 1 + V4183 + V9215 + V130 + V5808 + V1184 + V6163 
#> 4 : 3351 : 0.8480243 : Labels  ~ 1 + V3206 + V4290 + V9275 + V1946 + V7195 + V9833 + V1664 
#> 5 : 3344 : 0.8278153 : Labels  ~ 1 + V698 + V8156 + V4185 + V5827 + V9525 
#> 6 : 3339 : 0.8335496 : Labels  ~ 1 + V7748 + V5761 + V1943 + V2294 + V2358 
#> 7 : 3334 : 0.8530878 : Labels  ~ 1 + V1476 + V4158 + V5680 + V5107 + V4751 + V3170 + V4198 
#> 8 : 3327 : 0.7774554 : Labels  ~ 1 + V5 + V4301 + V5005 + V4326 
#> 9 : 3323 : 0.8812298 : Labels  ~ 1 + V5473 + V729 + V7584 + V6511 + V6685 + V1681 + V5943 + V1198 
#> 
#> Num. Models: 10  To Test: 58  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V7272 + V4183 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726 
#> At Accuracy: Labels  ~ 1 + V7272 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726 
#> B:SWiMS    : Labels  ~ 1 + V7272 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726 
#> 
#> Num. Models: 320  To Test: 1335  TopFreq: 13.32075  Thrf: 0  Removed: 0 
#> ................................*Loop : 6 Blind Cases = 9 Blind Control = 11 Total = 122 Size Cases = 54 Size Control = 68 
#> Accumulated Models CV Accuracy        = 0.795082 Sensitivity = 0.7037037 Specificity = 0.8676471 Forw. Ensemble Accuracy= 0.8442623 
#> Initial Model Accumulated CV Accuracy = 0.8360656 Sensitivity = 0.8518519 Specificity = 0.8235294 
#> Initial Model Bootstrapped Accuracy   = 0.8704146 Sensitivity = 0.8899501 Specificity = 0.8508791 
#> Current Model Bootstrapped Accuracy   = 0.8574523 Sensitivity = 0.8602686 Specificity = 0.854636 
#> Current KNN Accuracy   = 0.7377049 Sensitivity = 0.9074074 Specificity = 0.6029412 
#> Initial KNN Accuracy   = 0.7868852 Sensitivity = 0.8518519 Specificity = 0.7352941 
#> Train Correlation:  0.8374024  Blind Correlation : 0.9007519 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    46    0
#>   TRUE     29   47
#> Loop : 7 Input Cases = 88 Input Control = 112 
#> Loop : 7 Train Cases = 79 Train Control = 101 
#> Loop : 7 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.868489 : Labels  ~ 1 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402 
#> 1 : 3365 : 0.824046 : Labels  ~ 1 + V1476 + V5005 + V9215 + V1248 + V1529 
#> 2 : 3360 : 0.8349967 : Labels  ~ 1 + V698 + V9818 + V2309 + V22 + V3082 + V4352 
#> 3 : 3354 : 0.8425265 : Labels  ~ 1 + V6584 + V4290 + V7272 + V9276 + V1173 + V6958 + V5995 
#> 4 : 3347 : 0.804282 : Labels  ~ 1 + V436 + V3365 + V4326 + V9395 + V5321 
#> 5 : 3342 : 0.8088299 : Labels  ~ 1 + V7891 + V86 + V256 + V7536 + V9213 
#> 6 : 3337 : 0.8810711 : Labels  ~ 1 + V8806 + V8368 + V6163 + V4900 + V8156 + V9965 + V3161 + V8027 
#> 7 : 3329 : 0.8142172 : Labels  ~ 1 + V7857 + V1831 + V312 + V762 + V2515 
#> 8 : 3324 : 0.806613 : Labels  ~ 1 + V8502 + V4960 + V8055 + V686 
#> 9 : 3320 : 0.7965718 : Labels  ~ 1 + V414 + V5774 + V729 + V6597 
#> 
#> Num. Models: 10  To Test: 57  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402 
#> At Accuracy: Labels  ~ 1 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402 
#> B:SWiMS    : Labels  ~ 1 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402 
#> 
#> Num. Models: 320  To Test: 1305  TopFreq: 15.97368  Thrf: 0  Removed: 0 
#> ................................*Loop : 7 Blind Cases = 9 Blind Control = 11 Total = 142 Size Cases = 63 Size Control = 79 
#> Accumulated Models CV Accuracy        = 0.8028169 Sensitivity = 0.7142857 Specificity = 0.8734177 Forw. Ensemble Accuracy= 0.8521127 
#> Initial Model Accumulated CV Accuracy = 0.8450704 Sensitivity = 0.8571429 Specificity = 0.835443 
#> Initial Model Bootstrapped Accuracy   = 0.8570805 Sensitivity = 0.9026838 Specificity = 0.8114772 
#> Current Model Bootstrapped Accuracy   = 0.868489 Sensitivity = 0.8852777 Specificity = 0.8517004 
#> Current KNN Accuracy   = 0.7394366 Sensitivity = 0.8730159 Specificity = 0.6329114 
#> Initial KNN Accuracy   = 0.7887324 Sensitivity = 0.8412698 Specificity = 0.7468354 
#> Train Correlation:  0.8552486  Blind Correlation : 0.6421053 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    56    2
#>   TRUE     31   53
#> Loop : 8 Input Cases = 88 Input Control = 112 
#> Loop : 8 Train Cases = 79 Train Control = 101 
#> Loop : 8 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7923226 : Labels  ~ 1 + V723 + V9818 + V312 + V6970 
#> 1 : 3369 : 0.8100238 : Labels  ~ 1 + V5005 + V6584 + V5 + V4301 + V1248 
#> 2 : 3364 : 0.825065 : Labels  ~ 1 + V1936 + V4960 + V9275 + V1975 + V4584 + V3170 
#> 3 : 3358 : 0.7941049 : Labels  ~ 1 + V4183 + V3365 + V1831 + V8726 
#> 4 : 3354 : 0.8009229 : Labels  ~ 1 + V5400 + V4070 + V5680 + V8193 + V5107 
#> 5 : 3349 : 0.8044705 : Labels  ~ 1 + V469 + V8368 + V9215 + V1874 
#> 6 : 3345 : 0.866849 : Labels  ~ 1 + V6408 + V6163 + V7513 + V3986 + V2675 + V782 + V3074 + V6487 
#> 7 : 3337 : 0.8253484 : Labels  ~ 1 + V414 + V872 + V819 + V8156 + V4352 + V729 
#> 8 : 3331 : 0.8139009 : Labels  ~ 1 + V2309 + V4326 + V533 + V1046 + V3876 
#> 9 : 3326 : 0.8593648 : Labels  ~ 1 + V9617 + V5457 + V1198 + V4900 + V9213 + V5378 + V7263 + V138 
#> 
#> Num. Models: 10  To Test: 55  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V723 + V9818 + V312 + V6970 
#> At Accuracy: Labels  ~ 1 + V723 + V9818 + V312 + V6970 
#> B:SWiMS    : Labels  ~ 1 + V723 + V9818 + V312 + V6970 
#> 
#> Num. Models: 320  To Test: 1264  TopFreq: 13.73529  Thrf: 0  Removed: 0 
#> ................................*Loop : 8 Blind Cases = 9 Blind Control = 11 Total = 162 Size Cases = 72 Size Control = 90 
#> Accumulated Models CV Accuracy        = 0.7901235 Sensitivity = 0.7222222 Specificity = 0.8444444 Forw. Ensemble Accuracy= 0.8395062 
#> Initial Model Accumulated CV Accuracy = 0.8518519 Sensitivity = 0.8611111 Specificity = 0.8444444 
#> Initial Model Bootstrapped Accuracy   = 0.8602639 Sensitivity = 0.8860048 Specificity = 0.834523 
#> Current Model Bootstrapped Accuracy   = 0.7923226 Sensitivity = 0.8125943 Specificity = 0.7720509 
#> Current KNN Accuracy   = 0.7160494 Sensitivity = 0.8611111 Specificity = 0.6 
#> Initial KNN Accuracy   = 0.7654321 Sensitivity = 0.8333333 Specificity = 0.7111111 
#> Train Correlation:  0.7734325  Blind Correlation : 0.8406015 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    62    2
#>   TRUE     34   64
#> Loop : 9 Input Cases = 88 Input Control = 112 
#> Loop : 9 Train Cases = 80 Train Control = 101 
#> Loop : 9 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8482925 : Labels  ~ 1 + V4352 + V6584 + V1975 + V7272 + V3170 + V7849 
#> 1 : 3367 : 0.7804554 : Labels  ~ 1 + V4183 + V9215 + V4158 
#> 2 : 3364 : 0.8429798 : Labels  ~ 1 + V698 + V1831 + V6239 + V3591 + V3675 + V6214 + V9070 
#> 3 : 3357 : 0.8092264 : Labels  ~ 1 + V3206 + V5 + V9818 + V1344 + V4406 
#> 4 : 3352 : 0.7967105 : Labels  ~ 1 + V1055 + V8156 + V469 + V2515 + V9965 
#> 5 : 3347 : 0.8369565 : Labels  ~ 1 + V4194 + V4290 + V256 + V5936 + V6688 + V2294 + V4584 
#> 6 : 3340 : 0.8280771 : Labels  ~ 1 + V4666 + V9275 + V7748 + V729 + V1590 + V2556 
#> 7 : 3334 : 0.8422671 : Labels  ~ 1 + V1476 + V3365 + V4326 + V9395 + V7141 + V1087 
#> 8 : 3328 : 0.8050792 : Labels  ~ 1 + V5378 + V9213 + V4414 + V4973 + V3612 
#> 9 : 3323 : 0.8220153 : Labels  ~ 1 + V436 + V2309 + V5417 + V615 + V5400 + V3592 
#> 
#> Num. Models: 10  To Test: 56  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V4352 + V7748 + V6584 + V1975 + V7272 + V3170 + V7849 
#> At Accuracy: Labels  ~ 1 + V4352 + V6584 + V1975 + V7272 + V3170 + V7849 
#> B:SWiMS    : Labels  ~ 1 + V4352 + V6584 + V1975 + V7272 + V3170 + V7849 
#> 
#> Num. Models: 320  To Test: 1317  TopFreq: 9.875  Thrf: 0  Removed: 0 
#> ................................*Loop : 9 Blind Cases = 8 Blind Control = 11 Total = 181 Size Cases = 80 Size Control = 101 
#> Accumulated Models CV Accuracy        = 0.7955801 Sensitivity = 0.7375 Specificity = 0.8415842 Forw. Ensemble Accuracy= 0.8453039 
#> Initial Model Accumulated CV Accuracy = 0.8618785 Sensitivity = 0.875 Specificity = 0.8514851 
#> Initial Model Bootstrapped Accuracy   = 0.8349398 Sensitivity = 0.8663746 Specificity = 0.8035049 
#> Current Model Bootstrapped Accuracy   = 0.8482925 Sensitivity = 0.8690893 Specificity = 0.8274956 
#> Current KNN Accuracy   = 0.7237569 Sensitivity = 0.875 Specificity = 0.6039604 
#> Initial KNN Accuracy   = 0.7734807 Sensitivity = 0.85 Specificity = 0.7128713 
#> Train Correlation:  0.7958313  Blind Correlation : 0.7684211 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    69    2
#>   TRUE     37   73
#> Loop : 10 Input Cases = 88 Input Control = 112 
#> Loop : 10 Train Cases = 80 Train Control = 101 
#> Loop : 10 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8443179 : Labels  ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141 
#> 1 : 3367 : 0.8320652 : Labels  ~ 1 + V312 + V9275 + V723 + V630 + V3778 + V8726 
#> 2 : 3361 : 0.8398506 : Labels  ~ 1 + V4352 + V8368 + V256 + V4584 + V6068 + V1344 + V9234 + V629 
#> 3 : 3353 : 0.8108634 : Labels  ~ 1 + V4960 + V5680 + V1476 + V9395 + V5107 
#> 4 : 3348 : 0.8010741 : Labels  ~ 1 + V2309 + V698 + V8156 + V5761 + V1184 + V4185 
#> 5 : 3342 : 0.7951623 : Labels  ~ 1 + V9617 + V436 + V6163 + V6584 + V8247 
#> 6 : 3337 : 0.8272926 : Labels  ~ 1 + V5005 + V1831 + V4973 + V6780 + V1338 + V4290 + V5321 
#> 7 : 3330 : 0.7995376 : Labels  ~ 1 + V8502 + V414 + V8055 + V1248 
#> 8 : 3326 : 0.8124864 : Labels  ~ 1 + V86 + V4194 + V2530 + V2356 + V3395 + V2515 
#> 9 : 3320 : 0.8118855 : Labels  ~ 1 + V9027 + V1046 + V4326 + V2597 + V762 
#> 
#> Num. Models: 10  To Test: 58  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141 
#> At Accuracy: Labels  ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141 
#> B:SWiMS    : Labels  ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141 
#> 
#> Num. Models: 320  To Test: 1254  TopFreq: 11.97143  Thrf: 0  Removed: 0 
#> ................................*Loop : 10 Blind Cases = 8 Blind Control = 11 Total = 200 Size Cases = 88 Size Control = 112 
#> Accumulated Models CV Accuracy        = 0.79 Sensitivity = 0.7272727 Specificity = 0.8392857 Forw. Ensemble Accuracy= 0.85 
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8863636 Specificity = 0.8660714 
#> Initial Model Bootstrapped Accuracy   = 0.8462886 Sensitivity = 0.8710313 Specificity = 0.8215459 
#> Current Model Bootstrapped Accuracy   = 0.8443179 Sensitivity = 0.8570177 Specificity = 0.8316181 
#> Current KNN Accuracy   = 0.73 Sensitivity = 0.875 Specificity = 0.6160714 
#> Initial KNN Accuracy   = 0.78 Sensitivity = 0.8636364 Specificity = 0.7142857 
#> Train Correlation:  0.7855281  Blind Correlation : 0.8614035 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    77    3
#>   TRUE     41   79
#> Loop : 11 Input Cases = 88 Input Control = 112 
#> Loop : 11 Train Cases = 79 Train Control = 100 
#> Loop : 11 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8005278 : Labels  ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129 
#> 1 : 3368 : 0.8172055 : Labels  ~ 1 + V8368 + V9659 + V3170 + V9215 + V6688 + V711 
#> 2 : 3362 : 0.8571115 : Labels  ~ 1 + V9585 + V4352 + V6584 + V3365 + V9213 + V2646 + V5378 
#> 3 : 3355 : 0.835913 : Labels  ~ 1 + V9818 + V8411 + V312 + V7849 + V1046 + V6163 
#> 4 : 3349 : 0.8550836 : Labels  ~ 1 + V4960 + V9275 + V7032 + V9395 + V1087 + V3675 + V4584 
#> 5 : 3342 : 0.8033459 : Labels  ~ 1 + V819 + V1787 + V414 + V5489 + V130 
#> 6 : 3337 : 0.8196044 : Labels  ~ 1 + V2309 + V4557 + V2256 + V8156 + V7381 + V4301 
#> 7 : 3331 : 0.7930166 : Labels  ~ 1 + V9617 + V1975 + V9965 + V6111 
#> 8 : 3327 : 0.8016845 : Labels  ~ 1 + V6045 + V5680 + V9027 + V1344 
#> 9 : 3323 : 0.8137083 : Labels  ~ 1 + V2783 + V4879 + V7748 + V9338 + V8586 + V2973 
#> 
#> Num. Models: 10  To Test: 56  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129 
#> At Accuracy: Labels  ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129 
#> 
#> Num. Models: 320  To Test: 1299  TopFreq: 8.526316  Thrf: 0  Removed: 0 
#> ................................*Loop : 11 Blind Cases = 9 Blind Control = 12 Total = 221 Size Cases = 97 Size Control = 124 
#> Accumulated Models CV Accuracy        = 0.7782805 Sensitivity = 0.7216495 Specificity = 0.8225806 Forw. Ensemble Accuracy= 0.841629 
#> Initial Model Accumulated CV Accuracy = 0.8687783 Sensitivity = 0.8969072 Specificity = 0.8467742 
#> Initial Model Bootstrapped Accuracy   = 0.8586764 Sensitivity = 0.8882249 Specificity = 0.8291279 
#> Current Model Bootstrapped Accuracy   = 0.8005278 Sensitivity = 0.8607873 Specificity = 0.7402683 
#> Current KNN Accuracy   = 0.7330317 Sensitivity = 0.8865979 Specificity = 0.6129032 
#> Initial KNN Accuracy   = 0.7782805 Sensitivity = 0.8556701 Specificity = 0.7177419 
#> Train Correlation:  0.7661492  Blind Correlation : 0.5818182 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    84    3
#>   TRUE     45   89
#> Loop : 12 Input Cases = 88 Input Control = 112 
#> Loop : 12 Train Cases = 79 Train Control = 100 
#> Loop : 12 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7965001 : Labels  ~ 1 + V723 + V698 + V9818 + V2242 
#> 1 : 3369 : 0.817 : Labels  ~ 1 + V4290 + V9215 + V9395 + V3444 
#> 2 : 3365 : 0.8801552 : Labels  ~ 1 + V7748 + V7272 + V1831 + V729 + V6214 + V3403 + V3161 
#> 3 : 3358 : 0.8394404 : Labels  ~ 1 + V2294 + V1476 + V4326 + V4185 + V4564 
#> 4 : 3353 : 0.8578464 : Labels  ~ 1 + V2556 + V8502 + V256 + V4584 + V4198 + V4158 + V5321 + V3675 
#> 5 : 3345 : 0.8165824 : Labels  ~ 1 + V7891 + V5473 + V3014 + V6198 + V1184 
#> 6 : 3340 : 0.8440053 : Labels  ~ 1 + V6594 + V436 + V2256 + V5680 + V2515 + V2907 + V8126 
#> 7 : 3333 : 0.8192959 : Labels  ~ 1 + V7197 + V7928 + V9213 + V9275 + V5283 
#> 8 : 3328 : 0.8303393 : Labels  ~ 1 + V6928 + V5005 + V6584 + V533 + V3170 + V6570 + V7641 + V3778 
#> 9 : 3320 : 0.8774849 : Labels  ~ 1 + V1055 + V8156 + V6163 + V9965 + V662 + V630 + V4352 + V5808 
#> 
#> Num. Models: 10  To Test: 61  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V723 + V698 + V9818 + V2242 
#> At Accuracy: Labels  ~ 1 + V723 + V698 + V9818 + V2242 
#> B:SWiMS    : Labels  ~ 1 + V723 + V698 + V9818 + V2242 
#> 
#> Num. Models: 320  To Test: 1263  TopFreq: 14.97222  Thrf: 0  Removed: 0 
#> ................................*Loop : 12 Blind Cases = 9 Blind Control = 12 Total = 242 Size Cases = 106 Size Control = 136 
#> Accumulated Models CV Accuracy        = 0.7892562 Sensitivity = 0.7358491 Specificity = 0.8308824 Forw. Ensemble Accuracy= 0.8429752 
#> Initial Model Accumulated CV Accuracy = 0.8760331 Sensitivity = 0.9056604 Specificity = 0.8529412 
#> Initial Model Bootstrapped Accuracy   = 0.8502843 Sensitivity = 0.8727034 Specificity = 0.8278653 
#> Current Model Bootstrapped Accuracy   = 0.7965001 Sensitivity = 0.8393132 Specificity = 0.753687 
#> Current KNN Accuracy   = 0.731405 Sensitivity = 0.8962264 Specificity = 0.6029412 
#> Initial KNN Accuracy   = 0.7892562 Sensitivity = 0.8679245 Specificity = 0.7279412 
#> Train Correlation:  0.7606209  Blind Correlation : 0.9493506 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    90    3
#>   TRUE     51   98
#> Loop : 13 Input Cases = 88 Input Control = 112 
#> Loop : 13 Train Cases = 79 Train Control = 101 
#> Loop : 13 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.9001311 : Labels  ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245 
#> 1 : 3364 : 0.8645474 : Labels  ~ 1 + V1476 + V8055 + V7272 + V1344 + V3857 + V4137 
#> 2 : 3358 : 0.8546169 : Labels  ~ 1 + V698 + V5005 + V1831 + V9965 + V8135 + V8147 + V4352 
#> 3 : 3351 : 0.8719697 : Labels  ~ 1 + V4290 + V898 + V5400 + V2397 + V5445 + V9158 
#> 4 : 3345 : 0.8537217 : Labels  ~ 1 + V7857 + V723 + V9275 + V3206 + V3861 + V2556 
#> 5 : 3339 : 0.8609185 : Labels  ~ 1 + V9818 + V86 + V7513 + V2747 + V2111 + V9082 
#> 6 : 3333 : 0.836857 : Labels  ~ 1 + V436 + V4158 + V256 + V5283 + V1173 + V4584 
#> 7 : 3327 : 0.8231285 : Labels  ~ 1 + V8806 + V5683 + V1055 + V7848 
#> 8 : 3323 : 0.8695462 : Labels  ~ 1 + V8502 + V6163 + V3365 + V9395 + V6584 + V6380 + V4738 + V3170 
#> 9 : 3315 : 0.8243156 : Labels  ~ 1 + V5473 + V6239 + V4326 + V2298 + V9346 
#> 
#> Num. Models: 10  To Test: 63  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245 
#> At Accuracy: Labels  ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245 
#> B:SWiMS    : Labels  ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245 
#> 
#> Num. Models: 320  To Test: 1267  TopFreq: 16.98077  Thrf: 0  Removed: 0 
#> ................................*Loop : 13 Blind Cases = 9 Blind Control = 11 Total = 262 Size Cases = 115 Size Control = 147 
#> Accumulated Models CV Accuracy        = 0.7748092 Sensitivity = 0.7130435 Specificity = 0.8231293 Forw. Ensemble Accuracy= 0.8358779 
#> Initial Model Accumulated CV Accuracy = 0.8740458 Sensitivity = 0.9043478 Specificity = 0.8503401 
#> Initial Model Bootstrapped Accuracy   = 0.8705484 Sensitivity = 0.8940354 Specificity = 0.8470614 
#> Current Model Bootstrapped Accuracy   = 0.9001311 Sensitivity = 0.9121503 Specificity = 0.8881119 
#> Current KNN Accuracy   = 0.7290076 Sensitivity = 0.8956522 Specificity = 0.5986395 
#> Initial KNN Accuracy   = 0.7900763 Sensitivity = 0.8695652 Specificity = 0.7278912 
#> Train Correlation:  0.8646069  Blind Correlation : 0.6360902 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE    97    3
#>   TRUE     57  105
#> Loop : 14 Input Cases = 88 Input Control = 112 
#> Loop : 14 Train Cases = 79 Train Control = 101 
#> Loop : 14 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8462039 : Labels  ~ 1 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788 
#> 1 : 3367 : 0.8534427 : Labels  ~ 1 + V9275 + V312 + V22 + V3592 + V3778 + V3876 + V5359 
#> 2 : 3360 : 0.7870714 : Labels  ~ 1 + V2556 + V5005 + V9818 + V1943 
#> 3 : 3356 : 0.80899 : Labels  ~ 1 + V1936 + V3365 + V8156 + V1865 + V1184 
#> 4 : 3351 : 0.7808649 : Labels  ~ 1 + V7891 + V1831 + V662 + V1289 
#> 5 : 3347 : 0.8084458 : Labels  ~ 1 + V9617 + V9215 + V4198 + V6163 + V4580 
#> 6 : 3342 : 0.8179059 : Labels  ~ 1 + V5801 + V4352 + V3170 + V9965 + V723 + V686 
#> 7 : 3336 : 0.8156297 : Labels  ~ 1 + V2309 + V4326 + V436 + V8981 + V9213 
#> 8 : 3331 : 0.8104342 : Labels  ~ 1 + V4960 + V1046 + V3014 + V2204 + V4082 
#> 9 : 3326 : 0.8314292 : Labels  ~ 1 + V414 + V6164 + V4301 + V762 + V4406 + V6180 
#> 
#> Num. Models: 10  To Test: 53  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788 
#> At Accuracy: Labels  ~ 1 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788 
#> B:SWiMS    : Labels  ~ 1 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788 
#> 
#> Num. Models: 320  To Test: 1279  TopFreq: 12.625  Thrf: 0  Removed: 0 
#> ................................*Loop : 14 Blind Cases = 9 Blind Control = 11 Total = 282 Size Cases = 124 Size Control = 158 
#> Accumulated Models CV Accuracy        = 0.7730496 Sensitivity = 0.7177419 Specificity = 0.8164557 Forw. Ensemble Accuracy= 0.8404255 
#> Initial Model Accumulated CV Accuracy = 0.8687943 Sensitivity = 0.9032258 Specificity = 0.8417722 
#> Initial Model Bootstrapped Accuracy   = 0.8485764 Sensitivity = 0.8729508 Specificity = 0.8242019 
#> Current Model Bootstrapped Accuracy   = 0.8462039 Sensitivity = 0.8767896 Specificity = 0.8156182 
#> Current KNN Accuracy   = 0.7234043 Sensitivity = 0.8790323 Specificity = 0.6012658 
#> Initial KNN Accuracy   = 0.7801418 Sensitivity = 0.8548387 Specificity = 0.721519 
#> Train Correlation:  0.772174  Blind Correlation : 0.8827068 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   106    4
#>   TRUE     58  114
#> Loop : 15 Input Cases = 88 Input Control = 112 
#> Loop : 15 Train Cases = 79 Train Control = 101 
#> Loop : 15 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8588325 : Labels  ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911 
#> 1 : 3366 : 0.8780595 : Labels  ~ 1 + V1936 + V5 + V3170 + V8156 + V6163 + V2804 + V4352 + V7760 
#> 2 : 3358 : 0.8223383 : Labels  ~ 1 + V7212 + V1975 + V9818 + V9213 + V2747 + V6999 
#> 3 : 3352 : 0.8278582 : Labels  ~ 1 + V723 + V698 + V6959 + V312 + V7562 + V7371 
#> 4 : 3346 : 0.8411012 : Labels  ~ 1 + V7748 + V7260 + V898 + V1344 + V306 + V7090 
#> 5 : 3340 : 0.8347836 : Labels  ~ 1 + V469 + V4584 + V5801 + V4301 + V9275 + V4185 
#> 6 : 3334 : 0.8725405 : Labels  ~ 1 + V5683 + V9585 + V1184 + V2266 + V6487 + V5400 + V6703 
#> 7 : 3327 : 0.8750271 : Labels  ~ 1 + V4070 + V7513 + V9215 + V5140 + V2675 + V8411 + V8618 
#> 8 : 3320 : 0.845 : Labels  ~ 1 + V4973 + V9395 + V9965 + V1046 + V3987 + V2256 + V8126 
#> 9 : 3313 : 0.8847669 : Labels  ~ 1 + V7891 + V729 + V6584 + V4960 + V4580 + V4406 + V1584 + V3161 + V2788 
#> 
#> Num. Models: 10  To Test: 69  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911 
#> At Accuracy: Labels  ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911 
#> 
#> Num. Models: 320  To Test: 1320  TopFreq: 14.30233  Thrf: 0  Removed: 0 
#> ................................*Loop : 15 Blind Cases = 9 Blind Control = 11 Total = 302 Size Cases = 133 Size Control = 169 
#> Accumulated Models CV Accuracy        = 0.7715232 Sensitivity = 0.6992481 Specificity = 0.8284024 Forw. Ensemble Accuracy= 0.8344371 
#> Initial Model Accumulated CV Accuracy = 0.8609272 Sensitivity = 0.887218 Specificity = 0.8402367 
#> Initial Model Bootstrapped Accuracy   = 0.8539861 Sensitivity = 0.8778163 Specificity = 0.830156 
#> Current Model Bootstrapped Accuracy   = 0.8588325 Sensitivity = 0.8856337 Specificity = 0.8320312 
#> Current KNN Accuracy   = 0.7251656 Sensitivity = 0.8721805 Specificity = 0.6094675 
#> Initial KNN Accuracy   = 0.781457 Sensitivity = 0.8571429 Specificity = 0.7218935 
#> Train Correlation:  0.7887713  Blind Correlation : 0.7548872 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   116    4
#>   TRUE     64  118
#> Loop : 16 Input Cases = 88 Input Control = 112 
#> Loop : 16 Train Cases = 79 Train Control = 101 
#> Loop : 16 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.847055 : Labels  ~ 1 + V2556 + V729 + V312 + V9275 + V4352 + V3161 
#> 1 : 3367 : 0.8317828 : Labels  ~ 1 + V4584 + V8368 + V2309 + V7891 + V3170 + V1248 
#> 2 : 3361 : 0.806525 : Labels  ~ 1 + V3365 + V6163 + V6584 + V8117 + V130 
#> 3 : 3356 : 0.7877287 : Labels  ~ 1 + V723 + V5005 + V8055 + V9213 + V4290 
#> 4 : 3351 : 0.7802506 : Labels  ~ 1 + V4960 + V1936 + V9215 + V7426 
#> 5 : 3347 : 0.8269231 : Labels  ~ 1 + V9617 + V1046 + V5683 + V8411 + V6688 + V5321 + V898 
#> 6 : 3340 : 0.8865564 : Labels  ~ 1 + V414 + V256 + V5400 + V6959 + V7526 + V52 + V1667 + V4564 + V5108 + V8061 
#> 7 : 3330 : 0.8255231 : Labels  ~ 1 + V4070 + V9818 + V9027 + V9395 + V5672 + V698 + V2862 
#> 8 : 3323 : 0.7737708 : Labels  ~ 1 + V376 + V8156 + V7513 + V9965 + V6970 
#> 9 : 3318 : 0.7895419 : Labels  ~ 1 + V7748 + V2866 + V5378 + V2515 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V723 + V2556 + V729 + V312 + V9275 + V4352 + V3161 
#> At Accuracy: Labels  ~ 1 + V2556 + V729 + V312 + V9275 + V4352 + V3161 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V729 + V312 + V9275 + V4352 + V3161 
#> 
#> Num. Models: 320  To Test: 1351  TopFreq: 11.94737  Thrf: 0  Removed: 0 
#> ................................*Loop : 16 Blind Cases = 9 Blind Control = 11 Total = 322 Size Cases = 142 Size Control = 180 
#> Accumulated Models CV Accuracy        = 0.7763975 Sensitivity = 0.7183099 Specificity = 0.8222222 Forw. Ensemble Accuracy= 0.8416149 
#> Initial Model Accumulated CV Accuracy = 0.8664596 Sensitivity = 0.8943662 Specificity = 0.8444444 
#> Initial Model Bootstrapped Accuracy   = 0.8334767 Sensitivity = 0.8522898 Specificity = 0.8146635 
#> Current Model Bootstrapped Accuracy   = 0.847055 Sensitivity = 0.8589884 Specificity = 0.8351215 
#> Current KNN Accuracy   = 0.7298137 Sensitivity = 0.8802817 Specificity = 0.6111111 
#> Initial KNN Accuracy   = 0.7888199 Sensitivity = 0.8661972 Specificity = 0.7277778 
#> Train Correlation:  0.7808677  Blind Correlation : 0.6496241 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   122    5
#>   TRUE     66  129
#> Loop : 17 Input Cases = 88 Input Control = 112 
#> Loop : 17 Train Cases = 79 Train Control = 101 
#> Loop : 17 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8702183 : Labels  ~ 1 + V2556 + V1936 + V9818 + V1584 + V1476 + V723 + V9487 
#> 1 : 3366 : 0.8274002 : Labels  ~ 1 + V5005 + V130 + V5 + V4584 + V9275 + V4352 + V5943 
#> 2 : 3359 : 0.8687514 : Labels  ~ 1 + V7891 + V8156 + V7513 + V9965 + V2636 + V436 + V4069 
#> 3 : 3352 : 0.8237193 : Labels  ~ 1 + V2294 + V9215 + V4200 + V5489 + V2358 
#> 4 : 3347 : 0.8450549 : Labels  ~ 1 + V6594 + V9213 + V5417 + V6688 + V6584 + V8502 + V4764 
#> 5 : 3340 : 0.8317057 : Labels  ~ 1 + V4290 + V5761 + V6780 + V4301 + V5321 + V8193 
#> 6 : 3334 : 0.8267743 : Labels  ~ 1 + V8806 + V1831 + V5801 + V9395 + V5267 + V932 
#> 7 : 3328 : 0.8311015 : Labels  ~ 1 + V5808 + V86 + V1046 + V4326 + V4077 + V8369 
#> 8 : 3322 : 0.8042674 : Labels  ~ 1 + V9735 + V3170 + V4183 + V6181 + V218 
#> 9 : 3317 : 0.8531073 : Labels  ~ 1 + V7748 + V8623 + V729 + V4960 + V7984 + V381 
#> 
#> Num. Models: 10  To Test: 62  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V1936 + V9818 + V5 + V1584 + V1476 + V723 + V9487 
#> At Accuracy: Labels  ~ 1 + V2556 + V1936 + V9818 + V1584 + V1476 + V723 + V9487 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V1936 + V9818 + V1584 + V1476 + V723 + V9487 
#> 
#> Num. Models: 320  To Test: 1246  TopFreq: 17.55102  Thrf: 0  Removed: 0 
#> ................................*Loop : 17 Blind Cases = 9 Blind Control = 11 Total = 342 Size Cases = 151 Size Control = 191 
#> Accumulated Models CV Accuracy        = 0.7777778 Sensitivity = 0.7284768 Specificity = 0.8167539 Forw. Ensemble Accuracy= 0.8391813 
#> Initial Model Accumulated CV Accuracy = 0.8654971 Sensitivity = 0.8874172 Specificity = 0.8481675 
#> Initial Model Bootstrapped Accuracy   = 0.8670872 Sensitivity = 0.88536 Specificity = 0.8488144 
#> Current Model Bootstrapped Accuracy   = 0.8702183 Sensitivity = 0.8902096 Specificity = 0.8502269 
#> Current KNN Accuracy   = 0.7222222 Sensitivity = 0.8741722 Specificity = 0.6020942 
#> Initial KNN Accuracy   = 0.7865497 Sensitivity = 0.8675497 Specificity = 0.7225131 
#> Train Correlation:  0.8194759  Blind Correlation : 0.7172932 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   128    6
#>   TRUE     69  139
#> Loop : 18 Input Cases = 88 Input Control = 112 
#> Loop : 18 Train Cases = 79 Train Control = 101 
#> Loop : 18 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8046657 : Labels  ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183 
#> 1 : 3368 : 0.8940844 : Labels  ~ 1 + V9275 + V8368 + V3161 + V6163 + V8996 + V9255 + V5321 + V8604 
#> 2 : 3360 : 0.8331162 : Labels  ~ 1 + V9965 + V3365 + V8156 + V729 + V8502 + V3082 
#> 3 : 3354 : 0.8627387 : Labels  ~ 1 + V5683 + V312 + V1476 + V6688 + V4738 + V4352 + V7606 
#> 4 : 3347 : 0.80903 : Labels  ~ 1 + V7748 + V2309 + V898 + V1248 
#> 5 : 3343 : 0.8485272 : Labels  ~ 1 + V4960 + V4584 + V7857 + V6584 + V9395 + V8245 + V9127 
#> 6 : 3336 : 0.8012179 : Labels  ~ 1 + V9617 + V1831 + V5774 + V6083 + V1344 
#> 7 : 3331 : 0.8085502 : Labels  ~ 1 + V414 + V4326 + V86 + V9070 + V2747 
#> 8 : 3326 : 0.8252947 : Labels  ~ 1 + V376 + V5680 + V762 + V2438 + V2462 + V3778 
#> 9 : 3320 : 0.8339802 : Labels  ~ 1 + V5761 + V436 + V9027 + V5945 + V7584 + V6440 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183 
#> At Accuracy: Labels  ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183 
#> 
#> Num. Models: 320  To Test: 1319  TopFreq: 10.425  Thrf: 0  Removed: 0 
#> ................................*Loop : 18 Blind Cases = 9 Blind Control = 11 Total = 362 Size Cases = 160 Size Control = 202 
#> Accumulated Models CV Accuracy        = 0.781768 Sensitivity = 0.725 Specificity = 0.8267327 Forw. Ensemble Accuracy= 0.8453039 
#> Initial Model Accumulated CV Accuracy = 0.8674033 Sensitivity = 0.88125 Specificity = 0.8564356 
#> Initial Model Bootstrapped Accuracy   = 0.837041 Sensitivity = 0.8611231 Specificity = 0.812959 
#> Current Model Bootstrapped Accuracy   = 0.8046657 Sensitivity = 0.8497097 Specificity = 0.7596216 
#> Current KNN Accuracy   = 0.7265193 Sensitivity = 0.875 Specificity = 0.6089109 
#> Initial KNN Accuracy   = 0.7845304 Sensitivity = 0.8625 Specificity = 0.7227723 
#> Train Correlation:  0.7369981  Blind Correlation : 0.8827068 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   137    6
#>   TRUE     74  145
#> Loop : 19 Input Cases = 88 Input Control = 112 
#> Loop : 19 Train Cases = 80 Train Control = 101 
#> Loop : 19 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8634043 : Labels  ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352 
#> 1 : 3366 : 0.8228433 : Labels  ~ 1 + V1831 + V3365 + V4973 + V4584 + V4301 + V8156 
#> 2 : 3360 : 0.8539571 : Labels  ~ 1 + V2309 + V9585 + V9818 + V8635 + V1289 + V3592 
#> 3 : 3354 : 0.8180151 : Labels  ~ 1 + V312 + V9659 + V2638 + V9215 + V713 
#> 4 : 3349 : 0.7966791 : Labels  ~ 1 + V9617 + V5680 + V1476 + V5107 
#> 5 : 3345 : 0.7964309 : Labels  ~ 1 + V4960 + V8806 + V4326 
#> 6 : 3342 : 0.8218785 : Labels  ~ 1 + V414 + V5761 + V436 + V1584 
#> 7 : 3338 : 0.8207792 : Labels  ~ 1 + V376 + V7857 + V9275 + V4289 + V7032 
#> 8 : 3333 : 0.83576 : Labels  ~ 1 + V7220 + V9027 + V6584 + V6163 + V7141 + V2556 
#> 9 : 3327 : 0.79431 : Labels  ~ 1 + V86 + V2866 + V9329 + V5514 
#> 
#> Num. Models: 10  To Test: 50  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352 
#> At Accuracy: Labels  ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352 
#> B:SWiMS    : Labels  ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352 
#> 
#> Num. Models: 320  To Test: 1285  TopFreq: 11.71875  Thrf: 0  Removed: 0 
#> ................................*Loop : 19 Blind Cases = 8 Blind Control = 11 Total = 381 Size Cases = 168 Size Control = 213 
#> Accumulated Models CV Accuracy        = 0.7769029 Sensitivity = 0.7321429 Specificity = 0.8122066 Forw. Ensemble Accuracy= 0.839895 
#> Initial Model Accumulated CV Accuracy = 0.8713911 Sensitivity = 0.8869048 Specificity = 0.8591549 
#> Initial Model Bootstrapped Accuracy   = 0.8472836 Sensitivity = 0.8745583 Specificity = 0.8200088 
#> Current Model Bootstrapped Accuracy   = 0.8634043 Sensitivity = 0.8726143 Specificity = 0.8541944 
#> Current KNN Accuracy   = 0.7244094 Sensitivity = 0.875 Specificity = 0.6056338 
#> Initial KNN Accuracy   = 0.7821522 Sensitivity = 0.8690476 Specificity = 0.713615 
#> Train Correlation:  0.8389108  Blind Correlation : 0.6438596 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   143    7
#>   TRUE     75  156
#> Loop : 20 Input Cases = 88 Input Control = 112 
#> Loop : 20 Train Cases = 80 Train Control = 101 
#> Loop : 20 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8375518 : Labels  ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898 
#> 1 : 3366 : 0.8350131 : Labels  ~ 1 + V9215 + V1184 + V4158 + V9156 + V4352 + V7032 + V7402 
#> 2 : 3359 : 0.7949946 : Labels  ~ 1 + V5005 + V1975 + V9818 + V9395 + V9346 + V5672 
#> 3 : 3353 : 0.7833734 : Labels  ~ 1 + V1936 + V1476 + V1831 + V723 + V2358 
#> 4 : 3348 : 0.8045939 : Labels  ~ 1 + V3629 + V3365 + V6163 + V256 + V2597 
#> 5 : 3343 : 0.7860577 : Labels  ~ 1 + V7378 + V6239 + V6584 + V8414 + V2973 
#> 6 : 3338 : 0.7732953 : Labels  ~ 1 + V698 + V4194 + V1400 + V4326 
#> 7 : 3334 : 0.8050498 : Labels  ~ 1 + V4290 + V8368 + V5680 + V6688 + V6948 
#> 8 : 3329 : 0.8015192 : Labels  ~ 1 + V312 + V4584 + V436 + V2515 
#> 9 : 3325 : 0.7824411 : Labels  ~ 1 + V4960 + V8055 + V8502 + V8981 
#> 
#> Num. Models: 10  To Test: 52  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898 
#> At Accuracy: Labels  ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898 
#> B:SWiMS    : Labels  ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898 
#> 
#> Num. Models: 320  To Test: 1424  TopFreq: 16.38  Thrf: 0  Removed: 0 
#> ................................*Loop : 20 Blind Cases = 8 Blind Control = 11 Total = 400 Size Cases = 176 Size Control = 224 
#> Accumulated Models CV Accuracy        = 0.785 Sensitivity = 0.7443182 Specificity = 0.8169643 Forw. Ensemble Accuracy= 0.8425 
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8920455 Specificity = 0.8616071 
#> Initial Model Bootstrapped Accuracy   = 0.8428167 Sensitivity = 0.8611293 Specificity = 0.824504 
#> Current Model Bootstrapped Accuracy   = 0.8375518 Sensitivity = 0.8605717 Specificity = 0.814532 
#> Current KNN Accuracy   = 0.73 Sensitivity = 0.8806818 Specificity = 0.6116071 
#> Initial KNN Accuracy   = 0.79 Sensitivity = 0.875 Specificity = 0.7232143 
#> Train Correlation:  0.7874365  Blind Correlation : 0.6649123 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   151    7
#>   TRUE     77  165
#> Loop : 21 Input Cases = 88 Input Control = 112 
#> Loop : 21 Train Cases = 79 Train Control = 100 
#> Loop : 21 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8583982 : Labels  ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860 
#> 1 : 3365 : 0.8518437 : Labels  ~ 1 + V1936 + V9275 + V3365 + V5 + V3170 + V5698 + V698 
#> 2 : 3358 : 0.814758 : Labels  ~ 1 + V5005 + V4183 + V130 + V6584 + V7760 
#> 3 : 3353 : 0.8348574 : Labels  ~ 1 + V7748 + V9215 + V469 + V1055 + V6163 + V9213 + V3395 + V662 
#> 4 : 3345 : 0.8829219 : Labels  ~ 1 + V4290 + V1831 + V312 + V8247 + V7891 + V1248 + V9329 + V34 
#> 5 : 3337 : 0.8346543 : Labels  ~ 1 + V8502 + V729 + V8368 + V4301 + V6688 
#> 6 : 3332 : 0.8352601 : Labels  ~ 1 + V872 + V4960 + V8156 + V4584 + V1046 + V8193 
#> 7 : 3326 : 0.815801 : Labels  ~ 1 + V782 + V1198 + V5801 + V3974 + V9965 + V5400 
#> 8 : 3320 : 0.8328584 : Labels  ~ 1 + V4973 + V2309 + V5761 + V1344 + V9704 
#> 9 : 3315 : 0.8014509 : Labels  ~ 1 + V9617 + V4557 + V2783 + V2515 + V8623 
#> 
#> Num. Models: 10  To Test: 63  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860 
#> At Accuracy: Labels  ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860 
#> 
#> Num. Models: 320  To Test: 1217  TopFreq: 12.66667  Thrf: 0  Removed: 0 
#> ................................*Loop : 21 Blind Cases = 9 Blind Control = 12 Total = 421 Size Cases = 185 Size Control = 236 
#> Accumulated Models CV Accuracy        = 0.783848 Sensitivity = 0.7459459 Specificity = 0.8135593 Forw. Ensemble Accuracy= 0.8384798 
#> Initial Model Accumulated CV Accuracy = 0.8741093 Sensitivity = 0.8918919 Specificity = 0.8601695 
#> Initial Model Bootstrapped Accuracy   = 0.8673175 Sensitivity = 0.8824051 Specificity = 0.8522299 
#> Current Model Bootstrapped Accuracy   = 0.8583982 Sensitivity = 0.8776418 Specificity = 0.8391546 
#> Current KNN Accuracy   = 0.7292162 Sensitivity = 0.8810811 Specificity = 0.6101695 
#> Initial KNN Accuracy   = 0.7885986 Sensitivity = 0.8756757 Specificity = 0.720339 
#> Train Correlation:  0.8176637  Blind Correlation : 0.9376623 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   159    7
#>   TRUE     80  175
#> Loop : 22 Input Cases = 88 Input Control = 112 
#> Loop : 22 Train Cases = 79 Train Control = 100 
#> Loop : 22 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8110746 : Labels  ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264 
#> 1 : 3367 : 0.8445842 : Labels  ~ 1 + V1936 + V2556 + V9215 + V6403 + V2636 + V5400 
#> 2 : 3361 : 0.8287747 : Labels  ~ 1 + V7891 + V662 + V4326 + V6146 + V5107 
#> 3 : 3356 : 0.8459568 : Labels  ~ 1 + V5801 + V7513 + V9818 + V4352 + V4406 + V4301 
#> 4 : 3350 : 0.7940915 : Labels  ~ 1 + V6594 + V9970 + V8156 + V2700 
#> 5 : 3346 : 0.8379364 : Labels  ~ 1 + V7748 + V4194 + V5680 + V6111 + V1344 + V3592 
#> 6 : 3340 : 0.8422884 : Labels  ~ 1 + V6959 + V3365 + V8502 + V3708 + V2294 + V9275 
#> 7 : 3334 : 0.8129386 : Labels  ~ 1 + V9735 + V819 + V1184 + V7928 + V3082 
#> 8 : 3329 : 0.8384598 : Labels  ~ 1 + V898 + V4960 + V4580 + V4198 + V8767 + V3070 
#> 9 : 3323 : 0.8496558 : Labels  ~ 1 + V312 + V6584 + V6163 + V1865 + V2973 + V2788 
#> 
#> Num. Models: 10  To Test: 56  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264 
#> At Accuracy: Labels  ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264 
#> 
#> Num. Models: 320  To Test: 1240  TopFreq: 13.3871  Thrf: 0  Removed: 0 
#> ................................*Loop : 22 Blind Cases = 9 Blind Control = 12 Total = 442 Size Cases = 194 Size Control = 248 
#> Accumulated Models CV Accuracy        = 0.7828054 Sensitivity = 0.7474227 Specificity = 0.8104839 Forw. Ensemble Accuracy= 0.8371041 
#> Initial Model Accumulated CV Accuracy = 0.8642534 Sensitivity = 0.8762887 Specificity = 0.8548387 
#> Initial Model Bootstrapped Accuracy   = 0.8668775 Sensitivity = 0.8859573 Specificity = 0.8477976 
#> Current Model Bootstrapped Accuracy   = 0.8110746 Sensitivity = 0.8379386 Specificity = 0.7842105 
#> Current KNN Accuracy   = 0.7307692 Sensitivity = 0.8814433 Specificity = 0.6129032 
#> Initial KNN Accuracy   = 0.7918552 Sensitivity = 0.8814433 Specificity = 0.7217742 
#> Train Correlation:  0.7715209  Blind Correlation : 0.7532468 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   168    7
#>   TRUE     82  185
#> Loop : 23 Input Cases = 88 Input Control = 112 
#> Loop : 23 Train Cases = 79 Train Control = 101 
#> Loop : 23 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7987792 : Labels  ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173 
#> 1 : 3368 : 0.7922778 : Labels  ~ 1 + V4183 + V1936 + V1831 + V3947 + V4185 
#> 2 : 3363 : 0.8022217 : Labels  ~ 1 + V723 + V4290 + V3014 + V7272 + V3675 
#> 3 : 3358 : 0.8499131 : Labels  ~ 1 + V698 + V7513 + V2256 + V3591 + V2266 + V7402 + V2556 + V8156 
#> 4 : 3350 : 0.7927489 : Labels  ~ 1 + V8368 + V7928 + V6584 + V1344 + V306 
#> 5 : 3345 : 0.7841727 : Labels  ~ 1 + V3365 + V7212 + V8055 + V7748 + V7033 
#> 6 : 3340 : 0.8088427 : Labels  ~ 1 + V312 + V4352 + V8720 + V9818 + V4406 
#> 7 : 3335 : 0.7940541 : Labels  ~ 1 + V1476 + V4069 + V3206 + V9156 + V9275 
#> 8 : 3330 : 0.8317266 : Labels  ~ 1 + V4960 + V1975 + V1198 + V898 + V3170 + V3554 
#> 9 : 3324 : 0.8546549 : Labels  ~ 1 + V2309 + V34 + V6959 + V3866 + V9617 + V4554 + V9528 
#> 
#> Num. Models: 10  To Test: 56  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173 
#> At Accuracy: Labels  ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173 
#> 
#> Num. Models: 320  To Test: 1274  TopFreq: 10.70968  Thrf: 0  Removed: 0 
#> ................................*Loop : 23 Blind Cases = 9 Blind Control = 11 Total = 462 Size Cases = 203 Size Control = 259 
#> Accumulated Models CV Accuracy        = 0.7922078 Sensitivity = 0.7586207 Specificity = 0.8185328 Forw. Ensemble Accuracy= 0.8376623 
#> Initial Model Accumulated CV Accuracy = 0.8658009 Sensitivity = 0.8817734 Specificity = 0.8532819 
#> Initial Model Bootstrapped Accuracy   = 0.8390943 Sensitivity = 0.8591118 Specificity = 0.8190768 
#> Current Model Bootstrapped Accuracy   = 0.7987792 Sensitivity = 0.854371 Specificity = 0.7431873 
#> Current KNN Accuracy   = 0.7359307 Sensitivity = 0.8866995 Specificity = 0.6177606 
#> Initial KNN Accuracy   = 0.7965368 Sensitivity = 0.8866995 Specificity = 0.7258687 
#> Train Correlation:  0.7809336  Blind Correlation : 0.9082707 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   176    7
#>   TRUE     85  194
#> Loop : 24 Input Cases = 88 Input Control = 112 
#> Loop : 24 Train Cases = 79 Train Control = 101 
#> Loop : 24 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8439477 : Labels  ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618 
#> 1 : 3367 : 0.8122673 : Labels  ~ 1 + V7891 + V723 + V9215 + V9050 + V4352 
#> 2 : 3362 : 0.8598842 : Labels  ~ 1 + V6594 + V6584 + V4158 + V4584 + V5721 + V4900 + V3161 
#> 3 : 3355 : 0.8508772 : Labels  ~ 1 + V5005 + V9818 + V1184 + V3365 + V4973 + V6172 
#> 4 : 3349 : 0.8203108 : Labels  ~ 1 + V7748 + V256 + V8411 + V312 + V9070 + V2526 
#> 5 : 3343 : 0.8458816 : Labels  ~ 1 + V1476 + V8368 + V5680 + V8038 + V2145 + V8323 
#> 6 : 3337 : 0.8425946 : Labels  ~ 1 + V9585 + V4301 + V7319 + V1248 + V1874 + V7026 
#> 7 : 3331 : 0.8254593 : Labels  ~ 1 + V7032 + V4960 + V4326 + V1584 + V1046 
#> 8 : 3326 : 0.7518669 : Labels  ~ 1 + V1831 + V9432 
#> 9 : 3324 : 0.8225528 : Labels  ~ 1 + V698 + V2309 + V5761 + V6111 + V6440 
#> 
#> Num. Models: 10  To Test: 54  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618 
#> At Accuracy: Labels  ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618 
#> 
#> Num. Models: 320  To Test: 1362  TopFreq: 10.26829  Thrf: 0  Removed: 0 
#> ................................*Loop : 24 Blind Cases = 9 Blind Control = 11 Total = 482 Size Cases = 212 Size Control = 270 
#> Accumulated Models CV Accuracy        = 0.7904564 Sensitivity = 0.759434 Specificity = 0.8148148 Forw. Ensemble Accuracy= 0.8340249 
#> Initial Model Accumulated CV Accuracy = 0.8692946 Sensitivity = 0.8867925 Specificity = 0.8555556 
#> Initial Model Bootstrapped Accuracy   = 0.8447225 Sensitivity = 0.8739935 Specificity = 0.8154516 
#> Current Model Bootstrapped Accuracy   = 0.8439477 Sensitivity = 0.8752454 Specificity = 0.8126499 
#> Current KNN Accuracy   = 0.7365145 Sensitivity = 0.8867925 Specificity = 0.6185185 
#> Initial KNN Accuracy   = 0.7987552 Sensitivity = 0.8915094 Specificity = 0.7259259 
#> Train Correlation:  0.8355725  Blind Correlation : 0.7593985 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   183    8
#>   TRUE     88  203
#> Loop : 25 Input Cases = 88 Input Control = 112 
#> Loop : 25 Train Cases = 79 Train Control = 101 
#> Loop : 25 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8311202 : Labels  ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932 
#> 1 : 3366 : 0.8274936 : Labels  ~ 1 + V7748 + V4352 + V4584 + V312 + V6688 
#> 2 : 3361 : 0.8339524 : Labels  ~ 1 + V5005 + V4290 + V2515 + V6584 + V7473 + V2665 + V5672 
#> 3 : 3354 : 0.7924773 : Labels  ~ 1 + V7891 + V2256 + V256 + V436 + V220 
#> 4 : 3349 : 0.8236564 : Labels  ~ 1 + V1476 + V9275 + V1936 + V4295 + V2973 + V6163 
#> 5 : 3343 : 0.8129763 : Labels  ~ 1 + V8502 + V4301 + V4069 + V5283 + V3708 
#> 6 : 3338 : 0.7827772 : Labels  ~ 1 + V5473 + V34 + V4654 + V8156 
#> 7 : 3334 : 0.789748 : Labels  ~ 1 + V7197 + V4960 + V4185 + V898 
#> 8 : 3330 : 0.7923894 : Labels  ~ 1 + V86 + V1831 + V62 + V723 + V1344 
#> 9 : 3325 : 0.7959206 : Labels  ~ 1 + V7857 + V9215 + V8038 + V7196 + V3675 
#> 
#> Num. Models: 10  To Test: 53  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932 
#> At Accuracy: Labels  ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932 
#> 
#> Num. Models: 320  To Test: 1337  TopFreq: 13.97059  Thrf: 0  Removed: 0 
#> ................................*Loop : 25 Blind Cases = 9 Blind Control = 11 Total = 502 Size Cases = 221 Size Control = 281 
#> Accumulated Models CV Accuracy        = 0.7948207 Sensitivity = 0.7692308 Specificity = 0.8149466 Forw. Ensemble Accuracy= 0.8366534 
#> Initial Model Accumulated CV Accuracy = 0.8705179 Sensitivity = 0.8914027 Specificity = 0.8540925 
#> Initial Model Bootstrapped Accuracy   = 0.8454012 Sensitivity = 0.8604044 Specificity = 0.8303979 
#> Current Model Bootstrapped Accuracy   = 0.8311202 Sensitivity = 0.8485757 Specificity = 0.8136646 
#> Current KNN Accuracy   = 0.7390438 Sensitivity = 0.8914027 Specificity = 0.6192171 
#> Initial KNN Accuracy   = 0.8027888 Sensitivity = 0.8959276 Specificity = 0.7295374 
#> Train Correlation:  0.8386827  Blind Correlation : 0.8556391 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   190    8
#>   TRUE     90  214
#> Loop : 26 Input Cases = 88 Input Control = 112 
#> Loop : 26 Train Cases = 79 Train Control = 101 
#> Loop : 26 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8403888 : Labels  ~ 1 + V729 + V6045 + V3947 + V7446 + V6888 + V6584 
#> 1 : 3367 : 0.8631055 : Labels  ~ 1 + V9215 + V8368 + V4584 + V1476 + V8479 + V5321 + V2556 + V3170 + V5212 
#> 2 : 3358 : 0.8218989 : Labels  ~ 1 + V5005 + V6163 + V7032 + V7090 + V4301 + V2064 
#> 3 : 3352 : 0.8488296 : Labels  ~ 1 + V5801 + V762 + V9275 + V4406 + V4352 + V3365 + V3161 + V6520 
#> 4 : 3344 : 0.8229955 : Labels  ~ 1 + V8411 + V312 + V7319 + V4077 + V9213 + V3518 + V3592 
#> 5 : 3337 : 0.8195407 : Labels  ~ 1 + V9432 + V8055 + V698 + V6111 + V4018 
#> 6 : 3332 : 0.8334046 : Labels  ~ 1 + V4960 + V5680 + V9919 + V22 + V3746 + V4580 
#> 7 : 3326 : 0.8789588 : Labels  ~ 1 + V5378 + V9735 + V2804 + V1831 + V3866 + V9133 + V9884 + V7629 + V2597 + V9965 
#> 8 : 3316 : 0.8189805 : Labels  ~ 1 + V2309 + V6959 + V7857 + V7562 + V3148 
#> 9 : 3311 : 0.8136551 : Labels  ~ 1 + V9818 + V9617 + V5995 + V9395 + V7748 
#> 
#> Num. Models: 10  To Test: 67  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V9432 + V729 + V6045 + V4290 + V3947 + V7446 + V6888 + V6584 
#> At Accuracy: Labels  ~ 1 + V729 + V6045 + V3947 + V7446 + V6888 + V6584 
#> B:SWiMS    : Labels  ~ 1 + V729 + V6045 + V3947 + V7446 + V6888 + V6584 
#> 
#> Num. Models: 320  To Test: 1358  TopFreq: 11.54054  Thrf: 0  Removed: 0 
#> ................................*Loop : 26 Blind Cases = 9 Blind Control = 11 Total = 522 Size Cases = 230 Size Control = 292 
#> Accumulated Models CV Accuracy        = 0.7969349 Sensitivity = 0.773913 Specificity = 0.8150685 Forw. Ensemble Accuracy= 0.8371648 
#> Initial Model Accumulated CV Accuracy = 0.8735632 Sensitivity = 0.8913043 Specificity = 0.859589 
#> Initial Model Bootstrapped Accuracy   = 0.8452073 Sensitivity = 0.8715458 Specificity = 0.8188687 
#> Current Model Bootstrapped Accuracy   = 0.8403888 Sensitivity = 0.8617711 Specificity = 0.8190065 
#> Current KNN Accuracy   = 0.7394636 Sensitivity = 0.8913043 Specificity = 0.619863 
#> Initial KNN Accuracy   = 0.8007663 Sensitivity = 0.8956522 Specificity = 0.7260274 
#> Train Correlation:  0.8272375  Blind Correlation : 0.7007519 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   197    9
#>   TRUE     93  223
#> Loop : 27 Input Cases = 88 Input Control = 112 
#> Loop : 27 Train Cases = 79 Train Control = 101 
#> Loop : 27 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8502151 : Labels  ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245 
#> 1 : 3366 : 0.8247613 : Labels  ~ 1 + V9215 + V312 + V6948 + V2294 + V60 
#> 2 : 3361 : 0.85013 : Labels  ~ 1 + V1831 + V8368 + V4183 + V7141 + V2556 + V8996 + V867 
#> 3 : 3354 : 0.7779357 : Labels  ~ 1 + V5005 + V1975 + V4326 + V4301 
#> 4 : 3350 : 0.7848787 : Labels  ~ 1 + V3365 + V9275 + V469 + V3170 + V729 
#> 5 : 3345 : 0.8087154 : Labels  ~ 1 + V4960 + V3014 + V9213 + V2242 
#> 6 : 3341 : 0.8377448 : Labels  ~ 1 + V8156 + V3987 + V2973 + V8502 + V9395 
#> 7 : 3336 : 0.8250436 : Labels  ~ 1 + V4584 + V4290 + V414 + V6584 + V1344 + V7381 
#> 8 : 3330 : 0.8122564 : Labels  ~ 1 + V698 + V4194 + V9965 + V5680 + V8517 + V1173 + V7584 
#> 9 : 3323 : 0.8280035 : Labels  ~ 1 + V5473 + V872 + V5417 + V1952 + V4564 + V6688 + V7275 
#> 
#> Num. Models: 10  To Test: 57  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245 
#> At Accuracy: Labels  ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245 
#> B:SWiMS    : Labels  ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245 
#> 
#> Num. Models: 320  To Test: 1277  TopFreq: 13.54286  Thrf: 0  Removed: 0 
#> ................................*Loop : 27 Blind Cases = 9 Blind Control = 11 Total = 542 Size Cases = 239 Size Control = 303 
#> Accumulated Models CV Accuracy        = 0.795203 Sensitivity = 0.7698745 Specificity = 0.8151815 Forw. Ensemble Accuracy= 0.8394834 
#> Initial Model Accumulated CV Accuracy = 0.8726937 Sensitivity = 0.8870293 Specificity = 0.8613861 
#> Initial Model Bootstrapped Accuracy   = 0.8536425 Sensitivity = 0.8761759 Specificity = 0.8311092 
#> Current Model Bootstrapped Accuracy   = 0.8502151 Sensitivity = 0.8890323 Specificity = 0.8113978 
#> Current KNN Accuracy   = 0.7435424 Sensitivity = 0.8912134 Specificity = 0.6270627 
#> Initial KNN Accuracy   = 0.798893 Sensitivity = 0.8912134 Specificity = 0.7260726 
#> Train Correlation:  0.7811064  Blind Correlation : 0.8496241 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   206   10
#>   TRUE     96  230
#> Loop : 28 Input Cases = 88 Input Control = 112 
#> Loop : 28 Train Cases = 79 Train Control = 101 
#> Loop : 28 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8683638 : Labels  ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647 
#> 1 : 3365 : 0.8049045 : Labels  ~ 1 + V7891 + V9818 + V4183 + V8981 + V130 
#> 2 : 3360 : 0.8403509 : Labels  ~ 1 + V1975 + V5005 + V8156 + V7760 + V4554 + V6163 
#> 3 : 3354 : 0.826484 : Labels  ~ 1 + V4564 + V8368 + V5 + V9275 + V2515 + V4978 
#> 4 : 3348 : 0.8297117 : Labels  ~ 1 + V469 + V256 + V312 + V1046 + V4584 + V9156 
#> 5 : 3342 : 0.8315743 : Labels  ~ 1 + V3725 + V7748 + V5680 + V5489 + V3778 + V6440 
#> 6 : 3336 : 0.7842716 : Labels  ~ 1 + V4960 + V872 + V1831 + V729 + V1344 
#> 7 : 3331 : 0.8597495 : Labels  ~ 1 + V2309 + V6584 + V4973 + V1184 + V1584 + V4580 + V7513 + V9833 
#> 8 : 3323 : 0.7977346 : Labels  ~ 1 + V9617 + V782 + V2256 + V8055 + V4301 + V1874 
#> 9 : 3317 : 0.78737 : Labels  ~ 1 + V414 + V9965 + V4557 + V9448 + V4406 
#> 
#> Num. Models: 10  To Test: 61  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647 
#> At Accuracy: Labels  ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647 
#> B:SWiMS    : Labels  ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647 
#> 
#> Num. Models: 320  To Test: 1281  TopFreq: 12.56667  Thrf: 0  Removed: 0 
#> ................................*Loop : 28 Blind Cases = 9 Blind Control = 11 Total = 562 Size Cases = 248 Size Control = 314 
#> Accumulated Models CV Accuracy        = 0.797153 Sensitivity = 0.7701613 Specificity = 0.8184713 Forw. Ensemble Accuracy= 0.8434164 
#> Initial Model Accumulated CV Accuracy = 0.8754448 Sensitivity = 0.891129 Specificity = 0.8630573 
#> Initial Model Bootstrapped Accuracy   = 0.8473274 Sensitivity = 0.8796797 Specificity = 0.8149751 
#> Current Model Bootstrapped Accuracy   = 0.8683638 Sensitivity = 0.8833768 Specificity = 0.8533507 
#> Current KNN Accuracy   = 0.7437722 Sensitivity = 0.891129 Specificity = 0.6273885 
#> Initial KNN Accuracy   = 0.7989324 Sensitivity = 0.8951613 Specificity = 0.7229299 
#> Train Correlation:  0.8070455  Blind Correlation : 0.9052632 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   212   12
#>   TRUE    102  236
#> Loop : 29 Input Cases = 88 Input Control = 112 
#> Loop : 29 Train Cases = 80 Train Control = 101 
#> Loop : 29 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8777216 : Labels  ~ 1 + V2556 + V6584 + V4158 + V7513 + V7402 + V4352 + V6163 + V4301 
#> 1 : 3365 : 0.8649382 : Labels  ~ 1 + V5005 + V7857 + V4584 + V3365 + V9818 + V9070 + V3161 + V6685 + V9528 
#> 2 : 3356 : 0.8464419 : Labels  ~ 1 + V7748 + V8368 + V3014 + V1762 + V22 + V7834 + V7373 
#> 3 : 3349 : 0.8136443 : Labels  ~ 1 + V8806 + V312 + V5761 + V762 + V1344 
#> 4 : 3344 : 0.8372866 : Labels  ~ 1 + V2309 + V86 + V9215 + V220 + V4534 + V3170 + V7195 
#> 5 : 3337 : 0.7576553 : Labels  ~ 1 + V9275 + V9617 + V5400 
#> 6 : 3334 : 0.8363795 : Labels  ~ 1 + V4960 + V4326 + V698 + V2438 + V6913 + V7842 
#> 7 : 3328 : 0.7897217 : Labels  ~ 1 + V414 + V1831 + V4077 + V6692 
#> 8 : 3324 : 0.8056475 : Labels  ~ 1 + V1476 + V5680 + V9027 + V4900 + V9213 
#> 9 : 3319 : 0.8645267 : Labels  ~ 1 + V436 + V376 + V7319 + V2804 + V7960 + V2462 + V3592 + V723 
#> 
#> Num. Models: 10  To Test: 62  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V5005 + V6584 + V4158 + V7513 + V1118 + V7402 + V4352 + V6163 + V4301 
#> At Accuracy: Labels  ~ 1 + V2556 + V6584 + V4158 + V7513 + V7402 + V4352 + V6163 + V4301 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V6584 + V4158 + V7513 + V7402 + V4352 + V6163 + V4301 
#> 
#> Num. Models: 320  To Test: 1298  TopFreq: 13.45946  Thrf: 0  Removed: 0 
#> ................................*Loop : 29 Blind Cases = 8 Blind Control = 11 Total = 581 Size Cases = 256 Size Control = 325 
#> Accumulated Models CV Accuracy        = 0.7934596 Sensitivity = 0.765625 Specificity = 0.8153846 Forw. Ensemble Accuracy= 0.8416523 
#> Initial Model Accumulated CV Accuracy = 0.8743546 Sensitivity = 0.890625 Specificity = 0.8615385 
#> Initial Model Bootstrapped Accuracy   = 0.8466387 Sensitivity = 0.8635559 Specificity = 0.8297214 
#> Current Model Bootstrapped Accuracy   = 0.8777216 Sensitivity = 0.9027931 Specificity = 0.8526501 
#> Current KNN Accuracy   = 0.7401033 Sensitivity = 0.8828125 Specificity = 0.6276923 
#> Initial KNN Accuracy   = 0.7934596 Sensitivity = 0.8867188 Specificity = 0.72 
#> Train Correlation:  0.7767733  Blind Correlation : 0.7789474 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   222   12
#>   TRUE    103  244
#> Loop : 30 Input Cases = 88 Input Control = 112 
#> Loop : 30 Train Cases = 80 Train Control = 101 
#> Loop : 30 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8696832 : Labels  ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754 
#> 1 : 3364 : 0.8280563 : Labels  ~ 1 + V1184 + V7857 + V3365 + V9818 + V729 + V6688 
#> 2 : 3358 : 0.8538933 : Labels  ~ 1 + V86 + V312 + V7513 + V1831 + V8770 + V8117 + V9965 + V3592 
#> 3 : 3350 : 0.8154488 : Labels  ~ 1 + V9215 + V2309 + V7928 + V4352 + V3554 
#> 4 : 3345 : 0.8625192 : Labels  ~ 1 + V698 + V8368 + V723 + V4326 + V307 + V6594 + V2358 + V256 
#> 5 : 3337 : 0.8366812 : Labels  ~ 1 + V414 + V5680 + V5400 + V4301 + V52 + V3165 
#> 6 : 3331 : 0.8200574 : Labels  ~ 1 + V4973 + V4584 + V9617 + V130 + V6584 + V2646 
#> 7 : 3325 : 0.7931525 : Labels  ~ 1 + V4290 + V3014 + V9027 + V7584 
#> 8 : 3321 : 0.8174776 : Labels  ~ 1 + V7994 + V6163 + V3676 + V9213 
#> 9 : 3317 : 0.8090316 : Labels  ~ 1 + V1476 + V7212 + V5761 + V4289 + V3986 
#> 
#> Num. Models: 10  To Test: 61  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754 
#> At Accuracy: Labels  ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754 
#> B:SWiMS    : Labels  ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754 
#> 
#> Num. Models: 320  To Test: 1384  TopFreq: 12.97297  Thrf: 0  Removed: 0 
#> ................................*Loop : 30 Blind Cases = 8 Blind Control = 11 Total = 600 Size Cases = 264 Size Control = 336 
#> Accumulated Models CV Accuracy        = 0.7933333 Sensitivity = 0.7613636 Specificity = 0.8184524 Forw. Ensemble Accuracy= 0.845 
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8939394 Specificity = 0.860119 
#> Initial Model Bootstrapped Accuracy   = 0.8473266 Sensitivity = 0.8745029 Specificity = 0.8201502 
#> Current Model Bootstrapped Accuracy   = 0.8696832 Sensitivity = 0.8886719 Specificity = 0.8506944 
#> Current KNN Accuracy   = 0.7416667 Sensitivity = 0.8825758 Specificity = 0.6309524 
#> Initial KNN Accuracy   = 0.7966667 Sensitivity = 0.8863636 Specificity = 0.7261905 
#> Train Correlation:  0.8079169  Blind Correlation : 0.6614035 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   231   12
#>   TRUE    107  250
#> Loop : 31 Input Cases = 88 Input Control = 112 
#> Loop : 31 Train Cases = 79 Train Control = 100 
#> Loop : 31 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8823852 : Labels  ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720 
#> 1 : 3366 : 0.8501539 : Labels  ~ 1 + V7891 + V9215 + V7272 + V6163 + V3170 + V7381 
#> 2 : 3360 : 0.8100919 : Labels  ~ 1 + V6594 + V9818 + V2206 + V4301 
#> 3 : 3356 : 0.8237039 : Labels  ~ 1 + V5808 + V1831 + V1248 + V4352 + V1046 + V5378 
#> 4 : 3350 : 0.8392032 : Labels  ~ 1 + V729 + V7748 + V3206 + V2294 + V6584 + V3612 
#> 5 : 3344 : 0.7969088 : Labels  ~ 1 + V1936 + V9213 + V4183 + V9965 + V5837 
#> 6 : 3339 : 0.8509488 : Labels  ~ 1 + V9735 + V5761 + V1476 + V9395 + V4564 + V8323 + V3860 
#> 7 : 3332 : 0.7720798 : Labels  ~ 1 + V5801 + V8156 + V4406 
#> 8 : 3329 : 0.8593887 : Labels  ~ 1 + V9432 + V4580 + V3014 + V1087 + V8038 + V5107 + V7857 
#> 9 : 3322 : 0.8414261 : Labels  ~ 1 + V4070 + V5680 + V1975 + V7834 + V8484 + V8972 + V2438 
#> 
#> Num. Models: 10  To Test: 58  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720 
#> At Accuracy: Labels  ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720 
#> 
#> Num. Models: 320  To Test: 1246  TopFreq: 12.23404  Thrf: 0  Removed: 0 
#> ................................*Loop : 31 Blind Cases = 9 Blind Control = 12 Total = 621 Size Cases = 273 Size Control = 348 
#> Accumulated Models CV Accuracy        = 0.7890499 Sensitivity = 0.7582418 Specificity = 0.8132184 Forw. Ensemble Accuracy= 0.84219 
#> Initial Model Accumulated CV Accuracy = 0.8760064 Sensitivity = 0.8937729 Specificity = 0.862069 
#> Initial Model Bootstrapped Accuracy   = 0.8538479 Sensitivity = 0.8762475 Specificity = 0.8314482 
#> Current Model Bootstrapped Accuracy   = 0.8823852 Sensitivity = 0.8943554 Specificity = 0.8704151 
#> Current KNN Accuracy   = 0.7391304 Sensitivity = 0.8791209 Specificity = 0.6293103 
#> Initial KNN Accuracy   = 0.7954911 Sensitivity = 0.8864469 Specificity = 0.7241379 
#> Train Correlation:  0.8066286  Blind Correlation : 0.9207792 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   240   12
#>   TRUE    109  260
#> Loop : 32 Input Cases = 88 Input Control = 112 
#> Loop : 32 Train Cases = 79 Train Control = 100 
#> Loop : 32 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8320796 : Labels  ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597 
#> 1 : 3367 : 0.8210549 : Labels  ~ 1 + V698 + V1936 + V9818 + V4158 + V9156 + V3675 + V3119 
#> 2 : 3360 : 0.8133245 : Labels  ~ 1 + V7748 + V3365 + V6584 + V4584 + V8726 
#> 3 : 3355 : 0.864083 : Labels  ~ 1 + V1476 + V8368 + V1831 + V5400 + V2636 + V7891 + V9965 + V2462 
#> 4 : 3347 : 0.8488218 : Labels  ~ 1 + V4290 + V312 + V9215 + V5995 + V5514 + V4352 + V819 + V1344 + V3592 
#> 5 : 3338 : 0.8018535 : Labels  ~ 1 + V436 + V2309 + V256 + V729 + V9213 
#> 6 : 3333 : 0.7738042 : Labels  ~ 1 + V86 + V4960 + V5761 
#> 7 : 3330 : 0.818996 : Labels  ~ 1 + V414 + V7513 + V4326 + V3170 + V8193 + V5321 
#> 8 : 3324 : 0.8212216 : Labels  ~ 1 + V2358 + V9027 + V2256 + V4406 + V762 + V130 + V6408 
#> 9 : 3317 : 0.8136673 : Labels  ~ 1 + V9617 + V6163 + V22 + V3161 + V2644 + V8247 
#> 
#> Num. Models: 10  To Test: 62  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597 
#> At Accuracy: Labels  ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597 
#> 
#> Num. Models: 320  To Test: 1369  TopFreq: 13.375  Thrf: 0  Removed: 0 
#> ................................*Loop : 32 Blind Cases = 9 Blind Control = 12 Total = 642 Size Cases = 282 Size Control = 360 
#> Accumulated Models CV Accuracy        = 0.7928349 Sensitivity = 0.7624113 Specificity = 0.8166667 Forw. Ensemble Accuracy= 0.8457944 
#> Initial Model Accumulated CV Accuracy = 0.876947 Sensitivity = 0.893617 Specificity = 0.8638889 
#> Initial Model Bootstrapped Accuracy   = 0.8436118 Sensitivity = 0.8740053 Specificity = 0.8132184 
#> Current Model Bootstrapped Accuracy   = 0.8320796 Sensitivity = 0.8816372 Specificity = 0.7825221 
#> Current KNN Accuracy   = 0.7429907 Sensitivity = 0.8794326 Specificity = 0.6361111 
#> Initial KNN Accuracy   = 0.7975078 Sensitivity = 0.8865248 Specificity = 0.7277778 
#> Train Correlation:  0.7620279  Blind Correlation : 0.8363636 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   251   12
#>   TRUE    110  269
#> Loop : 33 Input Cases = 88 Input Control = 112 
#> Loop : 33 Train Cases = 79 Train Control = 101 
#> Loop : 33 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7972381 : Labels  ~ 1 + V5005 + V698 + V4584 + V7272 
#> 1 : 3369 : 0.8502604 : Labels  ~ 1 + V1936 + V4290 + V9275 + V5400 + V9395 + V2991 + V3778 
#> 2 : 3362 : 0.8804936 : Labels  ~ 1 + V7748 + V9215 + V3206 + V723 + V8239 + V3545 + V3161 + V9965 + V8770 
#> 3 : 3353 : 0.8461116 : Labels  ~ 1 + V4158 + V7513 + V8502 + V9818 + V6959 + V3826 + V4564 
#> 4 : 3346 : 0.8202307 : Labels  ~ 1 + V5473 + V1055 + V5680 + V311 + V6688 
#> 5 : 3341 : 0.8378144 : Labels  ~ 1 + V1476 + V3014 + V6239 + V7584 + V5321 + V3592 
#> 6 : 3335 : 0.8151915 : Labels  ~ 1 + V436 + V4666 + V1831 + V729 + V6958 
#> 7 : 3330 : 0.8253351 : Labels  ~ 1 + V7197 + V4194 + V6584 + V6163 + V1512 + V2064 
#> 8 : 3324 : 0.8283743 : Labels  ~ 1 + V86 + V7928 + V898 + V2309 + V1458 + V4554 
#> 9 : 3318 : 0.7813246 : Labels  ~ 1 + V7857 + V5761 + V8744 + V7402 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V698 + V4584 + V7272 
#> At Accuracy: Labels  ~ 1 + V5005 + V698 + V4584 + V7272 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V698 + V4584 + V7272 
#> 
#> Num. Models: 320  To Test: 1276  TopFreq: 15.52273  Thrf: 0  Removed: 0 
#> ................................*Loop : 33 Blind Cases = 9 Blind Control = 11 Total = 662 Size Cases = 291 Size Control = 371 
#> Accumulated Models CV Accuracy        = 0.7900302 Sensitivity = 0.7560137 Specificity = 0.8167116 Forw. Ensemble Accuracy= 0.8444109 
#> Initial Model Accumulated CV Accuracy = 0.8746224 Sensitivity = 0.8900344 Specificity = 0.8625337 
#> Initial Model Bootstrapped Accuracy   = 0.8549323 Sensitivity = 0.8753492 Specificity = 0.8345154 
#> Current Model Bootstrapped Accuracy   = 0.7972381 Sensitivity = 0.8331872 Specificity = 0.7612889 
#> Current KNN Accuracy   = 0.7432024 Sensitivity = 0.8797251 Specificity = 0.6361186 
#> Initial KNN Accuracy   = 0.8036254 Sensitivity = 0.8900344 Specificity = 0.7358491 
#> Train Correlation:  0.8246997  Blind Correlation : 0.8090226 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   258   13
#>   TRUE    116  275
#> Loop : 34 Input Cases = 88 Input Control = 112 
#> Loop : 34 Train Cases = 79 Train Control = 101 
#> Loop : 34 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8359543 : Labels  ~ 1 + V5005 + V9215 + V312 + V4352 + V22 + V6570 
#> 1 : 3367 : 0.8331186 : Labels  ~ 1 + V3365 + V1831 + V3161 + V723 + V9965 + V4584 
#> 2 : 3361 : 0.8108138 : Labels  ~ 1 + V8368 + V5761 + V86 + V1248 
#> 3 : 3357 : 0.837644 : Labels  ~ 1 + V4960 + V6584 + V8411 + V6163 + V3170 + V6970 
#> 4 : 3351 : 0.8389035 : Labels  ~ 1 + V414 + V9818 + V9156 + V7857 + V2418 
#> 5 : 3346 : 0.804145 : Labels  ~ 1 + V2309 + V7748 + V9275 + V4185 
#> 6 : 3342 : 0.8165944 : Labels  ~ 1 + V9027 + V4326 + V436 + V6688 
#> 7 : 3338 : 0.7986096 : Labels  ~ 1 + V9617 + V1476 + V5680 + V3708 
#> 8 : 3334 : 0.8254003 : Labels  ~ 1 + V8806 + V376 + V5417 + V9395 + V6146 
#> 9 : 3329 : 0.8281418 : Labels  ~ 1 + V698 + V8156 + V7994 + V686 + V3675 
#> 
#> Num. Models: 10  To Test: 49  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V9215 + V312 + V2785 + V4352 + V22 + V6570 
#> At Accuracy: Labels  ~ 1 + V5005 + V9215 + V312 + V4352 + V22 + V6570 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V9215 + V312 + V4352 + V22 + V6570 
#> 
#> Num. Models: 320  To Test: 1222  TopFreq: 14.97959  Thrf: 0  Removed: 0 
#> ................................*Loop : 34 Blind Cases = 9 Blind Control = 11 Total = 682 Size Cases = 300 Size Control = 382 
#> Accumulated Models CV Accuracy        = 0.7844575 Sensitivity = 0.7533333 Specificity = 0.8089005 Forw. Ensemble Accuracy= 0.8416422 
#> Initial Model Accumulated CV Accuracy = 0.8739003 Sensitivity = 0.8933333 Specificity = 0.8586387 
#> Initial Model Bootstrapped Accuracy   = 0.8517023 Sensitivity = 0.8662156 Specificity = 0.837189 
#> Current Model Bootstrapped Accuracy   = 0.8359543 Sensitivity = 0.8300302 Specificity = 0.8418785 
#> Current KNN Accuracy   = 0.7419355 Sensitivity = 0.8833333 Specificity = 0.6308901 
#> Initial KNN Accuracy   = 0.8020528 Sensitivity = 0.8933333 Specificity = 0.7303665 
#> Train Correlation:  0.8133811  Blind Correlation : 0.6571429 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   263   13
#>   TRUE    120  286
#> Loop : 35 Input Cases = 88 Input Control = 112 
#> Loop : 35 Train Cases = 79 Train Control = 101 
#> Loop : 35 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8333695 : Labels  ~ 1 + V9215 + V312 + V4352 + V6111 + V7183 
#> 1 : 3368 : 0.8019132 : Labels  ~ 1 + V3365 + V9275 + V5400 + V8466 + V1184 
#> 2 : 3363 : 0.8643554 : Labels  ~ 1 + V8368 + V1248 + V9818 + V7748 + V9086 + V2556 + V3170 + V8247 
#> 3 : 3355 : 0.8060652 : Labels  ~ 1 + V4960 + V4326 + V3708 + V4290 
#> 4 : 3351 : 0.8007847 : Labels  ~ 1 + V5761 + V2309 + V1046 + V2515 
#> 5 : 3347 : 0.8207283 : Labels  ~ 1 + V414 + V6584 + V6688 + V698 + V4584 
#> 6 : 3342 : 0.7675448 : Labels  ~ 1 + V5005 + V1831 + V5 + V9395 
#> 7 : 3338 : 0.8234277 : Labels  ~ 1 + V9027 + V3189 + V4301 + V6163 + V2780 
#> 8 : 3333 : 0.8122318 : Labels  ~ 1 + V3014 + V9617 + V3620 + V1606 + V8038 
#> 9 : 3328 : 0.8480596 : Labels  ~ 1 + V6164 + V5347 + V9031 + V5572 + V9833 + V4520 
#> 
#> Num. Models: 10  To Test: 51  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V9215 + V312 + V4352 + V6111 + V7183 
#> At Accuracy: Labels  ~ 1 + V9215 + V312 + V4352 + V6111 + V7183 
#> B:SWiMS    : Labels  ~ 1 + V9215 + V312 + V4352 + V6111 + V7183 
#> 
#> Num. Models: 320  To Test: 1354  TopFreq: 10.97872  Thrf: 0  Removed: 0 
#> ................................*Loop : 35 Blind Cases = 9 Blind Control = 11 Total = 702 Size Cases = 309 Size Control = 393 
#> Accumulated Models CV Accuracy        = 0.7834758 Sensitivity = 0.7508091 Specificity = 0.8091603 Forw. Ensemble Accuracy= 0.8418803 
#> Initial Model Accumulated CV Accuracy = 0.8732194 Sensitivity = 0.8932039 Specificity = 0.8575064 
#> Initial Model Bootstrapped Accuracy   = 0.8548282 Sensitivity = 0.8690735 Specificity = 0.8405829 
#> Current Model Bootstrapped Accuracy   = 0.8333695 Sensitivity = 0.8484585 Specificity = 0.8182805 
#> Current KNN Accuracy   = 0.7407407 Sensitivity = 0.8802589 Specificity = 0.6310433 
#> Initial KNN Accuracy   = 0.7977208 Sensitivity = 0.8867314 Specificity = 0.7277354 
#> Train Correlation:  0.7561591  Blind Correlation : 0.8887218 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   270   15
#>   TRUE    125  292
#> Loop : 36 Input Cases = 88 Input Control = 112 
#> Loop : 36 Train Cases = 79 Train Control = 101 
#> Loop : 36 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8591854 : Labels  ~ 1 + V4352 + V1975 + V6163 + V4554 + V9275 + V5321 + V9919 + V1344 
#> 1 : 3365 : 0.7960242 : Labels  ~ 1 + V5005 + V4183 + V6584 + V130 + V1184 
#> 2 : 3360 : 0.8144162 : Labels  ~ 1 + V1936 + V7748 + V898 + V3170 + V9395 
#> 3 : 3355 : 0.8262966 : Labels  ~ 1 + V698 + V9215 + V2804 + V3077 + V5378 + V5881 + V8368 + V819 
#> 4 : 3347 : 0.858183 : Labels  ~ 1 + V4290 + V1831 + V9965 + V1248 + V1173 + V8055 + V2445 
#> 5 : 3340 : 0.8234788 : Labels  ~ 1 + V8502 + V4584 + V2309 + V1762 + V8359 + V9818 
#> 6 : 3334 : 0.8133772 : Labels  ~ 1 + V1476 + V4326 + V312 + V8681 + V9213 
#> 7 : 3329 : 0.7897715 : Labels  ~ 1 + V436 + V5680 + V3365 + V3082 + V5107 
#> 8 : 3324 : 0.8007364 : Labels  ~ 1 + V729 + V9617 + V6408 + V4280 
#> 9 : 3320 : 0.8185073 : Labels  ~ 1 + V7891 + V8156 + V4685 + V9156 + V2358 + V4301 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V4352 + V5005 + V1975 + V6163 + V4554 + V9275 + V5321 + V8623 + V9919 + V1344 
#> At Accuracy: Labels  ~ 1 + V4352 + V1975 + V6163 + V4554 + V9275 + V5321 + V9919 + V1344 
#> B:SWiMS    : Labels  ~ 1 + V4352 + V1975 + V6163 + V4554 + V9275 + V5321 + V9919 + V1344 
#> 
#> Num. Models: 320  To Test: 1338  TopFreq: 13.76471  Thrf: 0  Removed: 0 
#> ................................*Loop : 36 Blind Cases = 9 Blind Control = 11 Total = 722 Size Cases = 318 Size Control = 404 
#> Accumulated Models CV Accuracy        = 0.7853186 Sensitivity = 0.7515723 Specificity = 0.8118812 Forw. Ensemble Accuracy= 0.8448753 
#> Initial Model Accumulated CV Accuracy = 0.8711911 Sensitivity = 0.8899371 Specificity = 0.8564356 
#> Initial Model Bootstrapped Accuracy   = 0.8589937 Sensitivity = 0.8797236 Specificity = 0.8382639 
#> Current Model Bootstrapped Accuracy   = 0.8591854 Sensitivity = 0.8732669 Specificity = 0.845104 
#> Current KNN Accuracy   = 0.7423823 Sensitivity = 0.8805031 Specificity = 0.6336634 
#> Initial KNN Accuracy   = 0.799169 Sensitivity = 0.8899371 Specificity = 0.7277228 
#> Train Correlation:  0.8260564  Blind Correlation : 0.9278195 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   279   15
#>   TRUE    128  300
#> Loop : 37 Input Cases = 88 Input Control = 112 
#> Loop : 37 Train Cases = 79 Train Control = 101 
#> Loop : 37 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.7925693 : Labels  ~ 1 + V2556 + V3952 + V9818 + V9919 
#> 1 : 3369 : 0.8646511 : Labels  ~ 1 + V7891 + V1831 + V686 + V5321 + V698 + V2973 
#> 2 : 3363 : 0.8302462 : Labels  ~ 1 + V4290 + V4738 + V3170 + V1248 + V4584 
#> 3 : 3358 : 0.8547444 : Labels  ~ 1 + V8502 + V5400 + V9275 + V6594 + V6959 + V9213 + V8726 
#> 4 : 3351 : 0.8388769 : Labels  ~ 1 + V7748 + V9215 + V3365 + V723 + V3554 + V389 + V7426 
#> 5 : 3344 : 0.8442783 : Labels  ~ 1 + V5796 + V1476 + V6584 + V7272 + V7435 + V8650 
#> 6 : 3338 : 0.8293316 : Labels  ~ 1 + V5473 + V7928 + V729 + V4194 + V1344 + V256 + V8117 + V1865 
#> 7 : 3330 : 0.821796 : Labels  ~ 1 + V8156 + V3629 + V436 + V4077 + V6530 + V2294 
#> 8 : 3324 : 0.8289814 : Labels  ~ 1 + V86 + V1400 + V9965 + V2515 + V3987 + V130 
#> 9 : 3318 : 0.7910921 : Labels  ~ 1 + V7857 + V7513 + V4326 + V4301 + V2597 
#> 
#> Num. Models: 10  To Test: 60  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V3952 + V9818 + V9919 
#> At Accuracy: Labels  ~ 1 + V2556 + V3952 + V9818 + V9919 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V3952 + V9818 + V9919 
#> 
#> Num. Models: 320  To Test: 1280  TopFreq: 12.36667  Thrf: 0  Removed: 0 
#> ................................*Loop : 37 Blind Cases = 9 Blind Control = 11 Total = 742 Size Cases = 327 Size Control = 415 
#> Accumulated Models CV Accuracy        = 0.7843666 Sensitivity = 0.7461774 Specificity = 0.8144578 Forw. Ensemble Accuracy= 0.8436658 
#> Initial Model Accumulated CV Accuracy = 0.8692722 Sensitivity = 0.883792 Specificity = 0.8578313 
#> Initial Model Bootstrapped Accuracy   = 0.8686014 Sensitivity = 0.9031913 Specificity = 0.8340116 
#> Current Model Bootstrapped Accuracy   = 0.7925693 Sensitivity = 0.8156412 Specificity = 0.7694974 
#> Current KNN Accuracy   = 0.7385445 Sensitivity = 0.8776758 Specificity = 0.6289157 
#> Initial KNN Accuracy   = 0.7991914 Sensitivity = 0.8929664 Specificity = 0.7253012 
#> Train Correlation:  0.8046997  Blind Correlation : 0.6406015 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   286   15
#>   TRUE    135  306
#> Loop : 38 Input Cases = 88 Input Control = 112 
#> Loop : 38 Train Cases = 79 Train Control = 101 
#> Loop : 38 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8361957 : Labels  ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082 
#> 1 : 3367 : 0.8265909 : Labels  ~ 1 + V7748 + V3365 + V1831 + V5761 + V3964 + V1344 
#> 2 : 3361 : 0.8171577 : Labels  ~ 1 + V312 + V4326 + V436 + V1248 
#> 3 : 3357 : 0.8374701 : Labels  ~ 1 + V4960 + V4973 + V9275 + V6163 + V3170 + V4198 
#> 4 : 3351 : 0.8536953 : Labels  ~ 1 + V414 + V34 + V729 + V2489 + V649 + V9129 
#> 5 : 3345 : 0.7717108 : Labels  ~ 1 + V9215 + V9617 + V8135 
#> 6 : 3342 : 0.8028412 : Labels  ~ 1 + V8368 + V86 + V8156 + V1097 + V9395 
#> 7 : 3337 : 0.787146 : Labels  ~ 1 + V2309 + V7857 + V5683 + V8038 
#> 8 : 3333 : 0.8321792 : Labels  ~ 1 + V9027 + V898 + V698 + V6688 
#> 9 : 3329 : 0.7851562 : Labels  ~ 1 + V4290 + V376 + V6584 + V4185 
#> 
#> Num. Models: 10  To Test: 48  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082 
#> At Accuracy: Labels  ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082 
#> B:SWiMS    : Labels  ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082 
#> 
#> Num. Models: 320  To Test: 1253  TopFreq: 14.93617  Thrf: 0  Removed: 0 
#> ................................*Loop : 38 Blind Cases = 9 Blind Control = 11 Total = 762 Size Cases = 336 Size Control = 426 
#> Accumulated Models CV Accuracy        = 0.7821522 Sensitivity = 0.7470238 Specificity = 0.8098592 Forw. Ensemble Accuracy= 0.8412073 
#> Initial Model Accumulated CV Accuracy = 0.8687664 Sensitivity = 0.8869048 Specificity = 0.8544601 
#> Initial Model Bootstrapped Accuracy   = 0.8518917 Sensitivity = 0.8755374 Specificity = 0.8282459 
#> Current Model Bootstrapped Accuracy   = 0.8361957 Sensitivity = 0.8884783 Specificity = 0.783913 
#> Current KNN Accuracy   = 0.7375328 Sensitivity = 0.8809524 Specificity = 0.6244131 
#> Initial KNN Accuracy   = 0.7965879 Sensitivity = 0.8928571 Specificity = 0.7206573 
#> Train Correlation:  0.7543745  Blind Correlation : 0.5413534 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   291   15
#>   TRUE    139  317
#> Loop : 39 Input Cases = 88 Input Control = 112 
#> Loop : 39 Train Cases = 80 Train Control = 101 
#> Loop : 39 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8725212 : Labels  ~ 1 + V7857 + V6584 + V2636 + V723 + V3778 + V7891 + V3272 
#> 1 : 3366 : 0.8812582 : Labels  ~ 1 + V9275 + V6594 + V7272 + V6163 + V3161 + V3547 + V5321 + V7260 + V4352 
#> 2 : 3357 : 0.8157664 : Labels  ~ 1 + V5005 + V4200 + V9818 + V9213 + V3206 + V7402 
#> 3 : 3351 : 0.8008734 : Labels  ~ 1 + V3592 + V8368 + V1831 + V4584 + V2747 
#> 4 : 3346 : 0.8232334 : Labels  ~ 1 + V6440 + V1975 + V3365 + V5680 + V3170 + V7435 
#> 5 : 3340 : 0.8289823 : Labels  ~ 1 + V86 + V2309 + V4326 + V7367 + V4301 
#> 6 : 3335 : 0.8530505 : Labels  ~ 1 + V1055 + V7748 + V9215 + V7513 + V729 + V2294 + V2783 + V1025 
#> 7 : 3327 : 0.7991141 : Labels  ~ 1 + V8806 + V312 + V8156 + V4685 + V3861 
#> 8 : 3322 : 0.8027562 : Labels  ~ 1 + V2556 + V436 + V5417 + V1248 + V1144 
#> 9 : 3317 : 0.8483464 : Labels  ~ 1 + V5378 + V9617 + V22 + V649 + V9129 + V686 
#> 
#> Num. Models: 10  To Test: 62  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V7857 + V3170 + V6584 + V4183 + V2636 + V723 + V3778 + V7891 + V3272 + V4178 
#> At Accuracy: Labels  ~ 1 + V7857 + V6584 + V2636 + V723 + V3778 + V7891 + V3272 
#> B:SWiMS    : Labels  ~ 1 + V7857 + V6584 + V2636 + V723 + V3778 + V7891 + V3272 
#> 
#> Num. Models: 320  To Test: 1340  TopFreq: 17.77143  Thrf: 0  Removed: 0 
#> ................................*Loop : 39 Blind Cases = 8 Blind Control = 11 Total = 781 Size Cases = 344 Size Control = 437 
#> Accumulated Models CV Accuracy        = 0.7836108 Sensitivity = 0.747093 Specificity = 0.812357 Forw. Ensemble Accuracy= 0.8412292 
#> Initial Model Accumulated CV Accuracy = 0.871959 Sensitivity = 0.8895349 Specificity = 0.8581236 
#> Initial Model Bootstrapped Accuracy   = 0.8452536 Sensitivity = 0.8597746 Specificity = 0.8307326 
#> Current Model Bootstrapped Accuracy   = 0.8725212 Sensitivity = 0.8888647 Specificity = 0.8561778 
#> Current KNN Accuracy   = 0.737516 Sensitivity = 0.877907 Specificity = 0.6270023 
#> Initial KNN Accuracy   = 0.7951344 Sensitivity = 0.8895349 Specificity = 0.7208238 
#> Train Correlation:  0.7195556  Blind Correlation : 0.7175439 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   301   15
#>   TRUE    141  324
#> Loop : 40 Input Cases = 88 Input Control = 112 
#> Loop : 40 Train Cases = 80 Train Control = 101 
#> Loop : 40 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8204629 : Labels  ~ 1 + V3365 + V9070 + V729 + V4290 + V9818 
#> 1 : 3368 : 0.7993848 : Labels  ~ 1 + V5005 + V9215 + V1975 + V1248 + V130 
#> 2 : 3363 : 0.8366133 : Labels  ~ 1 + V2556 + V4183 + V34 + V9275 + V9156 + V3170 
#> 3 : 3357 : 0.8455978 : Labels  ~ 1 + V7891 + V6163 + V167 + V469 + V2515 + V2358 + V8193 
#> 4 : 3350 : 0.8494718 : Labels  ~ 1 + V698 + V312 + V6584 + V4584 + V1762 + V3545 + V3161 
#> 5 : 3343 : 0.8183294 : Labels  ~ 1 + V7748 + V5417 + V4960 + V2438 + V8586 
#> 6 : 3338 : 0.8150308 : Labels  ~ 1 + V8368 + V872 + V8156 + V7381 + V9213 + V4352 
#> 7 : 3332 : 0.8153745 : Labels  ~ 1 + V5 + V414 + V1198 + V4900 + V4580 
#> 8 : 3327 : 0.8016901 : Labels  ~ 1 + V6594 + V1831 + V8267 + V9395 + V4301 
#> 9 : 3322 : 0.7975125 : Labels  ~ 1 + V2309 + V782 + V2256 + V256 + V5107 
#> 
#> Num. Models: 10  To Test: 56  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V3365 + V5005 + V9070 + V729 + V4290 + V9818 
#> At Accuracy: Labels  ~ 1 + V3365 + V9070 + V729 + V4290 + V9818 
#> B:SWiMS    : Labels  ~ 1 + V3365 + V9070 + V729 + V4290 + V9818 
#> 
#> Num. Models: 320  To Test: 1318  TopFreq: 16.55263  Thrf: 0  Removed: 0 
#> ................................*Loop : 40 Blind Cases = 8 Blind Control = 11 Total = 800 Size Cases = 352 Size Control = 448 
#> Accumulated Models CV Accuracy        = 0.78125 Sensitivity = 0.7471591 Specificity = 0.8080357 Forw. Ensemble Accuracy= 0.83875 
#> Initial Model Accumulated CV Accuracy = 0.8725 Sensitivity = 0.8920455 Specificity = 0.8571429 
#> Initial Model Bootstrapped Accuracy   = 0.8469588 Sensitivity = 0.8696316 Specificity = 0.824286 
#> Current Model Bootstrapped Accuracy   = 0.8204629 Sensitivity = 0.8462038 Specificity = 0.794722 
#> Current KNN Accuracy   = 0.73625 Sensitivity = 0.875 Specificity = 0.6272321 
#> Initial KNN Accuracy   = 0.79375 Sensitivity = 0.8863636 Specificity = 0.7209821 
#> Train Correlation:  0.7985591  Blind Correlation : 0.8614035 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   309   16
#>   TRUE    142  333
#> Loop : 41 Input Cases = 88 Input Control = 112 
#> Loop : 41 Train Cases = 79 Train Control = 100 
#> Loop : 41 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8116782 : Labels  ~ 1 + V723 + V5417 + V4194 + V3170 + V2597 + V6584 
#> 1 : 3367 : 0.8458555 : Labels  ~ 1 + V5400 + V4960 + V9215 + V1184 + V52 + V8618 + V4580 
#> 2 : 3360 : 0.8498136 : Labels  ~ 1 + V7513 + V7272 + V9275 + V2264 + V1344 + V4352 + V5321 + V4584 
#> 3 : 3352 : 0.8528571 : Labels  ~ 1 + V7928 + V8193 + V256 + V3365 + V4301 + V729 + V6685 
#> 4 : 3345 : 0.8733497 : Labels  ~ 1 + V312 + V7212 + V1831 + V6380 + V698 + V7026 + V1173 + V3161 + V8181 
#> 5 : 3336 : 0.8030069 : Labels  ~ 1 + V8368 + V5683 + V4290 + V4185 
#> 6 : 3332 : 0.8241674 : Labels  ~ 1 + V7748 + V9818 + V2309 + V6114 + V6959 + V8245 
#> 7 : 3326 : 0.7774042 : Labels  ~ 1 + V414 + V8720 + V8055 + V1046 + V7085 
#> 8 : 3321 : 0.8008879 : Labels  ~ 1 + V4158 + V1476 + V9070 + V4326 
#> 9 : 3317 : 0.7874343 : Labels  ~ 1 + V8156 + V9965 + V9027 + V1602 + V6163 
#> 
#> Num. Models: 10  To Test: 61  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V723 + V698 + V5417 + V4194 + V3170 + V2597 + V6584 
#> At Accuracy: Labels  ~ 1 + V723 + V5417 + V4194 + V3170 + V2597 + V6584 
#> B:SWiMS    : Labels  ~ 1 + V723 + V5417 + V4194 + V3170 + V2597 + V6584 
#> 
#> Num. Models: 320  To Test: 1346  TopFreq: 10.54545  Thrf: 0  Removed: 0 
#> ................................*Loop : 41 Blind Cases = 9 Blind Control = 12 Total = 821 Size Cases = 361 Size Control = 460 
#> Accumulated Models CV Accuracy        = 0.7819732 Sensitivity = 0.7534626 Specificity = 0.8043478 Forw. Ensemble Accuracy= 0.8404385 
#> Initial Model Accumulated CV Accuracy = 0.8721072 Sensitivity = 0.8864266 Specificity = 0.8608696 
#> Initial Model Bootstrapped Accuracy   = 0.8550328 Sensitivity = 0.8980306 Specificity = 0.812035 
#> Current Model Bootstrapped Accuracy   = 0.8116782 Sensitivity = 0.853577 Specificity = 0.7697794 
#> Current KNN Accuracy   = 0.7381242 Sensitivity = 0.8781163 Specificity = 0.6282609 
#> Initial KNN Accuracy   = 0.7978076 Sensitivity = 0.8891967 Specificity = 0.726087 
#> Train Correlation:  0.7566178  Blind Correlation : 0.8272727 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   316   17
#>   TRUE    143  345
#> Loop : 42 Input Cases = 88 Input Control = 112 
#> Loop : 42 Train Cases = 79 Train Control = 100 
#> Loop : 42 Blind Cases = 9 Blind Control = 12 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8921047 : Labels  ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264 
#> 1 : 3364 : 0.8075211 : Labels  ~ 1 + V5400 + V1831 + V4960 + V7831 + V7426 
#> 2 : 3359 : 0.8282527 : Labels  ~ 1 + V3365 + V9275 + V7928 + V4352 + V630 + V1946 
#> 3 : 3353 : 0.8506508 : Labels  ~ 1 + V8368 + V9818 + V6688 + V1476 + V9180 + V4564 + V4178 
#> 4 : 3346 : 0.7929696 : Labels  ~ 1 + V312 + V7513 + V8055 + V3170 + V7748 
#> 5 : 3341 : 0.804415 : Labels  ~ 1 + V414 + V9965 + V1975 + V7849 + V9213 
#> 6 : 3336 : 0.8152415 : Labels  ~ 1 + V2309 + V3014 + V5995 + V3725 + V7584 
#> 7 : 3331 : 0.7919139 : Labels  ~ 1 + V9027 + V9215 + V3189 
#> 8 : 3328 : 0.8460339 : Labels  ~ 1 + V2644 + V4183 + V819 + V4396 + V1943 + V2862 + V7402 
#> 9 : 3321 : 0.8462043 : Labels  ~ 1 + V7994 + V5680 + V22 + V6146 + V2438 + V9234 + V9834 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264 
#> At Accuracy: Labels  ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264 
#> 
#> Num. Models: 320  To Test: 1227  TopFreq: 12.61538  Thrf: 0  Removed: 0 
#> ................................*Loop : 42 Blind Cases = 9 Blind Control = 12 Total = 842 Size Cases = 370 Size Control = 472 
#> Accumulated Models CV Accuracy        = 0.7779097 Sensitivity = 0.7459459 Specificity = 0.8029661 Forw. Ensemble Accuracy= 0.8396675 
#> Initial Model Accumulated CV Accuracy = 0.8729216 Sensitivity = 0.8891892 Specificity = 0.8601695 
#> Initial Model Bootstrapped Accuracy   = 0.8467936 Sensitivity = 0.8610199 Specificity = 0.8325673 
#> Current Model Bootstrapped Accuracy   = 0.8921047 Sensitivity = 0.9035263 Specificity = 0.8806831 
#> Current KNN Accuracy   = 0.7387173 Sensitivity = 0.8783784 Specificity = 0.6292373 
#> Initial KNN Accuracy   = 0.7969121 Sensitivity = 0.8891892 Specificity = 0.7245763 
#> Train Correlation:  0.802333  Blind Correlation : 0.5571429 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   325   17
#>   TRUE    148  352
#> Loop : 43 Input Cases = 88 Input Control = 112 
#> Loop : 43 Train Cases = 79 Train Control = 101 
#> Loop : 43 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8311351 : Labels  ~ 1 + V698 + V312 + V6163 + V256 + V9395 
#> 1 : 3368 : 0.8541845 : Labels  ~ 1 + V5321 + V8806 + V2309 + V5680 + V3082 + V3170 + V6553 
#> 2 : 3361 : 0.824569 : Labels  ~ 1 + V7748 + V7062 + V5139 + V1248 
#> 3 : 3357 : 0.8485237 : Labels  ~ 1 + V3365 + V7857 + V9215 + V8239 + V662 + V8650 + V4352 
#> 4 : 3350 : 0.8272629 : Labels  ~ 1 + V8368 + V86 + V6584 + V5761 + V8604 + V130 
#> 5 : 3344 : 0.8314485 : Labels  ~ 1 + V4960 + V4584 + V4973 + V9213 + V5454 
#> 6 : 3339 : 0.8481013 : Labels  ~ 1 + V8411 + V414 + V5417 + V4301 + V6121 
#> 7 : 3334 : 0.806687 : Labels  ~ 1 + V1476 + V6959 + V9617 + V7801 
#> 8 : 3330 : 0.841596 : Labels  ~ 1 + V9585 + V8055 + V7090 + V4580 + V2515 
#> 9 : 3325 : 0.8738287 : Labels  ~ 1 + V5005 + V3014 + V533 + V1144 + V9319 + V4290 + V4554 + V342 + V9097 
#> 
#> Num. Models: 10  To Test: 57  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V698 + V312 + V6163 + V256 + V9395 
#> At Accuracy: Labels  ~ 1 + V698 + V312 + V6163 + V256 + V9395 
#> B:SWiMS    : Labels  ~ 1 + V698 + V312 + V6163 + V256 + V9395 
#> 
#> Num. Models: 320  To Test: 1335  TopFreq: 9.972222  Thrf: 0  Removed: 0 
#> ................................*Loop : 43 Blind Cases = 9 Blind Control = 11 Total = 862 Size Cases = 379 Size Control = 483 
#> Accumulated Models CV Accuracy        = 0.774942 Sensitivity = 0.7414248 Specificity = 0.8012422 Forw. Ensemble Accuracy= 0.837587 
#> Initial Model Accumulated CV Accuracy = 0.8723898 Sensitivity = 0.8891821 Specificity = 0.8592133 
#> Initial Model Bootstrapped Accuracy   = 0.8634986 Sensitivity = 0.8796276 Specificity = 0.8473696 
#> Current Model Bootstrapped Accuracy   = 0.8311351 Sensitivity = 0.8575135 Specificity = 0.8047568 
#> Current KNN Accuracy   = 0.737819 Sensitivity = 0.878628 Specificity = 0.6273292 
#> Initial KNN Accuracy   = 0.7958237 Sensitivity = 0.8891821 Specificity = 0.7225673 
#> Train Correlation:  0.763205  Blind Correlation : 0.7157895 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   332   17
#>   TRUE    153  360
#> Loop : 44 Input Cases = 88 Input Control = 112 
#> Loop : 44 Train Cases = 79 Train Control = 101 
#> Loop : 44 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8230108 : Labels  ~ 1 + V3365 + V4352 + V9818 + V4584 + V533 + V1344 
#> 1 : 3367 : 0.7899568 : Labels  ~ 1 + V5005 + V9215 + V8368 + V762 
#> 2 : 3363 : 0.825889 : Labels  ~ 1 + V312 + V6163 + V6584 + V22 + V5072 
#> 3 : 3358 : 0.842494 : Labels  ~ 1 + V4960 + V9275 + V729 + V4290 + V6948 + V6068 
#> 4 : 3352 : 0.8801608 : Labels  ~ 1 + V414 + V8156 + V4396 + V6083 + V3518 + V9965 + V7891 + V2700 
#> 5 : 3344 : 0.8330118 : Labels  ~ 1 + V2309 + V3170 + V3222 + V5995 + V8193 
#> 6 : 3339 : 0.8099237 : Labels  ~ 1 + V9617 + V3014 + V1476 + V6688 
#> 7 : 3335 : 0.8465293 : Labels  ~ 1 + V376 + V5774 + V1831 + V7831 + V926 + V2783 + V2294 
#> 8 : 3328 : 0.842709 : Labels  ~ 1 + V9027 + V7319 + V2804 + V3522 + V1087 + V698 
#> 9 : 3322 : 0.8173575 : Labels  ~ 1 + V7994 + V4326 + V7748 + V2515 
#> 
#> Num. Models: 10  To Test: 55  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V3365 + V4352 + V9818 + V4584 + V533 + V1344 
#> At Accuracy: Labels  ~ 1 + V3365 + V4352 + V9818 + V4584 + V533 + V1344 
#> B:SWiMS    : Labels  ~ 1 + V3365 + V4352 + V9818 + V4584 + V533 + V1344 
#> 
#> Num. Models: 320  To Test: 1324  TopFreq: 11.71795  Thrf: 0  Removed: 0 
#> ................................*Loop : 44 Blind Cases = 9 Blind Control = 11 Total = 882 Size Cases = 388 Size Control = 494 
#> Accumulated Models CV Accuracy        = 0.7709751 Sensitivity = 0.7371134 Specificity = 0.7975709 Forw. Ensemble Accuracy= 0.8367347 
#> Initial Model Accumulated CV Accuracy = 0.8707483 Sensitivity = 0.8840206 Specificity = 0.8603239 
#> Initial Model Bootstrapped Accuracy   = 0.8506269 Sensitivity = 0.8774319 Specificity = 0.8238219 
#> Current Model Bootstrapped Accuracy   = 0.8230108 Sensitivity = 0.851828 Specificity = 0.7941935 
#> Current KNN Accuracy   = 0.7335601 Sensitivity = 0.871134 Specificity = 0.6255061 
#> Initial KNN Accuracy   = 0.792517 Sensitivity = 0.8814433 Specificity = 0.7226721 
#> Train Correlation:  0.8210151  Blind Correlation : 0.6992481 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   340   19
#>   TRUE    156  367
#> Loop : 45 Input Cases = 88 Input Control = 112 
#> Loop : 45 Train Cases = 79 Train Control = 101 
#> Loop : 45 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8227903 : Labels  ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675 
#> 1 : 3367 : 0.8633981 : Labels  ~ 1 + V1936 + V6163 + V9275 + V7748 + V4194 + V9395 + V4564 + V6685 + V2397 
#> 2 : 3358 : 0.8194354 : Labels  ~ 1 + V7857 + V729 + V7891 + V6584 + V1248 + V4301 
#> 3 : 3352 : 0.8739149 : Labels  ~ 1 + V2556 + V86 + V1831 + V4584 + V7090 + V8726 + V5321 + V3161 
#> 4 : 3344 : 0.7899851 : Labels  ~ 1 + V1975 + V9215 + V8681 + V414 + V1046 
#> 5 : 3339 : 0.7936763 : Labels  ~ 1 + V4183 + V4326 + V1344 + V7272 
#> 6 : 3335 : 0.7955334 : Labels  ~ 1 + V7220 + V5761 + V3206 + V9070 + V3752 
#> 7 : 3330 : 0.820382 : Labels  ~ 1 + V698 + V8055 + V1055 + V3554 + V5466 
#> 8 : 3325 : 0.8269105 : Labels  ~ 1 + V4290 + V3170 + V5683 + V1946 + V4352 + V3365 
#> 9 : 3319 : 0.7862842 : Labels  ~ 1 + V4070 + V5400 + V9818 + V4077 + V7629 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675 
#> At Accuracy: Labels  ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675 
#> B:SWiMS    : Labels  ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675 
#> 
#> Num. Models: 320  To Test: 1292  TopFreq: 13.72727  Thrf: 0  Removed: 0 
#> ................................*Loop : 45 Blind Cases = 9 Blind Control = 11 Total = 902 Size Cases = 397 Size Control = 505 
#> Accumulated Models CV Accuracy        = 0.7738359 Sensitivity = 0.7380353 Specificity = 0.8019802 Forw. Ensemble Accuracy= 0.8392461 
#> Initial Model Accumulated CV Accuracy = 0.8691796 Sensitivity = 0.884131 Specificity = 0.8574257 
#> Initial Model Bootstrapped Accuracy   = 0.855283 Sensitivity = 0.8790618 Specificity = 0.8315042 
#> Current Model Bootstrapped Accuracy   = 0.8227903 Sensitivity = 0.8687175 Specificity = 0.7768631 
#> Current KNN Accuracy   = 0.7372506 Sensitivity = 0.8740554 Specificity = 0.629703 
#> Initial KNN Accuracy   = 0.7949002 Sensitivity = 0.884131 Specificity = 0.7247525 
#> Train Correlation:  0.8375176  Blind Correlation : 0.9007519 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   349   19
#>   TRUE    160  374
#> Loop : 46 Input Cases = 88 Input Control = 112 
#> Loop : 46 Train Cases = 79 Train Control = 101 
#> Loop : 46 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8510844 : Labels  ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358 
#> 1 : 3365 : 0.8414792 : Labels  ~ 1 + V7891 + V6584 + V698 + V7899 + V8038 + V729 
#> 2 : 3359 : 0.80054 : Labels  ~ 1 + V1476 + V1936 + V4301 + V4326 + V6958 
#> 3 : 3354 : 0.8198569 : Labels  ~ 1 + V4290 + V9275 + V8368 + V2064 + V4584 
#> 4 : 3349 : 0.8178244 : Labels  ~ 1 + V436 + V5761 + V7272 + V9704 
#> 5 : 3345 : 0.8337297 : Labels  ~ 1 + V8502 + V256 + V3365 + V6163 + V584 + V3170 
#> 6 : 3339 : 0.8312164 : Labels  ~ 1 + V86 + V9215 + V312 + V762 + V4077 + V1344 + V4738 
#> 7 : 3332 : 0.8263284 : Labels  ~ 1 + V7857 + V9818 + V4194 + V3161 + V3708 
#> 8 : 3327 : 0.8457711 : Labels  ~ 1 + V5473 + V2309 + V5680 + V4406 + V2117 + V22 
#> 9 : 3321 : 0.8028794 : Labels  ~ 1 + V7197 + V4960 + V3014 + V7500 + V1046 + V4900 
#> 
#> Num. Models: 10  To Test: 58  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358 
#> At Accuracy: Labels  ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358 
#> B:SWiMS    : Labels  ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358 
#> 
#> Num. Models: 320  To Test: 1252  TopFreq: 14.97619  Thrf: 0  Removed: 0 
#> ................................*Loop : 46 Blind Cases = 9 Blind Control = 11 Total = 922 Size Cases = 406 Size Control = 516 
#> Accumulated Models CV Accuracy        = 0.7754881 Sensitivity = 0.7389163 Specificity = 0.8042636 Forw. Ensemble Accuracy= 0.840564 
#> Initial Model Accumulated CV Accuracy = 0.8698482 Sensitivity = 0.8842365 Specificity = 0.8585271 
#> Initial Model Bootstrapped Accuracy   = 0.8453183 Sensitivity = 0.8716055 Specificity = 0.8190311 
#> Current Model Bootstrapped Accuracy   = 0.8510844 Sensitivity = 0.8606399 Specificity = 0.8415289 
#> Current KNN Accuracy   = 0.7375271 Sensitivity = 0.8743842 Specificity = 0.629845 
#> Initial KNN Accuracy   = 0.7939262 Sensitivity = 0.8817734 Specificity = 0.7248062 
#> Train Correlation:  0.8330874  Blind Correlation : 0.8992481 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   356   20
#>   TRUE    165  381
#> Loop : 47 Input Cases = 88 Input Control = 112 
#> Loop : 47 Train Cases = 79 Train Control = 101 
#> Loop : 47 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8255106 : Labels  ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285 
#> 1 : 3367 : 0.8158582 : Labels  ~ 1 + V5005 + V9818 + V7032 + V1184 + V3947 
#> 2 : 3362 : 0.816836 : Labels  ~ 1 + V4564 + V4290 + V312 + V5761 + V9395 
#> 3 : 3357 : 0.870088 : Labels  ~ 1 + V7748 + V4326 + V7891 + V6688 + V2991 + V6408 + V5321 + V1748 + V9704 
#> 4 : 3348 : 0.8269231 : Labels  ~ 1 + V2556 + V1476 + V6584 + V4069 + V1943 + V8484 
#> 5 : 3342 : 0.794214 : Labels  ~ 1 + V8502 + V8368 + V9924 + V9031 
#> 6 : 3338 : 0.8144695 : Labels  ~ 1 + V436 + V256 + V7272 + V4584 + V3545 + V5359 
#> 7 : 3332 : 0.8055556 : Labels  ~ 1 + V4070 + V5680 + V4960 + V762 + V5107 
#> 8 : 3327 : 0.8368741 : Labels  ~ 1 + V5473 + V9215 + V8411 + V2309 + V8479 + V2397 + V8598 + V4352 
#> 9 : 3319 : 0.8041685 : Labels  ~ 1 + V414 + V8055 + V4973 + V1344 + V3708 
#> 
#> Num. Models: 10  To Test: 59  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285 
#> At Accuracy: Labels  ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285 
#> B:SWiMS    : Labels  ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285 
#> 
#> Num. Models: 320  To Test: 1250  TopFreq: 13.9697  Thrf: 0  Removed: 0 
#> ................................*Loop : 47 Blind Cases = 9 Blind Control = 11 Total = 942 Size Cases = 415 Size Control = 527 
#> Accumulated Models CV Accuracy        = 0.7802548 Sensitivity = 0.7445783 Specificity = 0.8083491 Forw. Ensemble Accuracy= 0.8428875 
#> Initial Model Accumulated CV Accuracy = 0.8715499 Sensitivity = 0.886747 Specificity = 0.8595825 
#> Initial Model Bootstrapped Accuracy   = 0.848855 Sensitivity = 0.8708833 Specificity = 0.8268266 
#> Current Model Bootstrapped Accuracy   = 0.8255106 Sensitivity = 0.8376793 Specificity = 0.813342 
#> Current KNN Accuracy   = 0.7377919 Sensitivity = 0.8771084 Specificity = 0.6280835 
#> Initial KNN Accuracy   = 0.7951168 Sensitivity = 0.8843373 Specificity = 0.7248577 
#> Train Correlation:  0.8785909  Blind Correlation : 0.8857143 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   362   20
#>   TRUE    170  390
#> Loop : 48 Input Cases = 88 Input Control = 112 
#> Loop : 48 Train Cases = 79 Train Control = 101 
#> Loop : 48 Blind Cases = 9 Blind Control = 11 
#> K   : 13 KNN T Cases = 79 KNN T Control = 79 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.832788 : Labels  ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107 
#> 1 : 3366 : 0.8583778 : Labels  ~ 1 + V698 + V312 + V898 + V4295 + V3170 + V4352 + V7605 
#> 2 : 3359 : 0.8497521 : Labels  ~ 1 + V7748 + V9818 + V3365 + V6163 + V6181 + V5672 + V2862 
#> 3 : 3352 : 0.8223997 : Labels  ~ 1 + V1476 + V8368 + V8055 + V1943 
#> 4 : 3348 : 0.8105161 : Labels  ~ 1 + V4960 + V4301 + V5680 + V8089 + V9395 
#> 5 : 3343 : 0.8116209 : Labels  ~ 1 + V8502 + V2309 + V4584 + V6688 
#> 6 : 3339 : 0.8134215 : Labels  ~ 1 + V436 + V9617 + V9215 + V22 + V4406 + V1344 
#> 7 : 3333 : 0.8071197 : Labels  ~ 1 + V86 + V414 + V8156 + V729 + V2515 
#> 8 : 3328 : 0.7920932 : Labels  ~ 1 + V7891 + V1831 + V3876 + V8650 
#> 9 : 3324 : 0.7891933 : Labels  ~ 1 + V9027 + V1046 + V9275 + V1975 + V1248 
#> 
#> Num. Models: 10  To Test: 54  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107 
#> At Accuracy: Labels  ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107 
#> B:SWiMS    : Labels  ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107 
#> 
#> Num. Models: 320  To Test: 1321  TopFreq: 11.36667  Thrf: 0  Removed: 0 
#> ................................*Loop : 48 Blind Cases = 9 Blind Control = 11 Total = 962 Size Cases = 424 Size Control = 538 
#> Accumulated Models CV Accuracy        = 0.7806653 Sensitivity = 0.7476415 Specificity = 0.8066914 Forw. Ensemble Accuracy= 0.8440748 
#> Initial Model Accumulated CV Accuracy = 0.8700624 Sensitivity = 0.8867925 Specificity = 0.8568773 
#> Initial Model Bootstrapped Accuracy   = 0.8555145 Sensitivity = 0.8858011 Specificity = 0.825228 
#> Current Model Bootstrapped Accuracy   = 0.832788 Sensitivity = 0.8475131 Specificity = 0.8180628 
#> Current KNN Accuracy   = 0.7359667 Sensitivity = 0.879717 Specificity = 0.6226766 
#> Initial KNN Accuracy   = 0.7941788 Sensitivity = 0.8867925 Specificity = 0.7211896 
#> Train Correlation:  0.9111228  Blind Correlation : 0.7894737 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   365   21
#>   TRUE    176  400
#> Loop : 49 Input Cases = 88 Input Control = 112 
#> Loop : 49 Train Cases = 80 Train Control = 101 
#> Loop : 49 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8881234 : Labels  ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V3947 + V4134 
#> 1 : 3363 : 0.8856117 : Labels  ~ 1 + V698 + V3365 + V6584 + V4584 + V3161 + V649 + V3522 + V7334 
#> 2 : 3355 : 0.869613 : Labels  ~ 1 + V312 + V4326 + V7748 + V6688 + V3592 + V1944 + V1882 
#> 3 : 3348 : 0.8573301 : Labels  ~ 1 + V4290 + V4960 + V5761 + V1248 + V9268 + V9648 
#> 4 : 3342 : 0.8696739 : Labels  ~ 1 + V8368 + V1476 + V9818 + V723 + V2266 + V7891 + V7141 
#> 5 : 3335 : 0.7853231 : Labels  ~ 1 + V2309 + V8156 + V5774 + V1865 
#> 6 : 3331 : 0.8555992 : Labels  ~ 1 + V414 + V5417 + V86 + V7584 + V6146 + V1184 + V3265 
#> 7 : 3324 : 0.8216463 : Labels  ~ 1 + V9617 + V436 + V9275 + V1943 + V3778 
#> 8 : 3319 : 0.8569719 : Labels  ~ 1 + V7857 + V9027 + V1831 + V7196 + V4185 + V7131 + V6685 
#> 9 : 3312 : 0.789738 : Labels  ~ 1 + V8806 + V7994 + V3014 + V6780 
#> 
#> Num. Models: 10  To Test: 65  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V6573 + V3947 + V4134 
#> At Accuracy: Labels  ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V3947 + V4134 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V3947 + V4134 
#> 
#> Num. Models: 320  To Test: 1398  TopFreq: 13.97368  Thrf: 0  Removed: 0 
#> ................................*Loop : 49 Blind Cases = 8 Blind Control = 11 Total = 981 Size Cases = 432 Size Control = 549 
#> Accumulated Models CV Accuracy        = 0.7798165 Sensitivity = 0.7476852 Specificity = 0.8051002 Forw. Ensemble Accuracy= 0.841998 
#> Initial Model Accumulated CV Accuracy = 0.8685015 Sensitivity = 0.8865741 Specificity = 0.8542805 
#> Initial Model Bootstrapped Accuracy   = 0.849989 Sensitivity = 0.8682188 Specificity = 0.8317593 
#> Current Model Bootstrapped Accuracy   = 0.8881234 Sensitivity = 0.8930446 Specificity = 0.8832021 
#> Current KNN Accuracy   = 0.7329256 Sensitivity = 0.8773148 Specificity = 0.6193078 
#> Initial KNN Accuracy   = 0.7900102 Sensitivity = 0.8842593 Specificity = 0.715847 
#> Train Correlation:  0.80409  Blind Correlation : 0.8052632 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   372   21
#>   TRUE    179  409
#> Loop : 50 Input Cases = 88 Input Control = 112 
#> Loop : 50 Train Cases = 80 Train Control = 101 
#> Loop : 50 Blind Cases = 8 Blind Control = 11 
#> K   : 13 KNN T Cases = 80 KNN T Control = 80 
#> 4117 : Number of variables to test: 3373 
#> 0 : 3373 : 0.8149007 : Labels  ~ 1 + V5005 + V4352 + V723 + V4301 + V4738 
#> 1 : 3368 : 0.8064307 : Labels  ~ 1 + V1936 + V1476 + V9215 + V5400 + V2358 
#> 2 : 3363 : 0.8419278 : Labels  ~ 1 + V7891 + V9965 + V3591 + V3170 + V1198 + V4295 + V8156 
#> 3 : 3356 : 0.7813512 : Labels  ~ 1 + V2556 + V9275 + V9617 + V7513 
#> 4 : 3352 : 0.8252999 : Labels  ~ 1 + V6594 + V9818 + V7260 + V1046 + V5283 
#> 5 : 3347 : 0.8352248 : Labels  ~ 1 + V698 + V6584 + V3365 + V2515 + V4584 + V4564 + V1289 
#> 6 : 3340 : 0.7886701 : Labels  ~ 1 + V7748 + V6163 + V312 + V7584 
#> 7 : 3336 : 0.7927524 : Labels  ~ 1 + V436 + V376 + V5680 + V1248 
#> 8 : 3332 : 0.7716457 : Labels  ~ 1 + V86 + V5761 + V2866 
#> 9 : 3329 : 0.8407359 : Labels  ~ 1 + V7857 + V8368 + V1831 + V7212 + V4011 + V5808 + V5587 + V4580 
#> 
#> Num. Models: 10  To Test: 52  TopFreq: 1  Thrf: 0  Removed: 0 
#> .*Update     : Labels ~ 1 + V5005 + V4352 + V723 + V4301 + V4738 
#> At Accuracy: Labels  ~ 1 + V5005 + V4352 + V723 + V4301 + V4738 
#> B:SWiMS    : Labels  ~ 1 + V5005 + V4352 + V723 + V4301 + V4738 
#> 
#> Num. Models: 320  To Test: 1373  TopFreq: 15.4375  Thrf: 0  Removed: 0 
#> ................................*Loop : 50 Blind Cases = 8 Blind Control = 11 Total = 1000 Size Cases = 440 Size Control = 560 
#> Accumulated Models CV Accuracy        = 0.783 Sensitivity = 0.7522727 Specificity = 0.8071429 Forw. Ensemble Accuracy= 0.844 
#> Initial Model Accumulated CV Accuracy = 0.868 Sensitivity = 0.8863636 Specificity = 0.8535714 
#> Initial Model Bootstrapped Accuracy   = 0.8551007 Sensitivity = 0.8756768 Specificity = 0.8345246 
#> Current Model Bootstrapped Accuracy   = 0.8149007 Sensitivity = 0.8419426 Specificity = 0.7878587 
#> Current KNN Accuracy   = 0.734 Sensitivity = 0.875 Specificity = 0.6232143 
#> Initial KNN Accuracy   = 0.79 Sensitivity = 0.8818182 Specificity = 0.7178571 
#> Train Correlation:  0.7807583  Blind Correlation : 0.9438596 
#>  KNN to Model Confusion Matrix: 
#>        
#>         FALSE TRUE
#>   FALSE   381   23
#>   TRUE    180  416

#> 
#> Num. Models: 320  To Test: 1381  TopFreq: 10.56364  Thrf: 0  Removed: 0 
#> ................................*:.....#...:.....#...:.....#...:.....#...:.....#...:.....#...:.....#...
#> Num. Models: 62  To Test: 66  TopFreq: 60  Thrf: 0  Removed: 0 
#> ......*

  save(arceneCV10,file="ArceneCV_01_10_3_wsvn.RDATA")

arceneCV10$cvObject$Models.testPrediction$usrFitFunction_Sel <- arceneCV10$cvObject$Models.testPrediction$usrFitFunction_Sel -0.5
arceneCV10$cvObject$Models.testPrediction$usrFitFunction <- arceneCV10$cvObject$Models.testPrediction$usrFitFunction -0.5
pm <- plotModels.ROC(arceneCV10$cvObject$LASSO.testPredictions,theCVfolds=10,main="CV LASSO",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="Prediction",main="BB:SWiMS",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="Ensemble.Forward",main="Forward Median",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="Forward.Selection.Bagged",main="Forward Bagged",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="usrFitFunction",main="SVM",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="usrFitFunction_Sel",main="SVM",cex=0.90)

ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))

bp <- barPlotCiError(as.matrix(CVACCTable),metricname="Accuracy",thesets=CVthesets,themethod=c("CV:3","CV:10"),main="Accuracy",args.legend = list(x = "bottomright"))


bp <- barPlotCiError(as.matrix(CVBETable),metricname="Balanced Error",thesets=CVthesets,themethod=c("CV:3","CV:10"),main="Balanced Error",args.legend = list(x = "topright"))