library("epiR")
library("FRESA.CAD")
library(network)
library(GGally)
library("e1071")
library("gplots")
error.bar <- function(x, y, upper, lower=upper, length=0.05,...){
if(length(x) != length(y) | length(y) !=length(lower) | length(lower) != length(upper))
stop("vectors must be same length")
arrows(x,y+upper, x, y-lower, angle=90, code=3, length=length, ...)
}
barPlotCiError<- function(citable,metricname,thesets,themethod,main,...)
{
colnames(citable) <- c(metricname,"lower","upper")
rownames(citable) <- rep(thesets,length(themethod))
pander::pander(citable,caption=main,round = 3)
citable <- citable[order(rep(1:length(thesets),length(themethod))),]
barmatrix <- matrix(citable[,1],length(themethod),length(thesets))
colnames(barmatrix) <- thesets
rownames(barmatrix) <- themethod
pander::pander(barmatrix,caption=main,round = 3)
barp <- barplot(barmatrix,cex.names=0.7,las=2,ylim=c(0.0,1.0),main=main,ylab=metricname,beside=TRUE,legend = themethod,...)
error.bar(barp,citable[,1],citable[,3]-citable[,1],citable[,1]-citable[,2])
return(barp)
}
#trainLabeled <- read.delim("./Arcene/ARCENE/trainSet.txt")
#validLabeled <- read.delim("./Arcene/ARCENE/arcene_valid.txt")
#testLabeled <- read.delim("./Arcene/ARCENE/arcene_test.txt")
trainLabeled <- read.delim("trainSet.txt")
validLabeled <- read.delim("arcene_valid.txt")
testLabeled <- read.delim("arcene_test.txt")
trainLabeled$Labels <- 1*(trainLabeled$Labels>0)
validLabeled$Labels <- 1*(validLabeled$Labels>0)
arcene.norm <- rbind(trainLabeled,validLabeled)
diagTable <- NULL
citable <- NULL
errorcitable <- NULL
collectPerfomance<- function(bswimsmodel)
{
diagTable <- NULL
citable <- NULL
errorcitable <- NULL
pr <- predict(bswimsmodel$BSWiMS.model,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),pr),main="B:SWiMS")
diagTable$BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pr <- predict(bswimsmodel$bagging$bagged.model,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),pr),main="Bagged")
diagTable$BagginForward <- pm$predictionTable
ci <- epi.tests(diagTable$BagginForward)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
prm <- ensemblePredict(bswimsmodel$BSWiMS.models$formula.list,trainLabeled,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prm$ensemblePredict),main="Ensemble B:SWiMS")
diagTable$EnsembleBSwims <- pm$predictionTable
ci <- epi.tests(diagTable$EnsembleBSwims)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
prm2 <- ensemblePredict(bswimsmodel$BSWiMS.models$forward.selection.list,trainLabeled,validLabeled)
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prm2$ensemblePredict),main="Ensemble Forward")
diagTable$EnsembleForward <- pm$predictionTable
ci <- epi.tests(diagTable$EnsembleForward)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
ds <- trainLabeled[,c("Labels",names(bswimsmodel$BSWiMS.models$bagging$frequencyTable))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: B:SWiMS Selection")
diagTable$SVM_BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
ds <- trainLabeled[,c("Labels",rownames(bswimsmodel$univariateAnalysis[1:length(bswimsmodel$BSWiMS.models$bagging$frequencyTable),]))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Univariate Selection")
diagTable$SVM_BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
ds <- trainLabeled[,c("Labels",names(bswimsmodel$bagging$frequencyTable))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Forward Selection")
diagTable$SVM_BaggingForward <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingForward)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
ds <- trainLabeled[,c("Labels",rownames(bswimsmodel$univariateAnalysis[1:length(bswimsmodel$bagging$frequencyTable),]))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Univariate Forward Selection")
diagTable$SVM_BaggingBSWIMS <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_BaggingBSWIMS)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
ds <- trainLabeled[,c("Labels",as.character(subset(bswimsmodel$univariateAnalysis,ZUni>3.0)[,1]))]
psvm <- svm(formula("Labels ~ ."),ds)
prsvm <- predict(psvm,validLabeled)-0.5
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),prsvm),main="SVM: Z>3")
diagTable$SVM_3Sunivariate <- pm$predictionTable
ci <- epi.tests(diagTable$SVM_3Sunivariate)
citable <- rbind(citable,ci$elements$diag.acc)
errorcitable <- rbind(errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
result <- list(errorcitable=errorcitable,citable=citable,diagTable=diagTable)
return(result)
}
arceneCVOne <- FRESA.Model(formula = Labels ~ 1,data = trainLabeled,bswimsCycles=5,filter.p.value = 0.01)
pm<-plot(arceneCVOne$bootstrappedModel)
pander::pander(summary(arceneCVOne$BSWiMS.model))
coefficients:
| Estimate | lower | mean | upper | u.Accuracy | r.Accuracy | |
|---|---|---|---|---|---|---|
| V698 | -0.009289 | NA | NA | NA | 0.66 | 0.78 |
| V4290 | -0.01089 | NA | NA | NA | 0.69 | 0.74 |
| V8502 | -0.006158 | NA | NA | NA | 0.7 | 0.72 |
| V5473 | -0.003825 | NA | NA | NA | 0.7 | 0.77 |
| V1184 | -0.0599 | NA | NA | NA | 0.6 | 0.81 |
| V1975 | -0.04117 | NA | NA | NA | 0.68 | 0.92 |
| V3339 | -0.07282 | NA | NA | NA | 0.65 | 0.94 |
| V7272 | -0.01224 | NA | NA | NA | 0.67 | 0.77 |
| V3206 | -0.009384 | NA | NA | NA | 0.67 | 0.73 |
| V9104 | -1.685 | NA | NA | NA | 0.59 | 0.84 |
| V7899 | -0.1328 | NA | NA | NA | 0.59 | 0.83 |
| V4352 | -0.01085 | NA | NA | NA | 0.66 | 0.82 |
| V7513 | -0.1226 | NA | NA | NA | 0.57 | 0.94 |
| V9868 | -0.007911 | NA | NA | NA | 0.55 | 0.79 |
| V1831 | -0.02816 | NA | NA | NA | 0.59 | 0.9 |
| V9818 | -0.004621 | NA | NA | NA | 0.56 | 0.81 |
| V9319 | -0.01406 | NA | NA | NA | 0.63 | 0.83 |
| V5956 | -0.04824 | NA | NA | NA | 0.57 | 0.92 |
| V4542 | -0.003579 | NA | NA | NA | 0.61 | 0.82 |
| V8156 | -0.003971 | NA | NA | NA | 0.58 | 0.83 |
| V9275 | -0.003784 | NA | NA | NA | 0.58 | 0.77 |
| full.Accuracy | u.AUC | r.AUC | full.AUC | IDI | NRI | z.IDI | z.NRI | |
|---|---|---|---|---|---|---|---|---|
| V698 | 0.88 | 0.6672 | 0.7841 | 0.8807 | 0.1795 | 0.8506 | 4.911 | 5.203 |
| V4290 | 0.85 | 0.6964 | 0.7386 | 0.8515 | 0.2197 | 1.263 | 5.512 | 8.364 |
| V8502 | 0.84 | 0.7054 | 0.7256 | 0.8401 | 0.141 | 1.127 | 4.049 | 6.791 |
| V5473 | 0.8 | 0.7054 | 0.7703 | 0.7995 | 0.1371 | 0.8929 | 4.013 | 4.98 |
| V1184 | 0.95 | 0.6015 | 0.8084 | 0.9505 | 0.3335 | 1.705 | 7.535 | 17.19 |
| V1975 | 0.95 | 0.6972 | 0.9188 | 0.9505 | 0.1149 | 1.721 | 3.44 | 16.78 |
| V3339 | 0.95 | 0.6826 | 0.9416 | 0.9505 | 0.1307 | 1.649 | 4.3 | 14.69 |
| V7272 | 0.84 | 0.6932 | 0.7679 | 0.8401 | 0.1339 | 1.175 | 4.017 | 7.734 |
| V3206 | 0.8 | 0.6932 | 0.7297 | 0.7995 | 0.1667 | 1.058 | 4.596 | 6.621 |
| V9104 | 0.88 | 0.6339 | 0.8401 | 0.8807 | 0.1449 | 0.9091 | 4.468 | 6.157 |
| V7899 | 0.85 | 0.6315 | 0.8287 | 0.8515 | 0.09401 | 0.7403 | 3.427 | 5.362 |
| V4352 | 0.85 | 0.6696 | 0.8222 | 0.8515 | 0.1334 | 0.9481 | 3.821 | 5.498 |
| V7513 | 0.95 | 0.599 | 0.9416 | 0.9505 | 0.08622 | 1.578 | 3.082 | 13.09 |
| V9868 | 0.84 | 0.5763 | 0.7881 | 0.8401 | 0.08145 | 0.9318 | 3.169 | 5.481 |
| V1831 | 0.95 | 0.595 | 0.9034 | 0.9505 | 0.1698 | 1.594 | 4.779 | 13.03 |
| V9818 | 0.84 | 0.5633 | 0.8133 | 0.8401 | 0.09667 | 1.101 | 3.1 | 6.633 |
| V9319 | 0.85 | 0.6477 | 0.8312 | 0.8515 | 0.11 | 1.065 | 3.61 | 6.426 |
| V5956 | 0.95 | 0.5869 | 0.9213 | 0.9505 | 0.08596 | 1.766 | 3.424 | 18.96 |
| V4542 | 0.88 | 0.6201 | 0.8222 | 0.8807 | 0.1082 | 0.6623 | 3.749 | 3.908 |
| V8156 | 0.88 | 0.586 | 0.8336 | 0.8807 | 0.1078 | 0.7792 | 3.619 | 4.726 |
| V9275 | 0.8 | 0.5812 | 0.7703 | 0.7995 | 0.126 | 0.9026 | 3.692 | 5.082 |
bootstrap:
bg <- baggedModel(arceneCVOne$BSWiMS.models$formula.list,trainLabeled,type="LOGIT",univariate=arceneCVOne$univariateAnalysis,n_bootstrap = 30)
Num. Models: 5 To Test: 21 TopFreq: 1 Thrf: 0 Removed: 0 ******************************
pander::pander(summary(bg$bagged.model))
coefficients:
| Estimate | lower | OR | upper | u.Accuracy | r.Accuracy | |
|---|---|---|---|---|---|---|
| V698 | -0.01001 | 0.9097 | 0.943 | 0.9776 | 0.6727 | 0.7703 |
| V4290 | -0.01038 | 0.8949 | 0.9329 | 0.9726 | 0.6963 | 0.7703 |
| V8502 | -0.006944 | 0.9193 | 0.9489 | 0.9794 | 0.6997 | 0.7697 |
| V5473 | -0.004563 | 0.9321 | 0.9559 | 0.9803 | 0.6977 | 0.7527 |
| V1184 | -0.7148 | 0.006795 | 0.2923 | 12.57 | 0.6203 | 0.8267 |
| V1975 | -0.4981 | 0.02692 | 0.4242 | 6.683 | 0.6777 | 0.9313 |
| V3339 | -0.9046 | 0.002897 | 0.2038 | 14.33 | 0.6603 | 0.93 |
| V7272 | -0.0141 | 0.8347 | 0.896 | 0.9618 | 0.674 | 0.7883 |
| V3206 | -0.01125 | 0.8294 | 0.8934 | 0.9624 | 0.6673 | 0.728 |
| V9104 | -1.443 | 2.486e-06 | 0.000133 | 0.007118 | 0.595 | 0.842 |
| V7899 | -0.2467 | 0.006599 | 0.1687 | 4.312 | 0.5917 | 0.833 |
| V4352 | -0.01028 | 0.8874 | 0.9304 | 0.9754 | 0.6597 | 0.82 |
| V7513 | -1.386 | 7.494e-05 | 0.09618 | 123.4 | 0.5773 | 0.9447 |
| V9868 | -0.01021 | 0.8737 | 0.9254 | 0.9801 | 0.5653 | 0.8083 |
| V1831 | -0.2826 | 0.1517 | 0.61 | 2.452 | 0.5847 | 0.9047 |
| V9818 | -0.004715 | 0.9398 | 0.9634 | 0.9876 | 0.5723 | 0.8207 |
| V9319 | -0.01359 | 0.8531 | 0.9127 | 0.9765 | 0.6213 | 0.837 |
| V5956 | -0.6214 | 0.01265 | 0.3548 | 9.954 | 0.5893 | 0.937 |
| V4542 | -0.00434 | 0.9549 | 0.9754 | 0.9962 | 0.6243 | 0.8257 |
| V8156 | -0.004293 | 0.957 | 0.9748 | 0.993 | 0.5823 | 0.8337 |
| V9275 | -0.004308 | 0.9355 | 0.9579 | 0.9808 | 0.566 | 0.7657 |
| full.Accuracy | u.AUC | r.AUC | full.AUC | IDI | NRI | z.IDI | z.NRI | |
|---|---|---|---|---|---|---|---|---|
| V698 | 0.8777 | 0.6799 | 0.7749 | 0.8801 | 0.1822 | 0.9132 | 4.922 | 5.941 |
| V4290 | 0.865 | 0.7032 | 0.7699 | 0.8659 | 0.2104 | 1.111 | 5.27 | 7.22 |
| V8502 | 0.853 | 0.7051 | 0.7762 | 0.8553 | 0.1505 | 1.023 | 4.238 | 6.224 |
| V5473 | 0.7987 | 0.7023 | 0.7548 | 0.7995 | 0.1503 | 0.9133 | 4.227 | 5.336 |
| V1184 | 0.9713 | 0.6217 | 0.8276 | 0.9713 | 0.3347 | 1.661 | 7.572 | Inf |
| V1975 | 0.9713 | 0.6954 | 0.9315 | 0.9713 | 0.1439 | 1.681 | 4.017 | Inf |
| V3339 | 0.9713 | 0.6915 | 0.9309 | 0.9713 | 0.1789 | 1.74 | 5.122 | Inf |
| V7272 | 0.853 | 0.6971 | 0.789 | 0.8553 | 0.1467 | 1.114 | 4.263 | 7.288 |
| V3206 | 0.7987 | 0.691 | 0.7263 | 0.7995 | 0.18 | 1.01 | 4.856 | 6.426 |
| V9104 | 0.8777 | 0.6348 | 0.842 | 0.8801 | 0.1358 | 0.9034 | 4.247 | 6.573 |
| V7899 | 0.865 | 0.6295 | 0.8317 | 0.8659 | 0.08118 | 0.7089 | 3.091 | 5.289 |
| V4352 | 0.865 | 0.6654 | 0.8231 | 0.8659 | 0.1451 | 0.9693 | 3.968 | 6.089 |
| V7513 | 0.9713 | 0.5797 | 0.9456 | 0.9713 | 0.08489 | 1.338 | 3.068 | 14.39 |
| V9868 | 0.853 | 0.576 | 0.8099 | 0.8553 | 0.08008 | 0.8295 | 3.039 | 5.128 |
| V1831 | 0.9713 | 0.5847 | 0.906 | 0.9713 | 0.1879 | 1.582 | 5.053 | Inf |
| V9818 | 0.853 | 0.5725 | 0.8241 | 0.8553 | 0.09797 | 1.055 | 3.074 | 6.392 |
| V9319 | 0.865 | 0.6185 | 0.8407 | 0.8659 | 0.1034 | 0.9808 | 3.307 | 6.358 |
| V5956 | 0.9713 | 0.5893 | 0.9379 | 0.9713 | 0.1164 | 1.465 | 3.72 | Inf |
| V4542 | 0.8777 | 0.6315 | 0.8285 | 0.8801 | 0.123 | 0.7587 | 3.872 | 4.809 |
| V8156 | 0.8777 | 0.58 | 0.8371 | 0.8801 | 0.1131 | 0.8094 | 3.602 | 5.223 |
| V9275 | 0.7987 | 0.5627 | 0.7675 | 0.7995 | 0.1334 | 0.9594 | 3.797 | 5.711 |
bootstrap:
bv <- bootstrapValidation_Bin(model.formula=arceneCVOne$BSWiMS.model$formula,Outcome="Labels",data=trainLabeled,type="LOGIT")
pm<-plot(bv)
pc <- collectPerfomance(arceneCVOne)
citable <- rbind(citable,pc$citable)
errorcitable <- rbind(errorcitable,pc$errorcitable)
thesets <- c("BSWIMS","Forward:Bagging","BSWIMS:Ensemble","Forward:Ensemble","SVM:BSWIMS","SVM:Top(Nb)","SVM:Forward","SVM:Top(Nf)","SVM:3 Sigma")
bp <- barPlotCiError(as.matrix(citable),metricname="Accuracy",thesets=thesets,themethod=c("Validation"),main="Accuracy",args.legend = list(x = "bottomright"))
bp <- barPlotCiError(as.matrix(errorcitable),metricname="Balanced Error",thesets=thesets,themethod=c("Validation"),main="Balanced Error",args.legend = list(x = "topright"))
arceneCVTwo <- FRESA.Model(formula = Labels ~ 1,data = trainLabeled,bswimsCycles=10,filter.p.value = 0.01)
pc <- collectPerfomance(arceneCVTwo)
citable <- rbind(citable,pc$citable)
errorcitable <- rbind(errorcitable,pc$errorcitable)
bp <- barPlotCiError(as.matrix(citable),metricname="Accuracy",thesets=thesets,themethod=c("V5","V10"),main="Accuracy",args.legend = list(x = "bottomright"))
bp <- barPlotCiError(as.matrix(errorcitable),metricname="Balanced Error",thesets=thesets,themethod=c("V5","V10"),main="Balanced Error",args.legend = list(x = "topright"))
arceneCVThree <- FRESA.Model(formula = Labels ~ 1,data = trainLabeled,bswimsCycles=10,filter.p.value = 0.025)
pc <- collectPerfomance(arceneCVThree)
citable <- rbind(citable,pc$citable)
errorcitable <- rbind(errorcitable,pc$errorcitable)
bp <- barPlotCiError(as.matrix(citable),metricname="Accuracy",thesets=thesets,themethod=c("V5","V10","V10b"),main="Accuracy",args.legend = list(x = "bottomright"))
bp <- barPlotCiError(as.matrix(errorcitable),metricname="Balanced Error",thesets=thesets,themethod=c("V5","V10","V10b"),main="Balanced Error",args.legend = list(x = "topright"))
sig_ACCtable <- NULL
sig_errorcitable <- NULL
sizesig <- NULL
varlist <- as.character(subset(arceneCVOne$univariateAnalysis,ZUni>3.0)[,1])
#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#> 7 Number of features: 7 Max AUC: 0.656 AUC: 0.644 Z: 0.394 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.662 AUC: 0.662 Z: 0.501 Rdelta: 0.10000
#> 9 Number of features: 8 Max AUC: 0.662 AUC: 0.503 Z: 0.009 Rdelta: 0.08000
#> 10 Number of features: 8 Max AUC: 0.662 AUC: 0.623 Z: 0.353 Rdelta: 0.06400
#> 11 Number of features: 9 Max AUC: 0.686 AUC: 0.686 Z: 0.588 Rdelta: 0.06760
#> 12 Number of features: 9 Max AUC: 0.686 AUC: 0.585 Z: 0.118 Rdelta: 0.05408
#> 13 Number of features: 9 Max AUC: 0.686 AUC: 0.584 Z: 0.150 Rdelta: 0.04326
#> 14 Number of features: 9 Max AUC: 0.686 AUC: 0.587 Z: 0.048 Rdelta: 0.03461
#> 15 Number of features: 9 Max AUC: 0.686 AUC: 0.612 Z: 0.251 Rdelta: 0.02769
#> 16 Number of features: 9 Max AUC: 0.686 AUC: 0.585 Z: 0.136 Rdelta: 0.02215
#> 17 Number of features: 9 Max AUC: 0.686 AUC: 0.536 Z: -0.048 Rdelta: 0.01772
#> 18 Number of features: 9 Max AUC: 0.686 AUC: 0.605 Z: 0.310 Rdelta: 0.01418
#> 19 Number of features: 9 Max AUC: 0.686 AUC: 0.550 Z: 0.037 Rdelta: 0.01134
#> 20 Number of features: 9 Max AUC: 0.686 AUC: 0.503 Z: -0.109 Rdelta: 0.00907
#> 21 Number of features: 9 Max AUC: 0.686 AUC: 0.533 Z: -0.053 Rdelta: 0.00726
#> 22 Number of features: 9 Max AUC: 0.686 AUC: 0.580 Z: 0.158 Rdelta: 0.00581
#> 23 Number of features: 9 Max AUC: 0.686 AUC: 0.611 Z: 0.268 Rdelta: 0.00465
#> 24 Number of features: 9 Max AUC: 0.686 AUC: 0.607 Z: 0.167 Rdelta: 0.00372
#> 25 Number of features: 10 Max AUC: 0.695 AUC: 0.695 Z: 0.568 Rdelta: 0.01334
#> 26 Number of features: 10 Max AUC: 0.695 AUC: 0.622 Z: 0.297 Rdelta: 0.01068
#> 27 Number of features: 10 Max AUC: 0.695 AUC: 0.552 Z: 0.059 Rdelta: 0.00854
#> 28 Number of features: 10 Max AUC: 0.695 AUC: 0.553 Z: 0.024 Rdelta: 0.00683
#> 29 Number of features: 10 Max AUC: 0.695 AUC: 0.680 Z: 0.607 Rdelta: 0.00547
#> 30 Number of features: 10 Max AUC: 0.695 AUC: 0.643 Z: 0.395 Rdelta: 0.00437
#> 31 Number of features: 10 Max AUC: 0.695 AUC: 0.601 Z: 0.271 Rdelta: 0.00350
#> 32 Number of features: 10 Max AUC: 0.695 AUC: 0.561 Z: 0.126 Rdelta: 0.00280
#> 33 Number of features: 10 Max AUC: 0.695 AUC: 0.608 Z: 0.224 Rdelta: 0.00224
#> 34 Number of features: 10 Max AUC: 0.695 AUC: 0.563 Z: 0.043 Rdelta: 0.00179
#> 35 Number of features: 10 Max AUC: 0.695 AUC: 0.629 Z: 0.371 Rdelta: 0.00143
#> 36 Number of features: 10 Max AUC: 0.695 AUC: 0.565 Z: 0.107 Rdelta: 0.00115
#> 37 Number of features: 10 Max AUC: 0.695 AUC: 0.596 Z: 0.251 Rdelta: 0.00092
#> 38 Number of features: 10 Max AUC: 0.695 AUC: 0.614 Z: 0.250 Rdelta: 0.00073
#> 39 Number of features: 10 Max AUC: 0.695 AUC: 0.634 Z: 0.303 Rdelta: 0.00059
#> 40 Number of features: 10 Max AUC: 0.695 AUC: 0.589 Z: 0.168 Rdelta: 0.00047
#> 41 Number of features: 10 Max AUC: 0.695 AUC: 0.577 Z: 0.142 Rdelta: 0.00038
#> 42 Number of features: 10 Max AUC: 0.695 AUC: 0.641 Z: 0.382 Rdelta: 0.00030
#> 43 Number of features: 10 Max AUC: 0.695 AUC: 0.623 Z: 0.277 Rdelta: 0.00024
#> 44 Number of features: 10 Max AUC: 0.695 AUC: 0.552 Z: 0.063 Rdelta: 0.00019
#> 45 Number of features: 11 Max AUC: 0.697 AUC: 0.697 Z: 0.565 Rdelta: 0.01017
#> 46 Number of features: 11 Max AUC: 0.697 AUC: 0.635 Z: 0.367 Rdelta: 0.00814
#> 47 Number of features: 11 Max AUC: 0.697 AUC: 0.596 Z: 0.211 Rdelta: 0.00651
#> 48 Number of features: 12 Max AUC: 0.697 AUC: 0.695 Z: 0.667 Rdelta: 0.01586
#> 49 Number of features: 12 Max AUC: 0.697 AUC: 0.576 Z: 0.141 Rdelta: 0.01269
#> 50 Number of features: 12 Max AUC: 0.697 AUC: 0.678 Z: 0.602 Rdelta: 0.01015
#> 51 Number of features: 12 Max AUC: 0.697 AUC: 0.661 Z: 0.450 Rdelta: 0.00812
#> 52 Number of features: 13 Max AUC: 0.697 AUC: 0.694 Z: 0.616 Rdelta: 0.01731
#> 53 Number of features: 13 Max AUC: 0.697 AUC: 0.636 Z: 0.430 Rdelta: 0.01385
#> 54 Number of features: 13 Max AUC: 0.697 AUC: 0.623 Z: 0.261 Rdelta: 0.01108
#> 55 Number of features: 13 Max AUC: 0.697 AUC: 0.639 Z: 0.512 Rdelta: 0.00886
#> 56 Number of features: 13 Max AUC: 0.697 AUC: 0.645 Z: 0.432 Rdelta: 0.00709
#> 57 Number of features: 13 Max AUC: 0.697 AUC: 0.567 Z: 0.199 Rdelta: 0.00567
#> 58 Number of features: 13 Max AUC: 0.697 AUC: 0.627 Z: 0.330 Rdelta: 0.00454
#> 59 Number of features: 13 Max AUC: 0.697 AUC: 0.636 Z: 0.399 Rdelta: 0.00363
#> 60 Number of features: 13 Max AUC: 0.697 AUC: 0.648 Z: 0.460 Rdelta: 0.00290
#> 61 Number of features: 13 Max AUC: 0.697 AUC: 0.657 Z: 0.505 Rdelta: 0.00232
#> 62 Number of features: 13 Max AUC: 0.697 AUC: 0.630 Z: 0.406 Rdelta: 0.00186
#> 63 Number of features: 13 Max AUC: 0.697 AUC: 0.649 Z: 0.489 Rdelta: 0.00149
#> 64 Number of features: 13 Max AUC: 0.697 AUC: 0.643 Z: 0.434 Rdelta: 0.00119
#> 65 Number of features: 13 Max AUC: 0.697 AUC: 0.652 Z: 0.449 Rdelta: 0.00095
#> 66 Number of features: 13 Max AUC: 0.697 AUC: 0.633 Z: 0.429 Rdelta: 0.00076
#> 67 Number of features: 13 Max AUC: 0.697 AUC: 0.646 Z: 0.473 Rdelta: 0.00061
#> 68 Number of features: 13 Max AUC: 0.697 AUC: 0.635 Z: 0.444 Rdelta: 0.00049
#> 69 Number of features: 13 Max AUC: 0.697 AUC: 0.612 Z: 0.248 Rdelta: 0.00039
#> 70 Number of features: 13 Max AUC: 0.697 AUC: 0.646 Z: 0.453 Rdelta: 0.00031
#> 71 Number of features: 13 Max AUC: 0.697 AUC: 0.614 Z: 0.322 Rdelta: 0.00025
#> 72 Number of features: 13 Max AUC: 0.697 AUC: 0.629 Z: 0.451 Rdelta: 0.00020
#> 73 Number of features: 13 Max AUC: 0.697 AUC: 0.663 Z: 0.443 Rdelta: 0.00016
#> 74 Number of features: 13 Max AUC: 0.697 AUC: 0.672 Z: 0.550 Rdelta: 0.00013
#> 75 Number of features: 13 Max AUC: 0.697 AUC: 0.622 Z: 0.430 Rdelta: 0.00010
#> 76 Number of features: 13 Max AUC: 0.697 AUC: 0.622 Z: 0.408 Rdelta: 0.00008
#> user system elapsed
#> 19.5 0.0 19.5
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#> 7 Number of features: 7 Max AUC: 0.685 AUC: 0.685 Z: 0.834 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.685 AUC: 0.677 Z: 0.811 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.750 AUC: 0.750 Z: 1.009 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.750 AUC: 0.746 Z: 1.014 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.750 AUC: 0.750 Z: 1.115 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.762 AUC: 0.762 Z: 0.958 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.763 AUC: 0.763 Z: 0.825 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.778 AUC: 0.778 Z: 0.196 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.778 AUC: 0.777 Z: 0.436 Rdelta: 0.10000
#> 16 Number of features: 16 Max AUC: 0.787 AUC: 0.787 Z: 0.618 Rdelta: 0.10000
#> 17 Number of features: 17 Max AUC: 0.787 AUC: 0.781 Z: 0.757 Rdelta: 0.10000
#> 18 Number of features: 17 Max AUC: 0.787 AUC: 0.767 Z: 0.522 Rdelta: 0.08000
#> 19 Number of features: 18 Max AUC: 0.790 AUC: 0.790 Z: 0.648 Rdelta: 0.08200
#> 20 Number of features: 18 Max AUC: 0.790 AUC: 0.766 Z: 0.688 Rdelta: 0.06560
#> 21 Number of features: 18 Max AUC: 0.790 AUC: 0.765 Z: 0.659 Rdelta: 0.05248
#> 22 Number of features: 18 Max AUC: 0.790 AUC: 0.761 Z: 0.324 Rdelta: 0.04198
#> 23 Number of features: 18 Max AUC: 0.790 AUC: 0.783 Z: 0.173 Rdelta: 0.03359
#> 24 Number of features: 19 Max AUC: 0.790 AUC: 0.785 Z: 0.587 Rdelta: 0.04023
#> 25 Number of features: 19 Max AUC: 0.790 AUC: 0.770 Z: 0.682 Rdelta: 0.03218
#> 26 Number of features: 19 Max AUC: 0.790 AUC: 0.773 Z: 0.625 Rdelta: 0.02575
#> 27 Number of features: 19 Max AUC: 0.790 AUC: 0.773 Z: 0.616 Rdelta: 0.02060
#> 28 Number of features: 20 Max AUC: 0.790 AUC: 0.778 Z: 0.608 Rdelta: 0.02854
#> 29 Number of features: 20 Max AUC: 0.790 AUC: 0.771 Z: 0.584 Rdelta: 0.02283
#> 30 Number of features: 21 Max AUC: 0.790 AUC: 0.779 Z: 0.646 Rdelta: 0.03055
#> 31 Number of features: 22 Max AUC: 0.790 AUC: 0.785 Z: 0.598 Rdelta: 0.03749
#> 32 Number of features: 22 Max AUC: 0.790 AUC: 0.777 Z: 0.259 Rdelta: 0.02999
#> 33 Number of features: 23 Max AUC: 0.790 AUC: 0.777 Z: 0.696 Rdelta: 0.03699
#> 34 Number of features: 24 Max AUC: 0.790 AUC: 0.788 Z: 0.380 Rdelta: 0.04329
#> 35 Number of features: 24 Max AUC: 0.790 AUC: 0.778 Z: 0.266 Rdelta: 0.03464
#> 36 Number of features: 24 Max AUC: 0.790 AUC: 0.772 Z: 0.593 Rdelta: 0.02771
#> 37 Number of features: 24 Max AUC: 0.790 AUC: 0.769 Z: 0.260 Rdelta: 0.02217
#> 38 Number of features: 25 Max AUC: 0.790 AUC: 0.783 Z: 0.615 Rdelta: 0.02995
#> 39 Number of features: 26 Max AUC: 0.790 AUC: 0.786 Z: 0.676 Rdelta: 0.03696
#> 40 Number of features: 27 Max AUC: 0.790 AUC: 0.780 Z: 0.669 Rdelta: 0.04326
#> 41 Number of features: 28 Max AUC: 0.790 AUC: 0.786 Z: 0.695 Rdelta: 0.04893
#> 42 Number of features: 29 Max AUC: 0.791 AUC: 0.791 Z: 0.187 Rdelta: 0.05404
#> 43 Number of features: 30 Max AUC: 0.791 AUC: 0.787 Z: 0.580 Rdelta: 0.05864
#> 44 Number of features: 31 Max AUC: 0.791 AUC: 0.783 Z: 0.621 Rdelta: 0.06277
#> 45 Number of features: 32 Max AUC: 0.792 AUC: 0.792 Z: 0.770 Rdelta: 0.06650
#> 46 Number of features: 32 Max AUC: 0.792 AUC: 0.773 Z: 0.555 Rdelta: 0.05320
#> 47 Number of features: 32 Max AUC: 0.792 AUC: 0.778 Z: 0.476 Rdelta: 0.04256
#> 48 Number of features: 32 Max AUC: 0.792 AUC: 0.780 Z: 0.250 Rdelta: 0.03405
#> 49 Number of features: 32 Max AUC: 0.792 AUC: 0.777 Z: 0.260 Rdelta: 0.02724
#> 50 Number of features: 32 Max AUC: 0.792 AUC: 0.779 Z: 0.470 Rdelta: 0.02179
#> 51 Number of features: 32 Max AUC: 0.792 AUC: 0.784 Z: 0.690 Rdelta: 0.01743
#> 52 Number of features: 32 Max AUC: 0.792 AUC: 0.783 Z: 0.402 Rdelta: 0.01395
#> 53 Number of features: 32 Max AUC: 0.792 AUC: 0.778 Z: 0.149 Rdelta: 0.01116
#> 54 Number of features: 33 Max AUC: 0.792 AUC: 0.791 Z: 0.618 Rdelta: 0.02004
#> 55 Number of features: 34 Max AUC: 0.792 AUC: 0.784 Z: 0.564 Rdelta: 0.02804
#> 56 Number of features: 35 Max AUC: 0.794 AUC: 0.794 Z: 0.699 Rdelta: 0.03523
#> 57 Number of features: 35 Max AUC: 0.794 AUC: 0.781 Z: 0.422 Rdelta: 0.02819
#> 58 Number of features: 36 Max AUC: 0.794 AUC: 0.790 Z: 0.650 Rdelta: 0.03537
#> 59 Number of features: 37 Max AUC: 0.794 AUC: 0.792 Z: 0.639 Rdelta: 0.04183
#> 60 Number of features: 38 Max AUC: 0.794 AUC: 0.791 Z: 0.408 Rdelta: 0.04765
#> 61 Number of features: 39 Max AUC: 0.794 AUC: 0.794 Z: 0.112 Rdelta: 0.05288
#> 62 Number of features: 40 Max AUC: 0.807 AUC: 0.807 Z: 0.323 Rdelta: 0.05759
#> 63 Number of features: 40 Max AUC: 0.807 AUC: 0.794 Z: 0.067 Rdelta: 0.04608
#> 64 Number of features: 40 Max AUC: 0.807 AUC: 0.797 Z: 0.209 Rdelta: 0.03686
#> 65 Number of features: 40 Max AUC: 0.807 AUC: 0.791 Z: 0.251 Rdelta: 0.02949
#> 66 Number of features: 41 Max AUC: 0.807 AUC: 0.801 Z: 0.680 Rdelta: 0.03654
#> 67 Number of features: 41 Max AUC: 0.807 AUC: 0.786 Z: 0.087 Rdelta: 0.02923
#> 68 Number of features: 41 Max AUC: 0.807 AUC: 0.780 Z: 0.605 Rdelta: 0.02339
#> 69 Number of features: 42 Max AUC: 0.807 AUC: 0.798 Z: 0.547 Rdelta: 0.03105
#> 70 Number of features: 43 Max AUC: 0.807 AUC: 0.803 Z: 0.728 Rdelta: 0.03794
#> 71 Number of features: 43 Max AUC: 0.807 AUC: 0.786 Z: 0.596 Rdelta: 0.03035
#> 72 Number of features: 44 Max AUC: 0.807 AUC: 0.804 Z: 0.525 Rdelta: 0.03732
#> 73 Number of features: 45 Max AUC: 0.807 AUC: 0.807 Z: 0.398 Rdelta: 0.04359
#> 74 Number of features: 45 Max AUC: 0.807 AUC: 0.789 Z: 0.449 Rdelta: 0.03487
#> 75 Number of features: 46 Max AUC: 0.807 AUC: 0.805 Z: 0.589 Rdelta: 0.04138
#> 76 Number of features: 46 Max AUC: 0.807 AUC: 0.788 Z: 0.506 Rdelta: 0.03311
#> 77 Number of features: 47 Max AUC: 0.807 AUC: 0.798 Z: 0.792 Rdelta: 0.03980
#> 78 Number of features: 47 Max AUC: 0.807 AUC: 0.788 Z: 0.534 Rdelta: 0.03184
#> 79 Number of features: 48 Max AUC: 0.807 AUC: 0.806 Z: 0.549 Rdelta: 0.03865
#> 80 Number of features: 49 Max AUC: 0.807 AUC: 0.800 Z: 0.582 Rdelta: 0.04479
#> 81 Number of features: 50 Max AUC: 0.807 AUC: 0.800 Z: 0.446 Rdelta: 0.05031
#> 82 Number of features: 51 Max AUC: 0.811 AUC: 0.811 Z: 0.433 Rdelta: 0.05528
#> 83 Number of features: 51 Max AUC: 0.811 AUC: 0.797 Z: 0.699 Rdelta: 0.04422
#> 84 Number of features: 51 Max AUC: 0.811 AUC: 0.798 Z: 0.539 Rdelta: 0.03538
#> 85 Number of features: 51 Max AUC: 0.811 AUC: 0.801 Z: 0.238 Rdelta: 0.02830
#> 86 Number of features: 51 Max AUC: 0.811 AUC: 0.796 Z: 0.431 Rdelta: 0.02264
#> 87 Number of features: 51 Max AUC: 0.811 AUC: 0.792 Z: 0.350 Rdelta: 0.01811
#> 88 Number of features: 51 Max AUC: 0.811 AUC: 0.797 Z: 0.665 Rdelta: 0.01449
#> 89 Number of features: 52 Max AUC: 0.812 AUC: 0.812 Z: 0.684 Rdelta: 0.02304
#> 90 Number of features: 53 Max AUC: 0.812 AUC: 0.805 Z: 0.760 Rdelta: 0.03074
#> 91 Number of features: 54 Max AUC: 0.812 AUC: 0.807 Z: 0.437 Rdelta: 0.03766
#> 92 Number of features: 54 Max AUC: 0.812 AUC: 0.794 Z: 0.542 Rdelta: 0.03013
#> 93 Number of features: 55 Max AUC: 0.812 AUC: 0.807 Z: 0.388 Rdelta: 0.03712
#> 94 Number of features: 55 Max AUC: 0.812 AUC: 0.792 Z: 0.430 Rdelta: 0.02969
#> 95 Number of features: 55 Max AUC: 0.812 AUC: 0.802 Z: 0.440 Rdelta: 0.02376
#> 96 Number of features: 55 Max AUC: 0.812 AUC: 0.801 Z: 0.459 Rdelta: 0.01900
#> 97 Number of features: 56 Max AUC: 0.812 AUC: 0.811 Z: 0.355 Rdelta: 0.02710
#> 98 Number of features: 57 Max AUC: 0.812 AUC: 0.810 Z: 0.419 Rdelta: 0.03439
#> 99 Number of features: 57 Max AUC: 0.812 AUC: 0.801 Z: 0.346 Rdelta: 0.02751
#> 100 Number of features: 57 Max AUC: 0.812 AUC: 0.797 Z: 0.211 Rdelta: 0.02201
#> 101 Number of features: 58 Max AUC: 0.816 AUC: 0.816 Z: 0.367 Rdelta: 0.02981
#> 102 Number of features: 58 Max AUC: 0.816 AUC: 0.799 Z: 0.279 Rdelta: 0.02385
#> 103 Number of features: 58 Max AUC: 0.816 AUC: 0.803 Z: 0.358 Rdelta: 0.01908
#> 104 Number of features: 58 Max AUC: 0.816 AUC: 0.805 Z: 0.365 Rdelta: 0.01526
#> 105 Number of features: 58 Max AUC: 0.816 AUC: 0.800 Z: 0.334 Rdelta: 0.01221
#> 106 Number of features: 58 Max AUC: 0.816 AUC: 0.801 Z: 0.343 Rdelta: 0.00977
#> 107 Number of features: 58 Max AUC: 0.816 AUC: 0.805 Z: 0.282 Rdelta: 0.00781
#> 108 Number of features: 58 Max AUC: 0.816 AUC: 0.794 Z: 0.290 Rdelta: 0.00625
#> 109 Number of features: 58 Max AUC: 0.816 AUC: 0.802 Z: 0.305 Rdelta: 0.00500
#> 110 Number of features: 58 Max AUC: 0.816 AUC: 0.805 Z: 0.380 Rdelta: 0.00400
#> 111 Number of features: 58 Max AUC: 0.816 AUC: 0.803 Z: 0.345 Rdelta: 0.00320
#> 112 Number of features: 58 Max AUC: 0.816 AUC: 0.802 Z: 0.354 Rdelta: 0.00256
#> 113 Number of features: 58 Max AUC: 0.816 AUC: 0.800 Z: 0.385 Rdelta: 0.00205
#> 114 Number of features: 58 Max AUC: 0.816 AUC: 0.802 Z: 0.361 Rdelta: 0.00164
#> 115 Number of features: 58 Max AUC: 0.816 AUC: 0.800 Z: 0.364 Rdelta: 0.00131
#> 116 Number of features: 58 Max AUC: 0.816 AUC: 0.797 Z: 0.387 Rdelta: 0.00105
#> 117 Number of features: 59 Max AUC: 0.816 AUC: 0.812 Z: 0.407 Rdelta: 0.01094
#> 118 Number of features: 59 Max AUC: 0.816 AUC: 0.801 Z: 0.377 Rdelta: 0.00876
#> 119 Number of features: 60 Max AUC: 0.816 AUC: 0.807 Z: 0.355 Rdelta: 0.01788
#> 120 Number of features: 60 Max AUC: 0.816 AUC: 0.788 Z: 0.260 Rdelta: 0.01430
#> 121 Number of features: 60 Max AUC: 0.816 AUC: 0.804 Z: 0.366 Rdelta: 0.01144
#> 122 Number of features: 60 Max AUC: 0.816 AUC: 0.790 Z: 0.381 Rdelta: 0.00915
#> 123 Number of features: 61 Max AUC: 0.827 AUC: 0.827 Z: 0.325 Rdelta: 0.01824
#> 124 Number of features: 61 Max AUC: 0.827 AUC: 0.812 Z: 0.323 Rdelta: 0.01459
#> 125 Number of features: 61 Max AUC: 0.827 AUC: 0.816 Z: 0.338 Rdelta: 0.01167
#> 126 Number of features: 61 Max AUC: 0.827 AUC: 0.817 Z: 0.297 Rdelta: 0.00934
#> 127 Number of features: 61 Max AUC: 0.827 AUC: 0.800 Z: 0.249 Rdelta: 0.00747
#> 128 Number of features: 61 Max AUC: 0.827 AUC: 0.796 Z: 0.242 Rdelta: 0.00598
#> 129 Number of features: 61 Max AUC: 0.827 AUC: 0.816 Z: 0.426 Rdelta: 0.00478
#> 130 Number of features: 61 Max AUC: 0.827 AUC: 0.812 Z: 0.279 Rdelta: 0.00382
#> 131 Number of features: 61 Max AUC: 0.827 AUC: 0.804 Z: 0.350 Rdelta: 0.00306
#> 132 Number of features: 61 Max AUC: 0.827 AUC: 0.813 Z: 0.359 Rdelta: 0.00245
#> 133 Number of features: 61 Max AUC: 0.827 AUC: 0.813 Z: 0.345 Rdelta: 0.00196
#> 134 Number of features: 61 Max AUC: 0.827 AUC: 0.813 Z: 0.314 Rdelta: 0.00157
#> 135 Number of features: 61 Max AUC: 0.827 AUC: 0.818 Z: 0.249 Rdelta: 0.00125
#> 136 Number of features: 61 Max AUC: 0.827 AUC: 0.798 Z: 0.226 Rdelta: 0.00100
#> 137 Number of features: 61 Max AUC: 0.827 AUC: 0.809 Z: 0.371 Rdelta: 0.00080
#> 138 Number of features: 61 Max AUC: 0.827 AUC: 0.805 Z: 0.346 Rdelta: 0.00064
#> 139 Number of features: 61 Max AUC: 0.827 AUC: 0.805 Z: 0.342 Rdelta: 0.00051
#> 140 Number of features: 61 Max AUC: 0.827 AUC: 0.790 Z: 0.125 Rdelta: 0.00041
#> 141 Number of features: 61 Max AUC: 0.827 AUC: 0.795 Z: 0.282 Rdelta: 0.00033
#> 142 Number of features: 61 Max AUC: 0.827 AUC: 0.812 Z: 0.370 Rdelta: 0.00026
#> 143 Number of features: 61 Max AUC: 0.827 AUC: 0.813 Z: 0.372 Rdelta: 0.00021
#> 144 Number of features: 61 Max AUC: 0.827 AUC: 0.794 Z: 0.303 Rdelta: 0.00017
#> 145 Number of features: 62 Max AUC: 0.827 AUC: 0.822 Z: 0.387 Rdelta: 0.01015
#> 146 Number of features: 62 Max AUC: 0.827 AUC: 0.805 Z: 0.379 Rdelta: 0.00812
#> 147 Number of features: 63 Max AUC: 0.827 AUC: 0.819 Z: 0.354 Rdelta: 0.01731
#> 148 Number of features: 63 Max AUC: 0.827 AUC: 0.807 Z: 0.361 Rdelta: 0.01385
#> 149 Number of features: 63 Max AUC: 0.827 AUC: 0.818 Z: 0.347 Rdelta: 0.01108
#> 150 Number of features: 64 Max AUC: 0.827 AUC: 0.825 Z: 0.268 Rdelta: 0.01997
#> 151 Number of features: 64 Max AUC: 0.827 AUC: 0.816 Z: 0.388 Rdelta: 0.01598
#> 152 Number of features: 64 Max AUC: 0.827 AUC: 0.812 Z: 0.365 Rdelta: 0.01278
#> 153 Number of features: 65 Max AUC: 0.827 AUC: 0.818 Z: 0.407 Rdelta: 0.02150
#> 154 Number of features: 66 Max AUC: 0.828 AUC: 0.828 Z: 0.479 Rdelta: 0.02935
#> 155 Number of features: 66 Max AUC: 0.828 AUC: 0.804 Z: 0.291 Rdelta: 0.02348
#> 156 Number of features: 66 Max AUC: 0.828 AUC: 0.812 Z: 0.415 Rdelta: 0.01879
#> 157 Number of features: 66 Max AUC: 0.828 AUC: 0.813 Z: 0.351 Rdelta: 0.01503
#> 158 Number of features: 66 Max AUC: 0.828 AUC: 0.810 Z: 0.408 Rdelta: 0.01202
#> 159 Number of features: 66 Max AUC: 0.828 AUC: 0.785 Z: 0.363 Rdelta: 0.00962
#> 160 Number of features: 66 Max AUC: 0.828 AUC: 0.796 Z: 0.389 Rdelta: 0.00769
#> 161 Number of features: 66 Max AUC: 0.828 AUC: 0.800 Z: 0.372 Rdelta: 0.00616
#> 162 Number of features: 66 Max AUC: 0.828 AUC: 0.808 Z: 0.274 Rdelta: 0.00492
#> 163 Number of features: 66 Max AUC: 0.828 AUC: 0.815 Z: 0.283 Rdelta: 0.00394
#> 164 Number of features: 66 Max AUC: 0.828 AUC: 0.813 Z: 0.330 Rdelta: 0.00315
#> 165 Number of features: 66 Max AUC: 0.828 AUC: 0.814 Z: 0.329 Rdelta: 0.00252
#> 166 Number of features: 66 Max AUC: 0.828 AUC: 0.802 Z: 0.267 Rdelta: 0.00202
#> 167 Number of features: 67 Max AUC: 0.828 AUC: 0.824 Z: 0.421 Rdelta: 0.01182
#> 168 Number of features: 67 Max AUC: 0.828 AUC: 0.810 Z: 0.338 Rdelta: 0.00945
#> 169 Number of features: 67 Max AUC: 0.828 AUC: 0.816 Z: 0.348 Rdelta: 0.00756
#> 170 Number of features: 67 Max AUC: 0.828 AUC: 0.815 Z: 0.319 Rdelta: 0.00605
#> 171 Number of features: 67 Max AUC: 0.828 AUC: 0.808 Z: 0.346 Rdelta: 0.00484
#> 172 Number of features: 67 Max AUC: 0.828 AUC: 0.803 Z: 0.322 Rdelta: 0.00387
#> 173 Number of features: 67 Max AUC: 0.828 AUC: 0.804 Z: 0.367 Rdelta: 0.00310
#> 174 Number of features: 67 Max AUC: 0.828 AUC: 0.813 Z: 0.382 Rdelta: 0.00248
#> 175 Number of features: 67 Max AUC: 0.828 AUC: 0.797 Z: 0.414 Rdelta: 0.00198
#> 176 Number of features: 67 Max AUC: 0.828 AUC: 0.800 Z: 0.422 Rdelta: 0.00159
#> 177 Number of features: 67 Max AUC: 0.828 AUC: 0.801 Z: 0.245 Rdelta: 0.00127
#> 178 Number of features: 67 Max AUC: 0.828 AUC: 0.802 Z: 0.334 Rdelta: 0.00101
#> 179 Number of features: 67 Max AUC: 0.828 AUC: 0.804 Z: 0.426 Rdelta: 0.00081
#> 180 Number of features: 67 Max AUC: 0.828 AUC: 0.799 Z: 0.375 Rdelta: 0.00065
#> 181 Number of features: 67 Max AUC: 0.828 AUC: 0.809 Z: 0.370 Rdelta: 0.00052
#> 182 Number of features: 67 Max AUC: 0.828 AUC: 0.810 Z: 0.367 Rdelta: 0.00042
#> 183 Number of features: 67 Max AUC: 0.828 AUC: 0.809 Z: 0.282 Rdelta: 0.00033
#> 184 Number of features: 67 Max AUC: 0.828 AUC: 0.807 Z: 0.268 Rdelta: 0.00027
#> 185 Number of features: 67 Max AUC: 0.828 AUC: 0.810 Z: 0.323 Rdelta: 0.00021
#> 186 Number of features: 67 Max AUC: 0.828 AUC: 0.814 Z: 0.376 Rdelta: 0.00017
#> 187 Number of features: 67 Max AUC: 0.828 AUC: 0.791 Z: 0.403 Rdelta: 0.00014
#> 188 Number of features: 67 Max AUC: 0.828 AUC: 0.804 Z: 0.344 Rdelta: 0.00011
#> 189 Number of features: 67 Max AUC: 0.828 AUC: 0.790 Z: 0.353 Rdelta: 0.00009
#> user system elapsed
#> 113.44 0.01 113.60
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#> 7 Number of features: 7 Max AUC: 0.736 AUC: 0.735 Z: 1.033 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.736 AUC: 0.733 Z: 1.041 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.844 AUC: 0.844 Z: 1.237 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.848 AUC: 0.848 Z: 1.220 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.849 AUC: 0.849 Z: 1.237 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.890 AUC: 0.890 Z: 0.979 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.890 AUC: 0.889 Z: 0.961 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.905 AUC: 0.905 Z: 1.025 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.905 AUC: 0.896 Z: 0.760 Rdelta: 0.10000
#> 16 Number of features: 15 Max AUC: 0.905 AUC: 0.890 Z: 0.646 Rdelta: 0.08000
#> 17 Number of features: 16 Max AUC: 0.905 AUC: 0.894 Z: 0.603 Rdelta: 0.08200
#> 18 Number of features: 16 Max AUC: 0.905 AUC: 0.889 Z: 0.319 Rdelta: 0.06560
#> 19 Number of features: 17 Max AUC: 0.905 AUC: 0.895 Z: 0.645 Rdelta: 0.06904
#> 20 Number of features: 18 Max AUC: 0.905 AUC: 0.894 Z: 0.661 Rdelta: 0.07214
#> 21 Number of features: 19 Max AUC: 0.905 AUC: 0.888 Z: 0.633 Rdelta: 0.07492
#> 22 Number of features: 20 Max AUC: 0.905 AUC: 0.883 Z: 0.686 Rdelta: 0.07743
#> 23 Number of features: 20 Max AUC: 0.905 AUC: 0.873 Z: 0.290 Rdelta: 0.06194
#> 24 Number of features: 21 Max AUC: 0.905 AUC: 0.888 Z: 0.672 Rdelta: 0.06575
#> 25 Number of features: 22 Max AUC: 0.905 AUC: 0.894 Z: 0.669 Rdelta: 0.06917
#> 26 Number of features: 23 Max AUC: 0.905 AUC: 0.884 Z: 0.671 Rdelta: 0.07226
#> 27 Number of features: 24 Max AUC: 0.905 AUC: 0.895 Z: 0.727 Rdelta: 0.07503
#> 28 Number of features: 24 Max AUC: 0.905 AUC: 0.884 Z: 0.663 Rdelta: 0.06003
#> 29 Number of features: 24 Max AUC: 0.905 AUC: 0.881 Z: 0.423 Rdelta: 0.04802
#> 30 Number of features: 25 Max AUC: 0.905 AUC: 0.891 Z: 0.753 Rdelta: 0.05322
#> 31 Number of features: 25 Max AUC: 0.905 AUC: 0.878 Z: 0.560 Rdelta: 0.04257
#> 32 Number of features: 26 Max AUC: 0.905 AUC: 0.891 Z: 0.755 Rdelta: 0.04832
#> 33 Number of features: 27 Max AUC: 0.905 AUC: 0.885 Z: 0.659 Rdelta: 0.05349
#> 34 Number of features: 28 Max AUC: 0.905 AUC: 0.890 Z: 0.739 Rdelta: 0.05814
#> 35 Number of features: 29 Max AUC: 0.905 AUC: 0.884 Z: 0.397 Rdelta: 0.06232
#> 36 Number of features: 29 Max AUC: 0.905 AUC: 0.866 Z: 0.407 Rdelta: 0.04986
#> 37 Number of features: 29 Max AUC: 0.905 AUC: 0.859 Z: 0.165 Rdelta: 0.03989
#> 38 Number of features: 29 Max AUC: 0.905 AUC: 0.882 Z: 0.390 Rdelta: 0.03191
#> 39 Number of features: 30 Max AUC: 0.905 AUC: 0.886 Z: 0.581 Rdelta: 0.03872
#> 40 Number of features: 31 Max AUC: 0.905 AUC: 0.885 Z: 0.506 Rdelta: 0.04485
#> 41 Number of features: 31 Max AUC: 0.905 AUC: 0.878 Z: 0.117 Rdelta: 0.03588
#> 42 Number of features: 31 Max AUC: 0.905 AUC: 0.870 Z: 0.511 Rdelta: 0.02870
#> 43 Number of features: 32 Max AUC: 0.905 AUC: 0.884 Z: 0.411 Rdelta: 0.03583
#> 44 Number of features: 32 Max AUC: 0.905 AUC: 0.874 Z: 0.321 Rdelta: 0.02867
#> 45 Number of features: 33 Max AUC: 0.905 AUC: 0.881 Z: 0.494 Rdelta: 0.03580
#> 46 Number of features: 34 Max AUC: 0.905 AUC: 0.882 Z: 0.432 Rdelta: 0.04222
#> 47 Number of features: 35 Max AUC: 0.905 AUC: 0.882 Z: 0.549 Rdelta: 0.04800
#> 48 Number of features: 36 Max AUC: 0.905 AUC: 0.890 Z: 0.370 Rdelta: 0.05320
#> 49 Number of features: 36 Max AUC: 0.905 AUC: 0.878 Z: 0.415 Rdelta: 0.04256
#> 50 Number of features: 37 Max AUC: 0.905 AUC: 0.882 Z: 0.403 Rdelta: 0.04830
#> 51 Number of features: 38 Max AUC: 0.905 AUC: 0.883 Z: 0.488 Rdelta: 0.05347
#> 52 Number of features: 39 Max AUC: 0.905 AUC: 0.888 Z: 0.486 Rdelta: 0.05812
#> 53 Number of features: 40 Max AUC: 0.905 AUC: 0.881 Z: 0.352 Rdelta: 0.06231
#> 54 Number of features: 40 Max AUC: 0.905 AUC: 0.876 Z: 0.298 Rdelta: 0.04985
#> 55 Number of features: 40 Max AUC: 0.905 AUC: 0.877 Z: 0.268 Rdelta: 0.03988
#> 56 Number of features: 41 Max AUC: 0.905 AUC: 0.885 Z: 0.266 Rdelta: 0.04589
#> 57 Number of features: 42 Max AUC: 0.905 AUC: 0.880 Z: 0.312 Rdelta: 0.05130
#> 58 Number of features: 42 Max AUC: 0.905 AUC: 0.876 Z: 0.379 Rdelta: 0.04104
#> 59 Number of features: 43 Max AUC: 0.905 AUC: 0.879 Z: 0.320 Rdelta: 0.04694
#> 60 Number of features: 44 Max AUC: 0.905 AUC: 0.879 Z: 0.437 Rdelta: 0.05224
#> 61 Number of features: 45 Max AUC: 0.905 AUC: 0.881 Z: 0.363 Rdelta: 0.05702
#> 62 Number of features: 46 Max AUC: 0.905 AUC: 0.882 Z: 0.443 Rdelta: 0.06132
#> 63 Number of features: 47 Max AUC: 0.905 AUC: 0.886 Z: 0.268 Rdelta: 0.06519
#> 64 Number of features: 48 Max AUC: 0.905 AUC: 0.885 Z: 0.293 Rdelta: 0.06867
#> 65 Number of features: 49 Max AUC: 0.905 AUC: 0.881 Z: 0.398 Rdelta: 0.07180
#> 66 Number of features: 50 Max AUC: 0.905 AUC: 0.884 Z: 0.377 Rdelta: 0.07462
#> 67 Number of features: 50 Max AUC: 0.905 AUC: 0.876 Z: 0.102 Rdelta: 0.05970
#> 68 Number of features: 50 Max AUC: 0.905 AUC: 0.874 Z: 0.234 Rdelta: 0.04776
#> 69 Number of features: 50 Max AUC: 0.905 AUC: 0.875 Z: 0.381 Rdelta: 0.03821
#> 70 Number of features: 51 Max AUC: 0.905 AUC: 0.879 Z: 0.454 Rdelta: 0.04439
#> 71 Number of features: 52 Max AUC: 0.905 AUC: 0.878 Z: 0.397 Rdelta: 0.04995
#> 72 Number of features: 52 Max AUC: 0.905 AUC: 0.870 Z: 0.303 Rdelta: 0.03996
#> 73 Number of features: 52 Max AUC: 0.905 AUC: 0.869 Z: 0.145 Rdelta: 0.03197
#> 74 Number of features: 53 Max AUC: 0.905 AUC: 0.880 Z: 0.260 Rdelta: 0.03877
#> 75 Number of features: 54 Max AUC: 0.905 AUC: 0.879 Z: 0.195 Rdelta: 0.04489
#> 76 Number of features: 54 Max AUC: 0.905 AUC: 0.873 Z: 0.318 Rdelta: 0.03591
#> 77 Number of features: 55 Max AUC: 0.905 AUC: 0.877 Z: 0.318 Rdelta: 0.04232
#> 78 Number of features: 56 Max AUC: 0.905 AUC: 0.875 Z: 0.345 Rdelta: 0.04809
#> 79 Number of features: 56 Max AUC: 0.905 AUC: 0.871 Z: 0.398 Rdelta: 0.03847
#> 80 Number of features: 56 Max AUC: 0.905 AUC: 0.872 Z: 0.427 Rdelta: 0.03078
#> 81 Number of features: 57 Max AUC: 0.905 AUC: 0.876 Z: 0.376 Rdelta: 0.03770
#> 82 Number of features: 57 Max AUC: 0.905 AUC: 0.870 Z: 0.269 Rdelta: 0.03016
#> 83 Number of features: 57 Max AUC: 0.905 AUC: 0.871 Z: 0.129 Rdelta: 0.02413
#> 84 Number of features: 58 Max AUC: 0.905 AUC: 0.878 Z: 0.378 Rdelta: 0.03172
#> 85 Number of features: 59 Max AUC: 0.905 AUC: 0.878 Z: 0.390 Rdelta: 0.03854
#> 86 Number of features: 60 Max AUC: 0.905 AUC: 0.873 Z: 0.349 Rdelta: 0.04469
#> 87 Number of features: 61 Max AUC: 0.905 AUC: 0.875 Z: 0.271 Rdelta: 0.05022
#> 88 Number of features: 62 Max AUC: 0.905 AUC: 0.875 Z: 0.335 Rdelta: 0.05520
#> 89 Number of features: 63 Max AUC: 0.905 AUC: 0.879 Z: 0.332 Rdelta: 0.05968
#> 90 Number of features: 64 Max AUC: 0.905 AUC: 0.883 Z: 0.432 Rdelta: 0.06371
#> 91 Number of features: 64 Max AUC: 0.905 AUC: 0.870 Z: 0.462 Rdelta: 0.05097
#> 92 Number of features: 65 Max AUC: 0.905 AUC: 0.877 Z: 0.365 Rdelta: 0.05587
#> 93 Number of features: 65 Max AUC: 0.905 AUC: 0.855 Z: 0.086 Rdelta: 0.04470
#> 94 Number of features: 65 Max AUC: 0.905 AUC: 0.865 Z: 0.383 Rdelta: 0.03576
#> 95 Number of features: 65 Max AUC: 0.905 AUC: 0.861 Z: 0.477 Rdelta: 0.02861
#> 96 Number of features: 65 Max AUC: 0.905 AUC: 0.872 Z: 0.416 Rdelta: 0.02289
#> 97 Number of features: 66 Max AUC: 0.905 AUC: 0.877 Z: 0.467 Rdelta: 0.03060
#> 98 Number of features: 66 Max AUC: 0.905 AUC: 0.871 Z: 0.379 Rdelta: 0.02448
#> 99 Number of features: 66 Max AUC: 0.905 AUC: 0.858 Z: 0.345 Rdelta: 0.01958
#> 100 Number of features: 67 Max AUC: 0.905 AUC: 0.878 Z: 0.373 Rdelta: 0.02762
#> 101 Number of features: 68 Max AUC: 0.905 AUC: 0.876 Z: 0.326 Rdelta: 0.03486
#> 102 Number of features: 69 Max AUC: 0.905 AUC: 0.876 Z: 0.268 Rdelta: 0.04138
#> 103 Number of features: 70 Max AUC: 0.905 AUC: 0.875 Z: 0.303 Rdelta: 0.04724
#> 104 Number of features: 71 Max AUC: 0.905 AUC: 0.877 Z: 0.363 Rdelta: 0.05251
#> 105 Number of features: 71 Max AUC: 0.905 AUC: 0.871 Z: 0.342 Rdelta: 0.04201
#> 106 Number of features: 72 Max AUC: 0.905 AUC: 0.878 Z: 0.296 Rdelta: 0.04781
#> 107 Number of features: 73 Max AUC: 0.905 AUC: 0.875 Z: 0.266 Rdelta: 0.05303
#> 108 Number of features: 73 Max AUC: 0.905 AUC: 0.868 Z: 0.348 Rdelta: 0.04242
#> 109 Number of features: 74 Max AUC: 0.905 AUC: 0.874 Z: 0.306 Rdelta: 0.04818
#> 110 Number of features: 75 Max AUC: 0.905 AUC: 0.875 Z: 0.345 Rdelta: 0.05336
#> 111 Number of features: 76 Max AUC: 0.905 AUC: 0.886 Z: 0.342 Rdelta: 0.05803
#> 112 Number of features: 77 Max AUC: 0.905 AUC: 0.885 Z: 0.341 Rdelta: 0.06222
#> 113 Number of features: 78 Max AUC: 0.905 AUC: 0.878 Z: 0.352 Rdelta: 0.06600
#> 114 Number of features: 78 Max AUC: 0.905 AUC: 0.875 Z: 0.327 Rdelta: 0.05280
#> 115 Number of features: 79 Max AUC: 0.905 AUC: 0.881 Z: 0.306 Rdelta: 0.05752
#> 116 Number of features: 80 Max AUC: 0.905 AUC: 0.880 Z: 0.323 Rdelta: 0.06177
#> 117 Number of features: 81 Max AUC: 0.905 AUC: 0.879 Z: 0.304 Rdelta: 0.06559
#> 118 Number of features: 82 Max AUC: 0.905 AUC: 0.879 Z: 0.354 Rdelta: 0.06903
#> 119 Number of features: 83 Max AUC: 0.905 AUC: 0.882 Z: 0.353 Rdelta: 0.07213
#> 120 Number of features: 83 Max AUC: 0.905 AUC: 0.869 Z: 0.262 Rdelta: 0.05770
#> 121 Number of features: 83 Max AUC: 0.905 AUC: 0.868 Z: 0.345 Rdelta: 0.04616
#> 122 Number of features: 83 Max AUC: 0.905 AUC: 0.862 Z: 0.191 Rdelta: 0.03693
#> 123 Number of features: 84 Max AUC: 0.905 AUC: 0.882 Z: 0.357 Rdelta: 0.04324
#> 124 Number of features: 84 Max AUC: 0.905 AUC: 0.876 Z: 0.355 Rdelta: 0.03459
#> 125 Number of features: 85 Max AUC: 0.905 AUC: 0.882 Z: 0.373 Rdelta: 0.04113
#> 126 Number of features: 86 Max AUC: 0.905 AUC: 0.877 Z: 0.248 Rdelta: 0.04702
#> 127 Number of features: 86 Max AUC: 0.905 AUC: 0.872 Z: 0.332 Rdelta: 0.03761
#> 128 Number of features: 87 Max AUC: 0.905 AUC: 0.877 Z: 0.271 Rdelta: 0.04385
#> 129 Number of features: 88 Max AUC: 0.905 AUC: 0.885 Z: 0.287 Rdelta: 0.04947
#> 130 Number of features: 89 Max AUC: 0.905 AUC: 0.883 Z: 0.350 Rdelta: 0.05452
#> 131 Number of features: 89 Max AUC: 0.905 AUC: 0.874 Z: 0.280 Rdelta: 0.04362
#> 132 Number of features: 90 Max AUC: 0.905 AUC: 0.885 Z: 0.359 Rdelta: 0.04925
#> 133 Number of features: 91 Max AUC: 0.905 AUC: 0.884 Z: 0.319 Rdelta: 0.05433
#> 134 Number of features: 92 Max AUC: 0.905 AUC: 0.887 Z: 0.336 Rdelta: 0.05890
#> 135 Number of features: 93 Max AUC: 0.905 AUC: 0.882 Z: 0.287 Rdelta: 0.06301
#> 136 Number of features: 94 Max AUC: 0.905 AUC: 0.884 Z: 0.326 Rdelta: 0.06671
#> 137 Number of features: 95 Max AUC: 0.905 AUC: 0.882 Z: 0.314 Rdelta: 0.07004
#> 138 Number of features: 95 Max AUC: 0.905 AUC: 0.873 Z: 0.281 Rdelta: 0.05603
#> 139 Number of features: 95 Max AUC: 0.905 AUC: 0.873 Z: 0.309 Rdelta: 0.04482
#> 140 Number of features: 96 Max AUC: 0.905 AUC: 0.884 Z: 0.342 Rdelta: 0.05034
#> 141 Number of features: 96 Max AUC: 0.905 AUC: 0.855 Z: 0.230 Rdelta: 0.04027
#> 142 Number of features: 96 Max AUC: 0.905 AUC: 0.876 Z: 0.172 Rdelta: 0.03222
#> 143 Number of features: 97 Max AUC: 0.905 AUC: 0.881 Z: 0.313 Rdelta: 0.03900
#> 144 Number of features: 98 Max AUC: 0.905 AUC: 0.878 Z: 0.346 Rdelta: 0.04510
#> 145 Number of features: 98 Max AUC: 0.905 AUC: 0.876 Z: 0.304 Rdelta: 0.03608
#> 146 Number of features: 98 Max AUC: 0.905 AUC: 0.872 Z: 0.351 Rdelta: 0.02886
#> 147 Number of features: 98 Max AUC: 0.905 AUC: 0.872 Z: 0.326 Rdelta: 0.02309
#> 148 Number of features: 99 Max AUC: 0.905 AUC: 0.882 Z: 0.353 Rdelta: 0.03078
#> 149 Number of features: 99 Max AUC: 0.905 AUC: 0.875 Z: 0.305 Rdelta: 0.02462
#> 150 Number of features: 99 Max AUC: 0.905 AUC: 0.876 Z: 0.333 Rdelta: 0.01970
#> 151 Number of features: 99 Max AUC: 0.905 AUC: 0.875 Z: 0.362 Rdelta: 0.01576
#> 152 Number of features: 100 Max AUC: 0.905 AUC: 0.882 Z: 0.351 Rdelta: 0.02418
#> 153 Number of features: 100 Max AUC: 0.905 AUC: 0.876 Z: 0.373 Rdelta: 0.01935
#> 154 Number of features: 101 Max AUC: 0.905 AUC: 0.881 Z: 0.385 Rdelta: 0.02741
#> 155 Number of features: 101 Max AUC: 0.905 AUC: 0.870 Z: 0.300 Rdelta: 0.02193
#> 156 Number of features: 101 Max AUC: 0.905 AUC: 0.873 Z: 0.271 Rdelta: 0.01754
#> 157 Number of features: 102 Max AUC: 0.905 AUC: 0.881 Z: 0.281 Rdelta: 0.02579
#> 158 Number of features: 102 Max AUC: 0.905 AUC: 0.874 Z: 0.335 Rdelta: 0.02063
#> 159 Number of features: 102 Max AUC: 0.905 AUC: 0.832 Z: 0.343 Rdelta: 0.01651
#> 160 Number of features: 102 Max AUC: 0.905 AUC: 0.864 Z: 0.309 Rdelta: 0.01320
#> 161 Number of features: 102 Max AUC: 0.905 AUC: 0.875 Z: 0.396 Rdelta: 0.01056
#> 162 Number of features: 102 Max AUC: 0.905 AUC: 0.867 Z: 0.297 Rdelta: 0.00845
#> 163 Number of features: 103 Max AUC: 0.905 AUC: 0.877 Z: 0.367 Rdelta: 0.01761
#> 164 Number of features: 104 Max AUC: 0.905 AUC: 0.878 Z: 0.307 Rdelta: 0.02585
#> 165 Number of features: 104 Max AUC: 0.905 AUC: 0.865 Z: 0.366 Rdelta: 0.02068
#> 166 Number of features: 104 Max AUC: 0.905 AUC: 0.875 Z: 0.312 Rdelta: 0.01654
#> 167 Number of features: 104 Max AUC: 0.905 AUC: 0.876 Z: 0.357 Rdelta: 0.01323
#> 168 Number of features: 105 Max AUC: 0.905 AUC: 0.877 Z: 0.359 Rdelta: 0.02191
#> 169 Number of features: 105 Max AUC: 0.905 AUC: 0.872 Z: 0.335 Rdelta: 0.01753
#> 170 Number of features: 105 Max AUC: 0.905 AUC: 0.870 Z: 0.322 Rdelta: 0.01402
#> 171 Number of features: 105 Max AUC: 0.905 AUC: 0.869 Z: 0.344 Rdelta: 0.01122
#> 172 Number of features: 105 Max AUC: 0.905 AUC: 0.871 Z: 0.295 Rdelta: 0.00897
#> 173 Number of features: 105 Max AUC: 0.905 AUC: 0.876 Z: 0.243 Rdelta: 0.00718
#> 174 Number of features: 106 Max AUC: 0.905 AUC: 0.877 Z: 0.322 Rdelta: 0.01646
#> 175 Number of features: 106 Max AUC: 0.905 AUC: 0.876 Z: 0.279 Rdelta: 0.01317
#> 176 Number of features: 106 Max AUC: 0.905 AUC: 0.867 Z: 0.307 Rdelta: 0.01054
#> 177 Number of features: 106 Max AUC: 0.905 AUC: 0.870 Z: 0.383 Rdelta: 0.00843
#> 178 Number of features: 106 Max AUC: 0.905 AUC: 0.870 Z: 0.355 Rdelta: 0.00674
#> 179 Number of features: 106 Max AUC: 0.905 AUC: 0.869 Z: 0.276 Rdelta: 0.00539
#> 180 Number of features: 106 Max AUC: 0.905 AUC: 0.865 Z: 0.295 Rdelta: 0.00432
#> 181 Number of features: 106 Max AUC: 0.905 AUC: 0.874 Z: 0.328 Rdelta: 0.00345
#> 182 Number of features: 107 Max AUC: 0.905 AUC: 0.880 Z: 0.278 Rdelta: 0.01311
#> 183 Number of features: 107 Max AUC: 0.905 AUC: 0.873 Z: 0.408 Rdelta: 0.01049
#> 184 Number of features: 107 Max AUC: 0.905 AUC: 0.874 Z: 0.313 Rdelta: 0.00839
#> 185 Number of features: 108 Max AUC: 0.905 AUC: 0.877 Z: 0.362 Rdelta: 0.01755
#> 186 Number of features: 109 Max AUC: 0.905 AUC: 0.878 Z: 0.343 Rdelta: 0.02579
#> 187 Number of features: 110 Max AUC: 0.905 AUC: 0.879 Z: 0.354 Rdelta: 0.03322
#> 188 Number of features: 110 Max AUC: 0.905 AUC: 0.871 Z: 0.335 Rdelta: 0.02657
#> 189 Number of features: 111 Max AUC: 0.905 AUC: 0.876 Z: 0.347 Rdelta: 0.03391
#> 190 Number of features: 111 Max AUC: 0.905 AUC: 0.870 Z: 0.290 Rdelta: 0.02713
#> 191 Number of features: 111 Max AUC: 0.905 AUC: 0.874 Z: 0.318 Rdelta: 0.02171
#> 192 Number of features: 112 Max AUC: 0.905 AUC: 0.881 Z: 0.310 Rdelta: 0.02954
#> 193 Number of features: 112 Max AUC: 0.905 AUC: 0.873 Z: 0.323 Rdelta: 0.02363
#> 194 Number of features: 112 Max AUC: 0.905 AUC: 0.872 Z: 0.289 Rdelta: 0.01890
#> 195 Number of features: 112 Max AUC: 0.905 AUC: 0.874 Z: 0.281 Rdelta: 0.01512
#> 196 Number of features: 113 Max AUC: 0.905 AUC: 0.876 Z: 0.323 Rdelta: 0.02361
#> 197 Number of features: 113 Max AUC: 0.905 AUC: 0.875 Z: 0.321 Rdelta: 0.01889
#> 198 Number of features: 113 Max AUC: 0.905 AUC: 0.860 Z: 0.386 Rdelta: 0.01511
#> 199 Number of features: 113 Max AUC: 0.905 AUC: 0.837 Z: 0.344 Rdelta: 0.01209
#> 200 Number of features: 113 Max AUC: 0.905 AUC: 0.859 Z: 0.239 Rdelta: 0.00967
#> 201 Number of features: 114 Max AUC: 0.905 AUC: 0.876 Z: 0.300 Rdelta: 0.01870
#> 202 Number of features: 114 Max AUC: 0.905 AUC: 0.872 Z: 0.336 Rdelta: 0.01496
#> 203 Number of features: 114 Max AUC: 0.905 AUC: 0.868 Z: 0.307 Rdelta: 0.01197
#> 204 Number of features: 114 Max AUC: 0.905 AUC: 0.873 Z: 0.315 Rdelta: 0.00958
#> 205 Number of features: 114 Max AUC: 0.905 AUC: 0.863 Z: 0.243 Rdelta: 0.00766
#> 206 Number of features: 114 Max AUC: 0.905 AUC: 0.868 Z: 0.303 Rdelta: 0.00613
#> 207 Number of features: 114 Max AUC: 0.905 AUC: 0.876 Z: 0.268 Rdelta: 0.00490
#> 208 Number of features: 115 Max AUC: 0.905 AUC: 0.881 Z: 0.278 Rdelta: 0.01441
#> 209 Number of features: 115 Max AUC: 0.905 AUC: 0.871 Z: 0.274 Rdelta: 0.01153
#> 210 Number of features: 115 Max AUC: 0.905 AUC: 0.854 Z: 0.402 Rdelta: 0.00922
#> 211 Number of features: 116 Max AUC: 0.905 AUC: 0.880 Z: 0.357 Rdelta: 0.01830
#> 212 Number of features: 116 Max AUC: 0.905 AUC: 0.864 Z: 0.329 Rdelta: 0.01464
#> 213 Number of features: 117 Max AUC: 0.905 AUC: 0.879 Z: 0.339 Rdelta: 0.02318
#> 214 Number of features: 117 Max AUC: 0.905 AUC: 0.875 Z: 0.314 Rdelta: 0.01854
#> 215 Number of features: 117 Max AUC: 0.905 AUC: 0.873 Z: 0.286 Rdelta: 0.01483
#> 216 Number of features: 117 Max AUC: 0.905 AUC: 0.858 Z: 0.372 Rdelta: 0.01187
#> 217 Number of features: 117 Max AUC: 0.905 AUC: 0.856 Z: 0.356 Rdelta: 0.00949
#> 218 Number of features: 117 Max AUC: 0.905 AUC: 0.873 Z: 0.332 Rdelta: 0.00759
#> 219 Number of features: 117 Max AUC: 0.905 AUC: 0.860 Z: 0.301 Rdelta: 0.00608
#> 220 Number of features: 117 Max AUC: 0.905 AUC: 0.831 Z: 0.267 Rdelta: 0.00486
#> 221 Number of features: 117 Max AUC: 0.905 AUC: 0.875 Z: 0.312 Rdelta: 0.00389
#> 222 Number of features: 117 Max AUC: 0.905 AUC: 0.868 Z: 0.313 Rdelta: 0.00311
#> 223 Number of features: 117 Max AUC: 0.905 AUC: 0.865 Z: 0.340 Rdelta: 0.00249
#> 224 Number of features: 117 Max AUC: 0.905 AUC: 0.873 Z: 0.326 Rdelta: 0.00199
#> 225 Number of features: 117 Max AUC: 0.905 AUC: 0.867 Z: 0.244 Rdelta: 0.00159
#> 226 Number of features: 117 Max AUC: 0.905 AUC: 0.875 Z: 0.304 Rdelta: 0.00127
#> 227 Number of features: 117 Max AUC: 0.905 AUC: 0.875 Z: 0.295 Rdelta: 0.00102
#> 228 Number of features: 117 Max AUC: 0.905 AUC: 0.864 Z: 0.329 Rdelta: 0.00082
#> 229 Number of features: 118 Max AUC: 0.905 AUC: 0.879 Z: 0.347 Rdelta: 0.01073
#> 230 Number of features: 118 Max AUC: 0.905 AUC: 0.871 Z: 0.337 Rdelta: 0.00859
#> 231 Number of features: 118 Max AUC: 0.905 AUC: 0.862 Z: 0.194 Rdelta: 0.00687
#> 232 Number of features: 118 Max AUC: 0.905 AUC: 0.869 Z: 0.382 Rdelta: 0.00550
#> 233 Number of features: 118 Max AUC: 0.905 AUC: 0.868 Z: 0.311 Rdelta: 0.00440
#> 234 Number of features: 118 Max AUC: 0.905 AUC: 0.867 Z: 0.333 Rdelta: 0.00352
#> 235 Number of features: 118 Max AUC: 0.905 AUC: 0.870 Z: 0.331 Rdelta: 0.00281
#> 236 Number of features: 118 Max AUC: 0.905 AUC: 0.866 Z: 0.304 Rdelta: 0.00225
#> 237 Number of features: 118 Max AUC: 0.905 AUC: 0.869 Z: 0.312 Rdelta: 0.00180
#> 238 Number of features: 118 Max AUC: 0.905 AUC: 0.873 Z: 0.317 Rdelta: 0.00144
#> 239 Number of features: 118 Max AUC: 0.905 AUC: 0.872 Z: 0.320 Rdelta: 0.00115
#> 240 Number of features: 118 Max AUC: 0.905 AUC: 0.874 Z: 0.269 Rdelta: 0.00092
#> 241 Number of features: 118 Max AUC: 0.905 AUC: 0.858 Z: 0.295 Rdelta: 0.00074
#> 242 Number of features: 118 Max AUC: 0.905 AUC: 0.869 Z: 0.314 Rdelta: 0.00059
#> 243 Number of features: 118 Max AUC: 0.905 AUC: 0.865 Z: 0.363 Rdelta: 0.00047
#> 244 Number of features: 119 Max AUC: 0.905 AUC: 0.879 Z: 0.346 Rdelta: 0.01042
#> 245 Number of features: 119 Max AUC: 0.905 AUC: 0.870 Z: 0.336 Rdelta: 0.00834
#> 246 Number of features: 119 Max AUC: 0.905 AUC: 0.873 Z: 0.361 Rdelta: 0.00667
#> 247 Number of features: 119 Max AUC: 0.905 AUC: 0.874 Z: 0.316 Rdelta: 0.00534
#> 248 Number of features: 119 Max AUC: 0.905 AUC: 0.872 Z: 0.367 Rdelta: 0.00427
#> 249 Number of features: 119 Max AUC: 0.905 AUC: 0.869 Z: 0.267 Rdelta: 0.00342
#> 250 Number of features: 119 Max AUC: 0.905 AUC: 0.864 Z: 0.366 Rdelta: 0.00273
#> 251 Number of features: 119 Max AUC: 0.905 AUC: 0.871 Z: 0.358 Rdelta: 0.00219
#> 252 Number of features: 119 Max AUC: 0.905 AUC: 0.862 Z: 0.289 Rdelta: 0.00175
#> 253 Number of features: 119 Max AUC: 0.905 AUC: 0.868 Z: 0.348 Rdelta: 0.00140
#> 254 Number of features: 119 Max AUC: 0.905 AUC: 0.864 Z: 0.348 Rdelta: 0.00112
#> 255 Number of features: 119 Max AUC: 0.905 AUC: 0.863 Z: 0.297 Rdelta: 0.00090
#> 256 Number of features: 119 Max AUC: 0.905 AUC: 0.865 Z: 0.331 Rdelta: 0.00072
#> 257 Number of features: 119 Max AUC: 0.905 AUC: 0.864 Z: 0.328 Rdelta: 0.00057
#> 258 Number of features: 119 Max AUC: 0.905 AUC: 0.873 Z: 0.333 Rdelta: 0.00046
#> 259 Number of features: 119 Max AUC: 0.905 AUC: 0.872 Z: 0.332 Rdelta: 0.00037
#> 260 Number of features: 119 Max AUC: 0.905 AUC: 0.868 Z: 0.328 Rdelta: 0.00029
#> 261 Number of features: 119 Max AUC: 0.905 AUC: 0.862 Z: 0.327 Rdelta: 0.00023
#> 262 Number of features: 119 Max AUC: 0.905 AUC: 0.870 Z: 0.326 Rdelta: 0.00019
#> 263 Number of features: 119 Max AUC: 0.905 AUC: 0.867 Z: 0.274 Rdelta: 0.00015
#> 264 Number of features: 119 Max AUC: 0.905 AUC: 0.874 Z: 0.300 Rdelta: 0.00012
#> 265 Number of features: 119 Max AUC: 0.905 AUC: 0.856 Z: 0.359 Rdelta: 0.00010
#> user system elapsed
#> 246.61 0.00 246.91
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#> 7 Number of features: 7 Max AUC: 0.410 AUC: 0.410 Z: -0.281 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.410 AUC: 0.401 Z: -0.349 Rdelta: 0.10000
#> 9 Number of features: 8 Max AUC: 0.410 AUC: 0.381 Z: -0.321 Rdelta: 0.08000
#> 10 Number of features: 9 Max AUC: 0.410 AUC: 0.396 Z: -0.340 Rdelta: 0.08200
#> 11 Number of features: 10 Max AUC: 0.410 AUC: 0.395 Z: -0.333 Rdelta: 0.08380
#> 12 Number of features: 10 Max AUC: 0.410 AUC: 0.367 Z: -0.332 Rdelta: 0.06704
#> 13 Number of features: 10 Max AUC: 0.410 AUC: 0.361 Z: -0.363 Rdelta: 0.05363
#> 14 Number of features: 11 Max AUC: 0.410 AUC: 0.396 Z: -0.352 Rdelta: 0.05827
#> 15 Number of features: 11 Max AUC: 0.410 AUC: 0.362 Z: -0.415 Rdelta: 0.04662
#> 16 Number of features: 11 Max AUC: 0.410 AUC: 0.370 Z: -0.445 Rdelta: 0.03729
#> 17 Number of features: 11 Max AUC: 0.410 AUC: 0.360 Z: -0.435 Rdelta: 0.02983
#> 18 Number of features: 11 Max AUC: 0.410 AUC: 0.360 Z: -0.360 Rdelta: 0.02387
#> 19 Number of features: 11 Max AUC: 0.410 AUC: 0.361 Z: -0.412 Rdelta: 0.01909
#> 20 Number of features: 11 Max AUC: 0.410 AUC: 0.364 Z: -0.386 Rdelta: 0.01527
#> 21 Number of features: 11 Max AUC: 0.410 AUC: 0.354 Z: -0.361 Rdelta: 0.01222
#> 22 Number of features: 11 Max AUC: 0.410 AUC: 0.366 Z: -0.349 Rdelta: 0.00978
#> 23 Number of features: 11 Max AUC: 0.410 AUC: 0.359 Z: -0.327 Rdelta: 0.00782
#> 24 Number of features: 12 Max AUC: 0.410 AUC: 0.403 Z: -0.263 Rdelta: 0.01704
#> 25 Number of features: 12 Max AUC: 0.410 AUC: 0.387 Z: -0.352 Rdelta: 0.01363
#> 26 Number of features: 13 Max AUC: 0.410 AUC: 0.403 Z: -0.321 Rdelta: 0.02227
#> 27 Number of features: 13 Max AUC: 0.410 AUC: 0.357 Z: -0.419 Rdelta: 0.01781
#> 28 Number of features: 13 Max AUC: 0.410 AUC: 0.359 Z: -0.418 Rdelta: 0.01425
#> 29 Number of features: 14 Max AUC: 0.410 AUC: 0.399 Z: -0.358 Rdelta: 0.02283
#> 30 Number of features: 14 Max AUC: 0.410 AUC: 0.388 Z: -0.385 Rdelta: 0.01826
#> 31 Number of features: 14 Max AUC: 0.410 AUC: 0.373 Z: -0.416 Rdelta: 0.01461
#> 32 Number of features: 14 Max AUC: 0.410 AUC: 0.361 Z: -0.416 Rdelta: 0.01169
#> 33 Number of features: 14 Max AUC: 0.410 AUC: 0.367 Z: -0.358 Rdelta: 0.00935
#> 34 Number of features: 14 Max AUC: 0.410 AUC: 0.367 Z: -0.388 Rdelta: 0.00748
#> 35 Number of features: 14 Max AUC: 0.410 AUC: 0.359 Z: -0.429 Rdelta: 0.00598
#> 36 Number of features: 14 Max AUC: 0.410 AUC: 0.363 Z: -0.476 Rdelta: 0.00479
#> 37 Number of features: 14 Max AUC: 0.410 AUC: 0.367 Z: -0.462 Rdelta: 0.00383
#> 38 Number of features: 14 Max AUC: 0.410 AUC: 0.369 Z: -0.395 Rdelta: 0.00306
#> 39 Number of features: 15 Max AUC: 0.410 AUC: 0.398 Z: -0.350 Rdelta: 0.01276
#> 40 Number of features: 15 Max AUC: 0.410 AUC: 0.367 Z: -0.385 Rdelta: 0.01021
#> 41 Number of features: 15 Max AUC: 0.410 AUC: 0.353 Z: -0.368 Rdelta: 0.00816
#> 42 Number of features: 15 Max AUC: 0.410 AUC: 0.386 Z: -0.380 Rdelta: 0.00653
#> 43 Number of features: 15 Max AUC: 0.410 AUC: 0.363 Z: -0.416 Rdelta: 0.00523
#> 44 Number of features: 15 Max AUC: 0.410 AUC: 0.356 Z: -0.365 Rdelta: 0.00418
#> 45 Number of features: 15 Max AUC: 0.410 AUC: 0.392 Z: -0.401 Rdelta: 0.00334
#> 46 Number of features: 15 Max AUC: 0.410 AUC: 0.374 Z: -0.231 Rdelta: 0.00268
#> 47 Number of features: 15 Max AUC: 0.410 AUC: 0.378 Z: -0.435 Rdelta: 0.00214
#> 48 Number of features: 16 Max AUC: 0.413 AUC: 0.413 Z: -0.062 Rdelta: 0.01193
#> 49 Number of features: 16 Max AUC: 0.413 AUC: 0.370 Z: -0.339 Rdelta: 0.00954
#> 50 Number of features: 16 Max AUC: 0.413 AUC: 0.382 Z: -0.390 Rdelta: 0.00763
#> 51 Number of features: 16 Max AUC: 0.413 AUC: 0.372 Z: -0.399 Rdelta: 0.00611
#> 52 Number of features: 16 Max AUC: 0.413 AUC: 0.380 Z: -0.375 Rdelta: 0.00489
#> 53 Number of features: 16 Max AUC: 0.413 AUC: 0.360 Z: -0.393 Rdelta: 0.00391
#> 54 Number of features: 16 Max AUC: 0.413 AUC: 0.362 Z: -0.424 Rdelta: 0.00313
#> 55 Number of features: 16 Max AUC: 0.413 AUC: 0.392 Z: -0.329 Rdelta: 0.00250
#> 56 Number of features: 16 Max AUC: 0.413 AUC: 0.390 Z: -0.389 Rdelta: 0.00200
#> 57 Number of features: 16 Max AUC: 0.413 AUC: 0.367 Z: -0.299 Rdelta: 0.00160
#> 58 Number of features: 16 Max AUC: 0.413 AUC: 0.355 Z: -0.403 Rdelta: 0.00128
#> 59 Number of features: 16 Max AUC: 0.413 AUC: 0.394 Z: -0.144 Rdelta: 0.00102
#> 60 Number of features: 16 Max AUC: 0.413 AUC: 0.377 Z: -0.293 Rdelta: 0.00082
#> 61 Number of features: 16 Max AUC: 0.413 AUC: 0.397 Z: -0.326 Rdelta: 0.00066
#> 62 Number of features: 16 Max AUC: 0.413 AUC: 0.362 Z: -0.398 Rdelta: 0.00052
#> 63 Number of features: 16 Max AUC: 0.413 AUC: 0.390 Z: -0.369 Rdelta: 0.00042
#> 64 Number of features: 16 Max AUC: 0.413 AUC: 0.400 Z: -0.334 Rdelta: 0.00034
#> 65 Number of features: 16 Max AUC: 0.413 AUC: 0.376 Z: -0.373 Rdelta: 0.00027
#> 66 Number of features: 16 Max AUC: 0.413 AUC: 0.400 Z: -0.352 Rdelta: 0.00021
#> 67 Number of features: 16 Max AUC: 0.413 AUC: 0.368 Z: -0.398 Rdelta: 0.00017
#> 68 Number of features: 16 Max AUC: 0.413 AUC: 0.373 Z: -0.377 Rdelta: 0.00014
#> 69 Number of features: 16 Max AUC: 0.413 AUC: 0.372 Z: -0.380 Rdelta: 0.00011
#> 70 Number of features: 16 Max AUC: 0.413 AUC: 0.397 Z: -0.361 Rdelta: 0.00009
#> user system elapsed
#> 16.97 0.00 16.99
testDistance_control <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#> 7 Number of features: 7 Max AUC: 0.684 AUC: 0.683 Z: 0.895 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.687 AUC: 0.687 Z: 0.918 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.741 AUC: 0.741 Z: 1.340 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.751 AUC: 0.751 Z: 1.283 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.751 AUC: 0.745 Z: 1.336 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.756 AUC: 0.756 Z: 1.485 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.756 AUC: 0.753 Z: 1.100 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.761 AUC: 0.761 Z: 1.367 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.763 AUC: 0.763 Z: 0.931 Rdelta: 0.10000
#> 16 Number of features: 16 Max AUC: 0.765 AUC: 0.765 Z: 0.539 Rdelta: 0.10000
#> 17 Number of features: 17 Max AUC: 0.765 AUC: 0.765 Z: 0.833 Rdelta: 0.10000
#> 18 Number of features: 18 Max AUC: 0.765 AUC: 0.765 Z: 0.780 Rdelta: 0.10000
#> 19 Number of features: 18 Max AUC: 0.765 AUC: 0.755 Z: 0.684 Rdelta: 0.08000
#> 20 Number of features: 18 Max AUC: 0.765 AUC: 0.755 Z: 0.535 Rdelta: 0.06400
#> 21 Number of features: 18 Max AUC: 0.765 AUC: 0.754 Z: 0.636 Rdelta: 0.05120
#> 22 Number of features: 19 Max AUC: 0.765 AUC: 0.764 Z: 0.476 Rdelta: 0.05608
#> 23 Number of features: 20 Max AUC: 0.765 AUC: 0.765 Z: 0.254 Rdelta: 0.06047
#> 24 Number of features: 21 Max AUC: 0.765 AUC: 0.765 Z: 0.239 Rdelta: 0.06442
#> 25 Number of features: 22 Max AUC: 0.767 AUC: 0.767 Z: 0.591 Rdelta: 0.06798
#> 26 Number of features: 23 Max AUC: 0.778 AUC: 0.778 Z: 0.572 Rdelta: 0.07118
#> 27 Number of features: 23 Max AUC: 0.778 AUC: 0.767 Z: 0.542 Rdelta: 0.05695
#> 28 Number of features: 24 Max AUC: 0.778 AUC: 0.777 Z: 0.223 Rdelta: 0.06125
#> 29 Number of features: 24 Max AUC: 0.778 AUC: 0.755 Z: 0.221 Rdelta: 0.04900
#> 30 Number of features: 24 Max AUC: 0.778 AUC: 0.769 Z: 0.361 Rdelta: 0.03920
#> 31 Number of features: 24 Max AUC: 0.778 AUC: 0.766 Z: 0.463 Rdelta: 0.03136
#> 32 Number of features: 24 Max AUC: 0.778 AUC: 0.767 Z: 0.291 Rdelta: 0.02509
#> 33 Number of features: 24 Max AUC: 0.778 AUC: 0.761 Z: 0.099 Rdelta: 0.02007
#> 34 Number of features: 24 Max AUC: 0.778 AUC: 0.766 Z: 0.249 Rdelta: 0.01606
#> 35 Number of features: 24 Max AUC: 0.778 AUC: 0.766 Z: 0.492 Rdelta: 0.01285
#> 36 Number of features: 24 Max AUC: 0.778 AUC: 0.760 Z: 0.292 Rdelta: 0.01028
#> 37 Number of features: 25 Max AUC: 0.778 AUC: 0.771 Z: 0.341 Rdelta: 0.01925
#> 38 Number of features: 25 Max AUC: 0.778 AUC: 0.769 Z: 0.161 Rdelta: 0.01540
#> 39 Number of features: 25 Max AUC: 0.778 AUC: 0.768 Z: 0.264 Rdelta: 0.01232
#> 40 Number of features: 25 Max AUC: 0.778 AUC: 0.762 Z: 0.284 Rdelta: 0.00986
#> 41 Number of features: 26 Max AUC: 0.778 AUC: 0.767 Z: 0.455 Rdelta: 0.01887
#> 42 Number of features: 27 Max AUC: 0.778 AUC: 0.773 Z: 0.656 Rdelta: 0.02698
#> 43 Number of features: 28 Max AUC: 0.778 AUC: 0.777 Z: 0.578 Rdelta: 0.03428
#> 44 Number of features: 28 Max AUC: 0.778 AUC: 0.769 Z: 0.285 Rdelta: 0.02743
#> 45 Number of features: 29 Max AUC: 0.778 AUC: 0.777 Z: 0.322 Rdelta: 0.03468
#> 46 Number of features: 30 Max AUC: 0.778 AUC: 0.771 Z: 0.295 Rdelta: 0.04122
#> 47 Number of features: 31 Max AUC: 0.778 AUC: 0.775 Z: 0.256 Rdelta: 0.04709
#> 48 Number of features: 31 Max AUC: 0.778 AUC: 0.764 Z: 0.279 Rdelta: 0.03768
#> 49 Number of features: 32 Max AUC: 0.780 AUC: 0.780 Z: 0.285 Rdelta: 0.04391
#> 50 Number of features: 32 Max AUC: 0.780 AUC: 0.768 Z: 0.253 Rdelta: 0.03513
#> 51 Number of features: 33 Max AUC: 0.780 AUC: 0.776 Z: 0.321 Rdelta: 0.04161
#> 52 Number of features: 34 Max AUC: 0.780 AUC: 0.774 Z: 0.255 Rdelta: 0.04745
#> 53 Number of features: 34 Max AUC: 0.780 AUC: 0.766 Z: 0.431 Rdelta: 0.03796
#> 54 Number of features: 35 Max AUC: 0.780 AUC: 0.777 Z: 0.668 Rdelta: 0.04417
#> 55 Number of features: 36 Max AUC: 0.780 AUC: 0.780 Z: 0.333 Rdelta: 0.04975
#> 56 Number of features: 37 Max AUC: 0.780 AUC: 0.777 Z: 0.484 Rdelta: 0.05477
#> 57 Number of features: 37 Max AUC: 0.780 AUC: 0.767 Z: 0.432 Rdelta: 0.04382
#> 58 Number of features: 38 Max AUC: 0.780 AUC: 0.773 Z: 0.558 Rdelta: 0.04944
#> 59 Number of features: 39 Max AUC: 0.780 AUC: 0.780 Z: 0.391 Rdelta: 0.05449
#> 60 Number of features: 39 Max AUC: 0.780 AUC: 0.766 Z: 0.489 Rdelta: 0.04360
#> 61 Number of features: 40 Max AUC: 0.782 AUC: 0.782 Z: 0.289 Rdelta: 0.04924
#> 62 Number of features: 41 Max AUC: 0.782 AUC: 0.780 Z: 0.572 Rdelta: 0.05431
#> 63 Number of features: 42 Max AUC: 0.782 AUC: 0.780 Z: 0.467 Rdelta: 0.05888
#> 64 Number of features: 42 Max AUC: 0.782 AUC: 0.773 Z: 0.299 Rdelta: 0.04710
#> 65 Number of features: 43 Max AUC: 0.782 AUC: 0.773 Z: 0.479 Rdelta: 0.05239
#> 66 Number of features: 43 Max AUC: 0.782 AUC: 0.769 Z: 0.473 Rdelta: 0.04192
#> 67 Number of features: 43 Max AUC: 0.782 AUC: 0.766 Z: 0.270 Rdelta: 0.03353
#> 68 Number of features: 43 Max AUC: 0.782 AUC: 0.765 Z: 0.444 Rdelta: 0.02683
#> 69 Number of features: 44 Max AUC: 0.782 AUC: 0.775 Z: 0.451 Rdelta: 0.03414
#> 70 Number of features: 45 Max AUC: 0.782 AUC: 0.779 Z: 0.435 Rdelta: 0.04073
#> 71 Number of features: 46 Max AUC: 0.782 AUC: 0.776 Z: 0.284 Rdelta: 0.04666
#> 72 Number of features: 46 Max AUC: 0.782 AUC: 0.770 Z: 0.374 Rdelta: 0.03732
#> 73 Number of features: 46 Max AUC: 0.782 AUC: 0.766 Z: 0.363 Rdelta: 0.02986
#> 74 Number of features: 47 Max AUC: 0.782 AUC: 0.773 Z: 0.305 Rdelta: 0.03687
#> 75 Number of features: 47 Max AUC: 0.782 AUC: 0.770 Z: 0.414 Rdelta: 0.02950
#> 76 Number of features: 48 Max AUC: 0.782 AUC: 0.775 Z: 0.289 Rdelta: 0.03655
#> 77 Number of features: 49 Max AUC: 0.782 AUC: 0.776 Z: 0.383 Rdelta: 0.04289
#> 78 Number of features: 50 Max AUC: 0.782 AUC: 0.771 Z: 0.432 Rdelta: 0.04860
#> 79 Number of features: 51 Max AUC: 0.782 AUC: 0.772 Z: 0.466 Rdelta: 0.05374
#> 80 Number of features: 51 Max AUC: 0.782 AUC: 0.764 Z: 0.552 Rdelta: 0.04300
#> 81 Number of features: 51 Max AUC: 0.782 AUC: 0.769 Z: 0.384 Rdelta: 0.03440
#> 82 Number of features: 51 Max AUC: 0.782 AUC: 0.768 Z: 0.463 Rdelta: 0.02752
#> 83 Number of features: 52 Max AUC: 0.782 AUC: 0.780 Z: 0.460 Rdelta: 0.03477
#> 84 Number of features: 52 Max AUC: 0.782 AUC: 0.768 Z: 0.411 Rdelta: 0.02781
#> 85 Number of features: 52 Max AUC: 0.782 AUC: 0.764 Z: 0.375 Rdelta: 0.02225
#> 86 Number of features: 52 Max AUC: 0.782 AUC: 0.765 Z: 0.153 Rdelta: 0.01780
#> 87 Number of features: 52 Max AUC: 0.782 AUC: 0.767 Z: 0.237 Rdelta: 0.01424
#> 88 Number of features: 53 Max AUC: 0.782 AUC: 0.775 Z: 0.259 Rdelta: 0.02282
#> 89 Number of features: 53 Max AUC: 0.782 AUC: 0.764 Z: 0.308 Rdelta: 0.01825
#> 90 Number of features: 53 Max AUC: 0.782 AUC: 0.772 Z: 0.415 Rdelta: 0.01460
#> 91 Number of features: 53 Max AUC: 0.782 AUC: 0.764 Z: 0.287 Rdelta: 0.01168
#> 92 Number of features: 53 Max AUC: 0.782 AUC: 0.757 Z: 0.356 Rdelta: 0.00935
#> 93 Number of features: 54 Max AUC: 0.782 AUC: 0.774 Z: 0.490 Rdelta: 0.01841
#> 94 Number of features: 54 Max AUC: 0.782 AUC: 0.768 Z: 0.393 Rdelta: 0.01473
#> 95 Number of features: 54 Max AUC: 0.782 AUC: 0.768 Z: 0.269 Rdelta: 0.01178
#> 96 Number of features: 54 Max AUC: 0.782 AUC: 0.756 Z: 0.493 Rdelta: 0.00943
#> 97 Number of features: 54 Max AUC: 0.782 AUC: 0.758 Z: 0.588 Rdelta: 0.00754
#> 98 Number of features: 55 Max AUC: 0.782 AUC: 0.774 Z: 0.303 Rdelta: 0.01679
#> 99 Number of features: 55 Max AUC: 0.782 AUC: 0.757 Z: 0.390 Rdelta: 0.01343
#> 100 Number of features: 56 Max AUC: 0.782 AUC: 0.777 Z: 0.399 Rdelta: 0.02209
#> 101 Number of features: 56 Max AUC: 0.782 AUC: 0.760 Z: 0.426 Rdelta: 0.01767
#> 102 Number of features: 57 Max AUC: 0.782 AUC: 0.776 Z: 0.322 Rdelta: 0.02590
#> 103 Number of features: 58 Max AUC: 0.782 AUC: 0.776 Z: 0.468 Rdelta: 0.03331
#> 104 Number of features: 58 Max AUC: 0.782 AUC: 0.771 Z: 0.402 Rdelta: 0.02665
#> 105 Number of features: 59 Max AUC: 0.782 AUC: 0.773 Z: 0.307 Rdelta: 0.03398
#> 106 Number of features: 59 Max AUC: 0.782 AUC: 0.764 Z: 0.283 Rdelta: 0.02719
#> 107 Number of features: 59 Max AUC: 0.782 AUC: 0.763 Z: 0.350 Rdelta: 0.02175
#> 108 Number of features: 59 Max AUC: 0.782 AUC: 0.762 Z: 0.350 Rdelta: 0.01740
#> 109 Number of features: 59 Max AUC: 0.782 AUC: 0.760 Z: 0.305 Rdelta: 0.01392
#> 110 Number of features: 59 Max AUC: 0.782 AUC: 0.763 Z: 0.253 Rdelta: 0.01114
#> 111 Number of features: 59 Max AUC: 0.782 AUC: 0.768 Z: 0.399 Rdelta: 0.00891
#> 112 Number of features: 59 Max AUC: 0.782 AUC: 0.771 Z: 0.307 Rdelta: 0.00713
#> 113 Number of features: 59 Max AUC: 0.782 AUC: 0.768 Z: 0.438 Rdelta: 0.00570
#> 114 Number of features: 59 Max AUC: 0.782 AUC: 0.755 Z: 0.385 Rdelta: 0.00456
#> 115 Number of features: 59 Max AUC: 0.782 AUC: 0.767 Z: 0.422 Rdelta: 0.00365
#> 116 Number of features: 59 Max AUC: 0.782 AUC: 0.760 Z: 0.383 Rdelta: 0.00292
#> 117 Number of features: 59 Max AUC: 0.782 AUC: 0.752 Z: 0.386 Rdelta: 0.00234
#> 118 Number of features: 59 Max AUC: 0.782 AUC: 0.752 Z: 0.448 Rdelta: 0.00187
#> 119 Number of features: 59 Max AUC: 0.782 AUC: 0.766 Z: 0.373 Rdelta: 0.00149
#> 120 Number of features: 59 Max AUC: 0.782 AUC: 0.765 Z: 0.315 Rdelta: 0.00120
#> 121 Number of features: 59 Max AUC: 0.782 AUC: 0.759 Z: 0.301 Rdelta: 0.00096
#> 122 Number of features: 59 Max AUC: 0.782 AUC: 0.765 Z: 0.323 Rdelta: 0.00077
#> 123 Number of features: 60 Max AUC: 0.782 AUC: 0.778 Z: 0.473 Rdelta: 0.01069
#> 124 Number of features: 60 Max AUC: 0.782 AUC: 0.766 Z: 0.331 Rdelta: 0.00855
#> 125 Number of features: 60 Max AUC: 0.782 AUC: 0.770 Z: 0.378 Rdelta: 0.00684
#> 126 Number of features: 61 Max AUC: 0.782 AUC: 0.778 Z: 0.307 Rdelta: 0.01616
#> 127 Number of features: 62 Max AUC: 0.782 AUC: 0.773 Z: 0.307 Rdelta: 0.02454
#> 128 Number of features: 63 Max AUC: 0.782 AUC: 0.779 Z: 0.273 Rdelta: 0.03209
#> 129 Number of features: 63 Max AUC: 0.782 AUC: 0.768 Z: 0.272 Rdelta: 0.02567
#> 130 Number of features: 63 Max AUC: 0.782 AUC: 0.771 Z: 0.365 Rdelta: 0.02054
#> 131 Number of features: 64 Max AUC: 0.782 AUC: 0.777 Z: 0.499 Rdelta: 0.02848
#> 132 Number of features: 64 Max AUC: 0.782 AUC: 0.762 Z: 0.414 Rdelta: 0.02279
#> 133 Number of features: 64 Max AUC: 0.782 AUC: 0.763 Z: 0.354 Rdelta: 0.01823
#> 134 Number of features: 64 Max AUC: 0.782 AUC: 0.764 Z: 0.320 Rdelta: 0.01458
#> 135 Number of features: 64 Max AUC: 0.782 AUC: 0.759 Z: 0.479 Rdelta: 0.01167
#> 136 Number of features: 64 Max AUC: 0.782 AUC: 0.760 Z: 0.223 Rdelta: 0.00933
#> 137 Number of features: 64 Max AUC: 0.782 AUC: 0.767 Z: 0.502 Rdelta: 0.00747
#> 138 Number of features: 64 Max AUC: 0.782 AUC: 0.764 Z: 0.369 Rdelta: 0.00597
#> 139 Number of features: 64 Max AUC: 0.782 AUC: 0.766 Z: 0.358 Rdelta: 0.00478
#> 140 Number of features: 64 Max AUC: 0.782 AUC: 0.757 Z: 0.318 Rdelta: 0.00382
#> 141 Number of features: 64 Max AUC: 0.782 AUC: 0.770 Z: 0.256 Rdelta: 0.00306
#> 142 Number of features: 64 Max AUC: 0.782 AUC: 0.761 Z: 0.309 Rdelta: 0.00245
#> 143 Number of features: 64 Max AUC: 0.782 AUC: 0.764 Z: 0.527 Rdelta: 0.00196
#> 144 Number of features: 64 Max AUC: 0.782 AUC: 0.766 Z: 0.429 Rdelta: 0.00157
#> 145 Number of features: 64 Max AUC: 0.782 AUC: 0.769 Z: 0.365 Rdelta: 0.00125
#> 146 Number of features: 64 Max AUC: 0.782 AUC: 0.761 Z: 0.136 Rdelta: 0.00100
#> 147 Number of features: 64 Max AUC: 0.782 AUC: 0.763 Z: 0.404 Rdelta: 0.00080
#> 148 Number of features: 64 Max AUC: 0.782 AUC: 0.763 Z: 0.413 Rdelta: 0.00064
#> 149 Number of features: 64 Max AUC: 0.782 AUC: 0.756 Z: 0.332 Rdelta: 0.00051
#> 150 Number of features: 64 Max AUC: 0.782 AUC: 0.762 Z: 0.311 Rdelta: 0.00041
#> 151 Number of features: 64 Max AUC: 0.782 AUC: 0.761 Z: 0.432 Rdelta: 0.00033
#> 152 Number of features: 64 Max AUC: 0.782 AUC: 0.767 Z: 0.386 Rdelta: 0.00026
#> 153 Number of features: 65 Max AUC: 0.782 AUC: 0.773 Z: 0.418 Rdelta: 0.01024
#> 154 Number of features: 65 Max AUC: 0.782 AUC: 0.765 Z: 0.452 Rdelta: 0.00819
#> 155 Number of features: 65 Max AUC: 0.782 AUC: 0.761 Z: 0.343 Rdelta: 0.00655
#> 156 Number of features: 65 Max AUC: 0.782 AUC: 0.770 Z: 0.361 Rdelta: 0.00524
#> 157 Number of features: 65 Max AUC: 0.782 AUC: 0.766 Z: 0.407 Rdelta: 0.00419
#> 158 Number of features: 65 Max AUC: 0.782 AUC: 0.758 Z: 0.438 Rdelta: 0.00335
#> 159 Number of features: 66 Max AUC: 0.782 AUC: 0.771 Z: 0.337 Rdelta: 0.01302
#> 160 Number of features: 66 Max AUC: 0.782 AUC: 0.750 Z: 0.476 Rdelta: 0.01042
#> 161 Number of features: 66 Max AUC: 0.782 AUC: 0.758 Z: 0.372 Rdelta: 0.00833
#> 162 Number of features: 66 Max AUC: 0.782 AUC: 0.750 Z: 0.374 Rdelta: 0.00667
#> 163 Number of features: 66 Max AUC: 0.782 AUC: 0.756 Z: 0.345 Rdelta: 0.00533
#> 164 Number of features: 66 Max AUC: 0.782 AUC: 0.762 Z: 0.443 Rdelta: 0.00427
#> 165 Number of features: 66 Max AUC: 0.782 AUC: 0.742 Z: 0.297 Rdelta: 0.00341
#> 166 Number of features: 66 Max AUC: 0.782 AUC: 0.763 Z: 0.499 Rdelta: 0.00273
#> 167 Number of features: 67 Max AUC: 0.782 AUC: 0.774 Z: 0.364 Rdelta: 0.01246
#> 168 Number of features: 67 Max AUC: 0.782 AUC: 0.757 Z: 0.474 Rdelta: 0.00997
#> 169 Number of features: 67 Max AUC: 0.782 AUC: 0.758 Z: 0.400 Rdelta: 0.00797
#> 170 Number of features: 67 Max AUC: 0.782 AUC: 0.762 Z: 0.337 Rdelta: 0.00638
#> 171 Number of features: 68 Max AUC: 0.782 AUC: 0.770 Z: 0.370 Rdelta: 0.01574
#> 172 Number of features: 68 Max AUC: 0.782 AUC: 0.763 Z: 0.309 Rdelta: 0.01259
#> 173 Number of features: 68 Max AUC: 0.782 AUC: 0.753 Z: 0.136 Rdelta: 0.01007
#> 174 Number of features: 68 Max AUC: 0.782 AUC: 0.737 Z: 0.278 Rdelta: 0.00806
#> 175 Number of features: 68 Max AUC: 0.782 AUC: 0.769 Z: 0.328 Rdelta: 0.00645
#> 176 Number of features: 68 Max AUC: 0.782 AUC: 0.766 Z: 0.242 Rdelta: 0.00516
#> 177 Number of features: 68 Max AUC: 0.782 AUC: 0.766 Z: 0.395 Rdelta: 0.00413
#> 178 Number of features: 68 Max AUC: 0.782 AUC: 0.744 Z: 0.357 Rdelta: 0.00330
#> 179 Number of features: 68 Max AUC: 0.782 AUC: 0.761 Z: 0.277 Rdelta: 0.00264
#> 180 Number of features: 68 Max AUC: 0.782 AUC: 0.764 Z: 0.341 Rdelta: 0.00211
#> 181 Number of features: 68 Max AUC: 0.782 AUC: 0.746 Z: 0.285 Rdelta: 0.00169
#> 182 Number of features: 68 Max AUC: 0.782 AUC: 0.742 Z: 0.191 Rdelta: 0.00135
#> 183 Number of features: 68 Max AUC: 0.782 AUC: 0.753 Z: 0.227 Rdelta: 0.00108
#> 184 Number of features: 68 Max AUC: 0.782 AUC: 0.763 Z: 0.316 Rdelta: 0.00087
#> 185 Number of features: 68 Max AUC: 0.782 AUC: 0.735 Z: 0.305 Rdelta: 0.00069
#> 186 Number of features: 68 Max AUC: 0.782 AUC: 0.740 Z: 0.459 Rdelta: 0.00055
#> 187 Number of features: 69 Max AUC: 0.782 AUC: 0.776 Z: 0.516 Rdelta: 0.01050
#> 188 Number of features: 69 Max AUC: 0.782 AUC: 0.751 Z: 0.398 Rdelta: 0.00840
#> 189 Number of features: 69 Max AUC: 0.782 AUC: 0.762 Z: 0.635 Rdelta: 0.00672
#> 190 Number of features: 69 Max AUC: 0.782 AUC: 0.758 Z: 0.360 Rdelta: 0.00538
#> 191 Number of features: 69 Max AUC: 0.782 AUC: 0.752 Z: 0.343 Rdelta: 0.00430
#> 192 Number of features: 69 Max AUC: 0.782 AUC: 0.753 Z: 0.319 Rdelta: 0.00344
#> 193 Number of features: 69 Max AUC: 0.782 AUC: 0.754 Z: 0.571 Rdelta: 0.00275
#> 194 Number of features: 69 Max AUC: 0.782 AUC: 0.762 Z: 0.352 Rdelta: 0.00220
#> 195 Number of features: 69 Max AUC: 0.782 AUC: 0.761 Z: 0.342 Rdelta: 0.00176
#> 196 Number of features: 69 Max AUC: 0.782 AUC: 0.754 Z: 0.393 Rdelta: 0.00141
#> 197 Number of features: 69 Max AUC: 0.782 AUC: 0.749 Z: 0.307 Rdelta: 0.00113
#> 198 Number of features: 69 Max AUC: 0.782 AUC: 0.739 Z: 0.555 Rdelta: 0.00090
#> 199 Number of features: 69 Max AUC: 0.782 AUC: 0.758 Z: 0.344 Rdelta: 0.00072
#> 200 Number of features: 69 Max AUC: 0.782 AUC: 0.752 Z: 0.422 Rdelta: 0.00058
#> 201 Number of features: 69 Max AUC: 0.782 AUC: 0.757 Z: 0.283 Rdelta: 0.00046
#> 202 Number of features: 69 Max AUC: 0.782 AUC: 0.742 Z: 0.316 Rdelta: 0.00037
#> 203 Number of features: 69 Max AUC: 0.782 AUC: 0.758 Z: 0.341 Rdelta: 0.00030
#> 204 Number of features: 69 Max AUC: 0.782 AUC: 0.755 Z: 0.414 Rdelta: 0.00024
#> 205 Number of features: 69 Max AUC: 0.782 AUC: 0.761 Z: 0.493 Rdelta: 0.00019
#> 206 Number of features: 69 Max AUC: 0.782 AUC: 0.752 Z: 0.259 Rdelta: 0.00015
#> 207 Number of features: 69 Max AUC: 0.782 AUC: 0.726 Z: 0.336 Rdelta: 0.00012
#> 208 Number of features: 69 Max AUC: 0.782 AUC: 0.745 Z: 0.427 Rdelta: 0.00010
#> user system elapsed
#> 130.24 0.00 130.35
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################
varlist <- names(arceneCVOne$bagging$frequencyTable)
#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#> 7 Number of features: 7 Max AUC: 0.519 AUC: 0.519 Z: 0.048 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.538 AUC: 0.538 Z: 0.132 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.541 AUC: 0.541 Z: 0.167 Rdelta: 0.10000
#> 10 Number of features: 9 Max AUC: 0.541 AUC: 0.500 Z: 0.010 Rdelta: 0.08000
#> 11 Number of features: 10 Max AUC: 0.547 AUC: 0.547 Z: 0.113 Rdelta: 0.08200
#> 12 Number of features: 10 Max AUC: 0.547 AUC: 0.516 Z: 0.058 Rdelta: 0.06560
#> 13 Number of features: 10 Max AUC: 0.547 AUC: 0.522 Z: 0.056 Rdelta: 0.05248
#> 14 Number of features: 10 Max AUC: 0.547 AUC: 0.533 Z: 0.066 Rdelta: 0.04198
#> 15 Number of features: 10 Max AUC: 0.547 AUC: 0.489 Z: -0.015 Rdelta: 0.03359
#> 16 Number of features: 10 Max AUC: 0.547 AUC: 0.528 Z: 0.073 Rdelta: 0.02687
#> 17 Number of features: 10 Max AUC: 0.547 AUC: 0.489 Z: 0.024 Rdelta: 0.02150
#> 18 Number of features: 11 Max AUC: 0.547 AUC: 0.546 Z: 0.102 Rdelta: 0.02935
#> 19 Number of features: 11 Max AUC: 0.547 AUC: 0.522 Z: -0.002 Rdelta: 0.02348
#> 20 Number of features: 11 Max AUC: 0.547 AUC: 0.529 Z: 0.074 Rdelta: 0.01878
#> 21 Number of features: 12 Max AUC: 0.552 AUC: 0.552 Z: 0.174 Rdelta: 0.02690
#> 22 Number of features: 12 Max AUC: 0.552 AUC: 0.517 Z: 0.079 Rdelta: 0.02152
#> 23 Number of features: 12 Max AUC: 0.552 AUC: 0.522 Z: 0.108 Rdelta: 0.01722
#> 24 Number of features: 12 Max AUC: 0.552 AUC: 0.537 Z: 0.145 Rdelta: 0.01377
#> 25 Number of features: 12 Max AUC: 0.552 AUC: 0.524 Z: 0.066 Rdelta: 0.01102
#> 26 Number of features: 12 Max AUC: 0.552 AUC: 0.540 Z: 0.148 Rdelta: 0.00882
#> 27 Number of features: 13 Max AUC: 0.552 AUC: 0.543 Z: 0.194 Rdelta: 0.01793
#> 28 Number of features: 14 Max AUC: 0.552 AUC: 0.541 Z: 0.093 Rdelta: 0.02614
#> 29 Number of features: 14 Max AUC: 0.552 AUC: 0.535 Z: 0.113 Rdelta: 0.02091
#> 30 Number of features: 14 Max AUC: 0.552 AUC: 0.533 Z: 0.056 Rdelta: 0.01673
#> 31 Number of features: 15 Max AUC: 0.611 AUC: 0.611 Z: 0.458 Rdelta: 0.02506
#> 32 Number of features: 16 Max AUC: 0.625 AUC: 0.625 Z: 0.530 Rdelta: 0.03255
#> 33 Number of features: 16 Max AUC: 0.625 AUC: 0.589 Z: 0.463 Rdelta: 0.02604
#> 34 Number of features: 16 Max AUC: 0.625 AUC: 0.610 Z: 0.481 Rdelta: 0.02083
#> 35 Number of features: 16 Max AUC: 0.625 AUC: 0.599 Z: 0.494 Rdelta: 0.01667
#> 36 Number of features: 17 Max AUC: 0.625 AUC: 0.618 Z: 0.544 Rdelta: 0.02500
#> 37 Number of features: 17 Max AUC: 0.625 AUC: 0.591 Z: 0.456 Rdelta: 0.02000
#> 38 Number of features: 18 Max AUC: 0.625 AUC: 0.625 Z: 0.627 Rdelta: 0.02800
#> 39 Number of features: 18 Max AUC: 0.625 AUC: 0.596 Z: 0.374 Rdelta: 0.02240
#> 40 Number of features: 19 Max AUC: 0.625 AUC: 0.621 Z: 0.545 Rdelta: 0.03016
#> 41 Number of features: 20 Max AUC: 0.632 AUC: 0.632 Z: 0.518 Rdelta: 0.03714
#> 42 Number of features: 21 Max AUC: 0.634 AUC: 0.634 Z: 0.508 Rdelta: 0.04343
#> 43 Number of features: 22 Max AUC: 0.759 AUC: 0.759 Z: 0.832 Rdelta: 0.04909
#> 44 Number of features: 22 Max AUC: 0.759 AUC: 0.742 Z: 0.814 Rdelta: 0.03927
#> 45 Number of features: 23 Max AUC: 0.759 AUC: 0.752 Z: 0.800 Rdelta: 0.04534
#> 46 Number of features: 23 Max AUC: 0.759 AUC: 0.681 Z: 0.694 Rdelta: 0.03627
#> 47 Number of features: 24 Max AUC: 0.759 AUC: 0.749 Z: 0.831 Rdelta: 0.04265
#> 48 Number of features: 24 Max AUC: 0.759 AUC: 0.731 Z: 0.833 Rdelta: 0.03412
#> 49 Number of features: 24 Max AUC: 0.759 AUC: 0.743 Z: 0.768 Rdelta: 0.02729
#> 50 Number of features: 25 Max AUC: 0.759 AUC: 0.755 Z: 0.832 Rdelta: 0.03456
#> 51 Number of features: 26 Max AUC: 0.759 AUC: 0.758 Z: 0.800 Rdelta: 0.04111
#> 52 Number of features: 27 Max AUC: 0.759 AUC: 0.756 Z: 0.731 Rdelta: 0.04700
#> 53 Number of features: 27 Max AUC: 0.759 AUC: 0.737 Z: 0.731 Rdelta: 0.03760
#> 54 Number of features: 28 Max AUC: 0.759 AUC: 0.758 Z: 0.821 Rdelta: 0.04384
#> 55 Number of features: 29 Max AUC: 0.759 AUC: 0.755 Z: 0.838 Rdelta: 0.04945
#> 56 Number of features: 30 Max AUC: 0.759 AUC: 0.755 Z: 0.862 Rdelta: 0.05451
#> 57 Number of features: 30 Max AUC: 0.759 AUC: 0.741 Z: 0.802 Rdelta: 0.04361
#> 58 Number of features: 30 Max AUC: 0.759 AUC: 0.687 Z: 0.646 Rdelta: 0.03489
#> 59 Number of features: 31 Max AUC: 0.759 AUC: 0.754 Z: 0.842 Rdelta: 0.04140
#> 60 Number of features: 31 Max AUC: 0.759 AUC: 0.744 Z: 0.808 Rdelta: 0.03312
#> 61 Number of features: 32 Max AUC: 0.759 AUC: 0.752 Z: 0.829 Rdelta: 0.03981
#> 62 Number of features: 32 Max AUC: 0.759 AUC: 0.723 Z: 0.836 Rdelta: 0.03184
#> 63 Number of features: 33 Max AUC: 0.764 AUC: 0.764 Z: 0.833 Rdelta: 0.03866
#> 64 Number of features: 34 Max AUC: 0.764 AUC: 0.761 Z: 0.826 Rdelta: 0.04479
#> 65 Number of features: 35 Max AUC: 0.765 AUC: 0.765 Z: 0.961 Rdelta: 0.05031
#> 66 Number of features: 35 Max AUC: 0.765 AUC: 0.756 Z: 0.911 Rdelta: 0.04025
#> 67 Number of features: 36 Max AUC: 0.765 AUC: 0.763 Z: 0.919 Rdelta: 0.04623
#> 68 Number of features: 37 Max AUC: 0.766 AUC: 0.766 Z: 0.963 Rdelta: 0.05160
#> 69 Number of features: 37 Max AUC: 0.766 AUC: 0.734 Z: 0.840 Rdelta: 0.04128
#> 70 Number of features: 37 Max AUC: 0.766 AUC: 0.734 Z: 0.877 Rdelta: 0.03303
#> 71 Number of features: 37 Max AUC: 0.766 AUC: 0.745 Z: 0.886 Rdelta: 0.02642
#> 72 Number of features: 37 Max AUC: 0.766 AUC: 0.751 Z: 0.867 Rdelta: 0.02114
#> 73 Number of features: 37 Max AUC: 0.766 AUC: 0.729 Z: 0.825 Rdelta: 0.01691
#> 74 Number of features: 38 Max AUC: 0.773 AUC: 0.773 Z: 0.934 Rdelta: 0.02522
#> 75 Number of features: 38 Max AUC: 0.773 AUC: 0.755 Z: 0.909 Rdelta: 0.02017
#> 76 Number of features: 38 Max AUC: 0.773 AUC: 0.749 Z: 0.929 Rdelta: 0.01614
#> 77 Number of features: 39 Max AUC: 0.773 AUC: 0.767 Z: 0.979 Rdelta: 0.02453
#> 78 Number of features: 39 Max AUC: 0.773 AUC: 0.748 Z: 0.952 Rdelta: 0.01962
#> 79 Number of features: 40 Max AUC: 0.778 AUC: 0.778 Z: 0.927 Rdelta: 0.02766
#> 80 Number of features: 41 Max AUC: 0.778 AUC: 0.772 Z: 0.957 Rdelta: 0.03489
#> 81 Number of features: 41 Max AUC: 0.778 AUC: 0.755 Z: 0.884 Rdelta: 0.02791
#> 82 Number of features: 41 Max AUC: 0.778 AUC: 0.768 Z: 0.944 Rdelta: 0.02233
#> 83 Number of features: 41 Max AUC: 0.778 AUC: 0.764 Z: 1.000 Rdelta: 0.01787
#> 84 Number of features: 42 Max AUC: 0.778 AUC: 0.772 Z: 0.962 Rdelta: 0.02608
#> 85 Number of features: 42 Max AUC: 0.778 AUC: 0.721 Z: 0.980 Rdelta: 0.02086
#> 86 Number of features: 42 Max AUC: 0.778 AUC: 0.732 Z: 0.870 Rdelta: 0.01669
#> 87 Number of features: 43 Max AUC: 0.778 AUC: 0.776 Z: 1.012 Rdelta: 0.02502
#> 88 Number of features: 43 Max AUC: 0.778 AUC: 0.720 Z: 0.947 Rdelta: 0.02002
#> 89 Number of features: 43 Max AUC: 0.778 AUC: 0.721 Z: 0.791 Rdelta: 0.01601
#> 90 Number of features: 43 Max AUC: 0.778 AUC: 0.747 Z: 0.935 Rdelta: 0.01281
#> 91 Number of features: 43 Max AUC: 0.778 AUC: 0.766 Z: 0.931 Rdelta: 0.01025
#> 92 Number of features: 43 Max AUC: 0.778 AUC: 0.647 Z: 0.744 Rdelta: 0.00820
#> 93 Number of features: 43 Max AUC: 0.778 AUC: 0.714 Z: 1.038 Rdelta: 0.00656
#> 94 Number of features: 43 Max AUC: 0.778 AUC: 0.765 Z: 1.016 Rdelta: 0.00525
#> 95 Number of features: 44 Max AUC: 0.778 AUC: 0.775 Z: 1.041 Rdelta: 0.01472
#> 96 Number of features: 44 Max AUC: 0.778 AUC: 0.725 Z: 0.887 Rdelta: 0.01178
#> 97 Number of features: 44 Max AUC: 0.778 AUC: 0.698 Z: 1.008 Rdelta: 0.00942
#> 98 Number of features: 45 Max AUC: 0.778 AUC: 0.773 Z: 1.000 Rdelta: 0.01848
#> 99 Number of features: 45 Max AUC: 0.778 AUC: 0.701 Z: 1.050 Rdelta: 0.01478
#> 100 Number of features: 46 Max AUC: 0.778 AUC: 0.773 Z: 1.042 Rdelta: 0.02331
#> 101 Number of features: 46 Max AUC: 0.778 AUC: 0.755 Z: 0.978 Rdelta: 0.01864
#> 102 Number of features: 47 Max AUC: 0.778 AUC: 0.773 Z: 1.004 Rdelta: 0.02678
#> 103 Number of features: 48 Max AUC: 0.778 AUC: 0.775 Z: 1.039 Rdelta: 0.03410
#> 104 Number of features: 48 Max AUC: 0.778 AUC: 0.701 Z: 0.853 Rdelta: 0.02728
#> 105 Number of features: 48 Max AUC: 0.778 AUC: 0.759 Z: 0.961 Rdelta: 0.02183
#> 106 Number of features: 48 Max AUC: 0.778 AUC: 0.765 Z: 1.031 Rdelta: 0.01746
#> 107 Number of features: 48 Max AUC: 0.778 AUC: 0.714 Z: 0.918 Rdelta: 0.01397
#> 108 Number of features: 48 Max AUC: 0.778 AUC: 0.707 Z: 1.072 Rdelta: 0.01117
#> 109 Number of features: 48 Max AUC: 0.778 AUC: 0.702 Z: 1.027 Rdelta: 0.00894
#> 110 Number of features: 48 Max AUC: 0.778 AUC: 0.753 Z: 0.982 Rdelta: 0.00715
#> 111 Number of features: 48 Max AUC: 0.778 AUC: 0.766 Z: 1.047 Rdelta: 0.00572
#> 112 Number of features: 48 Max AUC: 0.778 AUC: 0.697 Z: 1.025 Rdelta: 0.00458
#> 113 Number of features: 49 Max AUC: 0.778 AUC: 0.768 Z: 0.994 Rdelta: 0.01412
#> 114 Number of features: 49 Max AUC: 0.778 AUC: 0.765 Z: 1.020 Rdelta: 0.01130
#> 115 Number of features: 49 Max AUC: 0.778 AUC: 0.752 Z: 1.002 Rdelta: 0.00904
#> 116 Number of features: 49 Max AUC: 0.778 AUC: 0.745 Z: 0.960 Rdelta: 0.00723
#> 117 Number of features: 49 Max AUC: 0.778 AUC: 0.750 Z: 0.958 Rdelta: 0.00578
#> 118 Number of features: 49 Max AUC: 0.778 AUC: 0.678 Z: 0.858 Rdelta: 0.00463
#> 119 Number of features: 49 Max AUC: 0.778 AUC: 0.761 Z: 0.974 Rdelta: 0.00370
#> 120 Number of features: 49 Max AUC: 0.778 AUC: 0.712 Z: 0.842 Rdelta: 0.00296
#> 121 Number of features: 50 Max AUC: 0.780 AUC: 0.780 Z: 1.025 Rdelta: 0.01266
#> 122 Number of features: 50 Max AUC: 0.780 AUC: 0.754 Z: 0.955 Rdelta: 0.01013
#> 123 Number of features: 50 Max AUC: 0.780 AUC: 0.760 Z: 1.031 Rdelta: 0.00811
#> 124 Number of features: 50 Max AUC: 0.780 AUC: 0.718 Z: 1.056 Rdelta: 0.00648
#> 125 Number of features: 50 Max AUC: 0.780 AUC: 0.759 Z: 1.008 Rdelta: 0.00519
#> 126 Number of features: 50 Max AUC: 0.780 AUC: 0.711 Z: 0.969 Rdelta: 0.00415
#> 127 Number of features: 50 Max AUC: 0.780 AUC: 0.732 Z: 0.955 Rdelta: 0.00332
#> 128 Number of features: 50 Max AUC: 0.780 AUC: 0.696 Z: 0.969 Rdelta: 0.00266
#> 129 Number of features: 50 Max AUC: 0.780 AUC: 0.764 Z: 0.986 Rdelta: 0.00212
#> 130 Number of features: 51 Max AUC: 0.780 AUC: 0.780 Z: 1.055 Rdelta: 0.01191
#> 131 Number of features: 51 Max AUC: 0.780 AUC: 0.732 Z: 0.955 Rdelta: 0.00953
#> 132 Number of features: 51 Max AUC: 0.780 AUC: 0.750 Z: 0.934 Rdelta: 0.00762
#> 133 Number of features: 51 Max AUC: 0.780 AUC: 0.728 Z: 0.918 Rdelta: 0.00610
#> 134 Number of features: 51 Max AUC: 0.780 AUC: 0.709 Z: 1.043 Rdelta: 0.00488
#> 135 Number of features: 51 Max AUC: 0.780 AUC: 0.758 Z: 1.025 Rdelta: 0.00390
#> 136 Number of features: 51 Max AUC: 0.780 AUC: 0.729 Z: 0.992 Rdelta: 0.00312
#> 137 Number of features: 51 Max AUC: 0.780 AUC: 0.760 Z: 0.989 Rdelta: 0.00250
#> 138 Number of features: 51 Max AUC: 0.780 AUC: 0.656 Z: 0.742 Rdelta: 0.00200
#> 139 Number of features: 51 Max AUC: 0.780 AUC: 0.757 Z: 1.014 Rdelta: 0.00160
#> 140 Number of features: 51 Max AUC: 0.780 AUC: 0.705 Z: 1.000 Rdelta: 0.00128
#> 141 Number of features: 51 Max AUC: 0.780 AUC: 0.708 Z: 1.057 Rdelta: 0.00102
#> 142 Number of features: 51 Max AUC: 0.780 AUC: 0.743 Z: 1.027 Rdelta: 0.00082
#> 143 Number of features: 51 Max AUC: 0.780 AUC: 0.770 Z: 1.009 Rdelta: 0.00065
#> 144 Number of features: 51 Max AUC: 0.780 AUC: 0.765 Z: 0.964 Rdelta: 0.00052
#> 145 Number of features: 51 Max AUC: 0.780 AUC: 0.769 Z: 1.117 Rdelta: 0.00042
#> 146 Number of features: 51 Max AUC: 0.780 AUC: 0.762 Z: 1.038 Rdelta: 0.00034
#> 147 Number of features: 51 Max AUC: 0.780 AUC: 0.705 Z: 0.797 Rdelta: 0.00027
#> 148 Number of features: 52 Max AUC: 0.780 AUC: 0.772 Z: 1.121 Rdelta: 0.01024
#> 149 Number of features: 52 Max AUC: 0.780 AUC: 0.686 Z: 0.936 Rdelta: 0.00819
#> 150 Number of features: 52 Max AUC: 0.780 AUC: 0.733 Z: 0.906 Rdelta: 0.00655
#> 151 Number of features: 52 Max AUC: 0.780 AUC: 0.712 Z: 0.937 Rdelta: 0.00524
#> 152 Number of features: 52 Max AUC: 0.780 AUC: 0.680 Z: 0.822 Rdelta: 0.00419
#> 153 Number of features: 52 Max AUC: 0.780 AUC: 0.769 Z: 1.042 Rdelta: 0.00336
#> 154 Number of features: 52 Max AUC: 0.780 AUC: 0.647 Z: 0.728 Rdelta: 0.00268
#> 155 Number of features: 52 Max AUC: 0.780 AUC: 0.694 Z: 0.853 Rdelta: 0.00215
#> 156 Number of features: 52 Max AUC: 0.780 AUC: 0.684 Z: 0.625 Rdelta: 0.00172
#> 157 Number of features: 52 Max AUC: 0.780 AUC: 0.759 Z: 1.003 Rdelta: 0.00137
#> 158 Number of features: 52 Max AUC: 0.780 AUC: 0.717 Z: 1.069 Rdelta: 0.00110
#> 159 Number of features: 52 Max AUC: 0.780 AUC: 0.712 Z: 1.005 Rdelta: 0.00088
#> 160 Number of features: 52 Max AUC: 0.780 AUC: 0.754 Z: 0.996 Rdelta: 0.00070
#> 161 Number of features: 52 Max AUC: 0.780 AUC: 0.750 Z: 0.990 Rdelta: 0.00056
#> 162 Number of features: 52 Max AUC: 0.780 AUC: 0.748 Z: 1.007 Rdelta: 0.00045
#> 163 Number of features: 52 Max AUC: 0.780 AUC: 0.760 Z: 1.084 Rdelta: 0.00036
#> 164 Number of features: 52 Max AUC: 0.780 AUC: 0.765 Z: 1.065 Rdelta: 0.00029
#> 165 Number of features: 52 Max AUC: 0.780 AUC: 0.702 Z: 1.050 Rdelta: 0.00023
#> 166 Number of features: 52 Max AUC: 0.780 AUC: 0.752 Z: 1.045 Rdelta: 0.00018
#> 167 Number of features: 52 Max AUC: 0.780 AUC: 0.737 Z: 0.992 Rdelta: 0.00015
#> 168 Number of features: 52 Max AUC: 0.780 AUC: 0.704 Z: 1.100 Rdelta: 0.00012
#> 169 Number of features: 52 Max AUC: 0.780 AUC: 0.755 Z: 0.911 Rdelta: 0.00009
#> user system elapsed
#> 83.74 0.00 83.80
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#> 7 Number of features: 7 Max AUC: 0.729 AUC: 0.729 Z: 0.995 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.733 AUC: 0.733 Z: 1.091 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.733 AUC: 0.733 Z: 1.063 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.733 AUC: 0.733 Z: 1.186 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.736 AUC: 0.736 Z: 1.229 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.736 AUC: 0.724 Z: 1.417 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.736 AUC: 0.736 Z: 1.439 Rdelta: 0.10000
#> 14 Number of features: 13 Max AUC: 0.736 AUC: 0.719 Z: 1.102 Rdelta: 0.08000
#> 15 Number of features: 14 Max AUC: 0.736 AUC: 0.736 Z: 1.278 Rdelta: 0.08200
#> 16 Number of features: 15 Max AUC: 0.736 AUC: 0.731 Z: 1.445 Rdelta: 0.08380
#> 17 Number of features: 15 Max AUC: 0.736 AUC: 0.709 Z: 1.291 Rdelta: 0.06704
#> 18 Number of features: 16 Max AUC: 0.736 AUC: 0.732 Z: 0.361 Rdelta: 0.07034
#> 19 Number of features: 16 Max AUC: 0.736 AUC: 0.730 Z: 0.216 Rdelta: 0.05627
#> 20 Number of features: 16 Max AUC: 0.736 AUC: 0.724 Z: 0.468 Rdelta: 0.04502
#> 21 Number of features: 16 Max AUC: 0.736 AUC: 0.724 Z: 0.436 Rdelta: 0.03601
#> 22 Number of features: 17 Max AUC: 0.743 AUC: 0.743 Z: 0.395 Rdelta: 0.04241
#> 23 Number of features: 17 Max AUC: 0.743 AUC: 0.726 Z: 0.409 Rdelta: 0.03393
#> 24 Number of features: 18 Max AUC: 0.746 AUC: 0.746 Z: 0.460 Rdelta: 0.04054
#> 25 Number of features: 18 Max AUC: 0.746 AUC: 0.729 Z: 0.582 Rdelta: 0.03243
#> 26 Number of features: 19 Max AUC: 0.746 AUC: 0.742 Z: 0.394 Rdelta: 0.03919
#> 27 Number of features: 19 Max AUC: 0.746 AUC: 0.722 Z: 0.516 Rdelta: 0.03135
#> 28 Number of features: 19 Max AUC: 0.746 AUC: 0.730 Z: 0.442 Rdelta: 0.02508
#> 29 Number of features: 20 Max AUC: 0.746 AUC: 0.739 Z: 0.397 Rdelta: 0.03257
#> 30 Number of features: 20 Max AUC: 0.746 AUC: 0.703 Z: 0.475 Rdelta: 0.02606
#> 31 Number of features: 20 Max AUC: 0.746 AUC: 0.714 Z: 0.379 Rdelta: 0.02085
#> 32 Number of features: 20 Max AUC: 0.746 AUC: 0.731 Z: 0.398 Rdelta: 0.01668
#> 33 Number of features: 21 Max AUC: 0.746 AUC: 0.746 Z: 0.414 Rdelta: 0.02501
#> 34 Number of features: 21 Max AUC: 0.746 AUC: 0.736 Z: 0.379 Rdelta: 0.02001
#> 35 Number of features: 21 Max AUC: 0.746 AUC: 0.728 Z: 0.449 Rdelta: 0.01601
#> 36 Number of features: 21 Max AUC: 0.746 AUC: 0.720 Z: 0.473 Rdelta: 0.01280
#> 37 Number of features: 21 Max AUC: 0.746 AUC: 0.712 Z: 0.471 Rdelta: 0.01024
#> 38 Number of features: 22 Max AUC: 0.747 AUC: 0.747 Z: 0.471 Rdelta: 0.01922
#> 39 Number of features: 23 Max AUC: 0.747 AUC: 0.742 Z: 0.446 Rdelta: 0.02730
#> 40 Number of features: 23 Max AUC: 0.747 AUC: 0.704 Z: 0.459 Rdelta: 0.02184
#> 41 Number of features: 23 Max AUC: 0.747 AUC: 0.727 Z: 0.451 Rdelta: 0.01747
#> 42 Number of features: 23 Max AUC: 0.747 AUC: 0.708 Z: 0.499 Rdelta: 0.01398
#> 43 Number of features: 24 Max AUC: 0.747 AUC: 0.741 Z: 0.522 Rdelta: 0.02258
#> 44 Number of features: 25 Max AUC: 0.759 AUC: 0.759 Z: 0.453 Rdelta: 0.03032
#> 45 Number of features: 25 Max AUC: 0.759 AUC: 0.727 Z: 0.234 Rdelta: 0.02426
#> 46 Number of features: 25 Max AUC: 0.759 AUC: 0.738 Z: 0.125 Rdelta: 0.01941
#> 47 Number of features: 26 Max AUC: 0.759 AUC: 0.757 Z: 0.542 Rdelta: 0.02746
#> 48 Number of features: 27 Max AUC: 0.779 AUC: 0.779 Z: 0.119 Rdelta: 0.03472
#> 49 Number of features: 27 Max AUC: 0.779 AUC: 0.760 Z: 0.516 Rdelta: 0.02777
#> 50 Number of features: 27 Max AUC: 0.779 AUC: 0.743 Z: 0.154 Rdelta: 0.02222
#> 51 Number of features: 27 Max AUC: 0.779 AUC: 0.765 Z: 0.286 Rdelta: 0.01778
#> 52 Number of features: 27 Max AUC: 0.779 AUC: 0.754 Z: 0.397 Rdelta: 0.01422
#> 53 Number of features: 27 Max AUC: 0.779 AUC: 0.742 Z: 0.490 Rdelta: 0.01138
#> 54 Number of features: 28 Max AUC: 0.779 AUC: 0.770 Z: 0.163 Rdelta: 0.02024
#> 55 Number of features: 28 Max AUC: 0.779 AUC: 0.738 Z: 0.318 Rdelta: 0.01619
#> 56 Number of features: 29 Max AUC: 0.779 AUC: 0.774 Z: 0.578 Rdelta: 0.02457
#> 57 Number of features: 29 Max AUC: 0.779 AUC: 0.745 Z: 0.380 Rdelta: 0.01966
#> 58 Number of features: 29 Max AUC: 0.779 AUC: 0.708 Z: 0.296 Rdelta: 0.01573
#> 59 Number of features: 30 Max AUC: 0.781 AUC: 0.781 Z: 0.528 Rdelta: 0.02415
#> 60 Number of features: 30 Max AUC: 0.781 AUC: 0.762 Z: 0.513 Rdelta: 0.01932
#> 61 Number of features: 30 Max AUC: 0.781 AUC: 0.770 Z: 0.471 Rdelta: 0.01546
#> 62 Number of features: 30 Max AUC: 0.781 AUC: 0.676 Z: 0.229 Rdelta: 0.01237
#> 63 Number of features: 30 Max AUC: 0.781 AUC: 0.755 Z: 0.404 Rdelta: 0.00989
#> 64 Number of features: 30 Max AUC: 0.781 AUC: 0.746 Z: 0.336 Rdelta: 0.00791
#> 65 Number of features: 30 Max AUC: 0.781 AUC: 0.767 Z: 0.511 Rdelta: 0.00633
#> 66 Number of features: 30 Max AUC: 0.781 AUC: 0.762 Z: 0.564 Rdelta: 0.00507
#> 67 Number of features: 30 Max AUC: 0.781 AUC: 0.742 Z: 0.193 Rdelta: 0.00405
#> 68 Number of features: 30 Max AUC: 0.781 AUC: 0.729 Z: 0.276 Rdelta: 0.00324
#> 69 Number of features: 30 Max AUC: 0.781 AUC: 0.748 Z: 0.500 Rdelta: 0.00259
#> 70 Number of features: 30 Max AUC: 0.781 AUC: 0.747 Z: 0.288 Rdelta: 0.00207
#> 71 Number of features: 30 Max AUC: 0.781 AUC: 0.722 Z: 0.209 Rdelta: 0.00166
#> 72 Number of features: 30 Max AUC: 0.781 AUC: 0.744 Z: 0.463 Rdelta: 0.00133
#> 73 Number of features: 30 Max AUC: 0.781 AUC: 0.748 Z: 0.450 Rdelta: 0.00106
#> 74 Number of features: 30 Max AUC: 0.781 AUC: 0.748 Z: 0.351 Rdelta: 0.00085
#> 75 Number of features: 30 Max AUC: 0.781 AUC: 0.765 Z: 0.477 Rdelta: 0.00068
#> 76 Number of features: 30 Max AUC: 0.781 AUC: 0.723 Z: 0.544 Rdelta: 0.00054
#> 77 Number of features: 30 Max AUC: 0.781 AUC: 0.754 Z: 0.380 Rdelta: 0.00044
#> 78 Number of features: 30 Max AUC: 0.781 AUC: 0.768 Z: 0.439 Rdelta: 0.00035
#> 79 Number of features: 30 Max AUC: 0.781 AUC: 0.758 Z: 0.199 Rdelta: 0.00028
#> 80 Number of features: 31 Max AUC: 0.781 AUC: 0.775 Z: 0.305 Rdelta: 0.01025
#> 81 Number of features: 31 Max AUC: 0.781 AUC: 0.758 Z: 0.285 Rdelta: 0.00820
#> 82 Number of features: 32 Max AUC: 0.785 AUC: 0.785 Z: 0.400 Rdelta: 0.01738
#> 83 Number of features: 32 Max AUC: 0.785 AUC: 0.745 Z: 0.274 Rdelta: 0.01390
#> 84 Number of features: 32 Max AUC: 0.785 AUC: 0.775 Z: 0.411 Rdelta: 0.01112
#> 85 Number of features: 32 Max AUC: 0.785 AUC: 0.733 Z: 0.419 Rdelta: 0.00890
#> 86 Number of features: 32 Max AUC: 0.785 AUC: 0.748 Z: 0.524 Rdelta: 0.00712
#> 87 Number of features: 32 Max AUC: 0.785 AUC: 0.745 Z: 0.309 Rdelta: 0.00570
#> 88 Number of features: 32 Max AUC: 0.785 AUC: 0.731 Z: 0.349 Rdelta: 0.00456
#> 89 Number of features: 32 Max AUC: 0.785 AUC: 0.748 Z: 0.336 Rdelta: 0.00364
#> 90 Number of features: 32 Max AUC: 0.785 AUC: 0.758 Z: 0.372 Rdelta: 0.00292
#> 91 Number of features: 32 Max AUC: 0.785 AUC: 0.738 Z: 0.408 Rdelta: 0.00233
#> 92 Number of features: 32 Max AUC: 0.785 AUC: 0.747 Z: 0.434 Rdelta: 0.00187
#> 93 Number of features: 32 Max AUC: 0.785 AUC: 0.750 Z: 0.481 Rdelta: 0.00149
#> 94 Number of features: 32 Max AUC: 0.785 AUC: 0.773 Z: 0.387 Rdelta: 0.00119
#> 95 Number of features: 32 Max AUC: 0.785 AUC: 0.759 Z: 0.331 Rdelta: 0.00096
#> 96 Number of features: 32 Max AUC: 0.785 AUC: 0.690 Z: 0.186 Rdelta: 0.00076
#> 97 Number of features: 32 Max AUC: 0.785 AUC: 0.768 Z: 0.376 Rdelta: 0.00061
#> 98 Number of features: 32 Max AUC: 0.785 AUC: 0.754 Z: 0.380 Rdelta: 0.00049
#> 99 Number of features: 32 Max AUC: 0.785 AUC: 0.775 Z: 0.395 Rdelta: 0.00039
#> 100 Number of features: 32 Max AUC: 0.785 AUC: 0.751 Z: 0.479 Rdelta: 0.00031
#> 101 Number of features: 32 Max AUC: 0.785 AUC: 0.753 Z: 0.464 Rdelta: 0.00025
#> 102 Number of features: 32 Max AUC: 0.785 AUC: 0.756 Z: 0.465 Rdelta: 0.00020
#> 103 Number of features: 32 Max AUC: 0.785 AUC: 0.729 Z: 0.330 Rdelta: 0.00016
#> 104 Number of features: 32 Max AUC: 0.785 AUC: 0.748 Z: 0.380 Rdelta: 0.00013
#> 105 Number of features: 32 Max AUC: 0.785 AUC: 0.775 Z: 0.450 Rdelta: 0.00010
#> 106 Number of features: 32 Max AUC: 0.785 AUC: 0.762 Z: 0.231 Rdelta: 0.00008
#> user system elapsed
#> 38.93 0.00 38.96
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#> 7 Number of features: 7 Max AUC: 0.922 AUC: 0.917 Z: 1.057 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.922 AUC: 0.908 Z: 0.797 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.932 AUC: 0.932 Z: 1.210 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.932 AUC: 0.931 Z: 1.115 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.932 AUC: 0.929 Z: 1.291 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.942 AUC: 0.942 Z: 1.472 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.942 AUC: 0.941 Z: 1.641 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.949 AUC: 0.949 Z: 1.446 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.949 AUC: 0.940 Z: 1.304 Rdelta: 0.10000
#> 16 Number of features: 16 Max AUC: 0.949 AUC: 0.948 Z: 1.683 Rdelta: 0.10000
#> 17 Number of features: 17 Max AUC: 0.949 AUC: 0.946 Z: 1.030 Rdelta: 0.10000
#> 18 Number of features: 18 Max AUC: 0.961 AUC: 0.961 Z: 0.466 Rdelta: 0.10000
#> 19 Number of features: 19 Max AUC: 0.961 AUC: 0.954 Z: 0.269 Rdelta: 0.10000
#> 20 Number of features: 20 Max AUC: 0.961 AUC: 0.956 Z: 0.349 Rdelta: 0.10000
#> 21 Number of features: 20 Max AUC: 0.961 AUC: 0.943 Z: 0.371 Rdelta: 0.08000
#> 22 Number of features: 21 Max AUC: 0.963 AUC: 0.963 Z: 0.287 Rdelta: 0.08200
#> 23 Number of features: 22 Max AUC: 0.963 AUC: 0.952 Z: 0.330 Rdelta: 0.08380
#> 24 Number of features: 22 Max AUC: 0.963 AUC: 0.948 Z: 0.350 Rdelta: 0.06704
#> 25 Number of features: 23 Max AUC: 0.963 AUC: 0.953 Z: 0.341 Rdelta: 0.07034
#> 26 Number of features: 24 Max AUC: 0.963 AUC: 0.959 Z: 0.334 Rdelta: 0.07330
#> 27 Number of features: 25 Max AUC: 0.963 AUC: 0.949 Z: 0.398 Rdelta: 0.07597
#> 28 Number of features: 25 Max AUC: 0.963 AUC: 0.942 Z: 0.349 Rdelta: 0.06078
#> 29 Number of features: 25 Max AUC: 0.963 AUC: 0.941 Z: 0.367 Rdelta: 0.04862
#> 30 Number of features: 25 Max AUC: 0.963 AUC: 0.944 Z: 0.411 Rdelta: 0.03890
#> 31 Number of features: 25 Max AUC: 0.963 AUC: 0.940 Z: 0.395 Rdelta: 0.03112
#> 32 Number of features: 25 Max AUC: 0.963 AUC: 0.934 Z: 0.327 Rdelta: 0.02489
#> 33 Number of features: 25 Max AUC: 0.963 AUC: 0.934 Z: 0.401 Rdelta: 0.01992
#> 34 Number of features: 25 Max AUC: 0.963 AUC: 0.936 Z: 0.368 Rdelta: 0.01593
#> 35 Number of features: 25 Max AUC: 0.963 AUC: 0.936 Z: 0.340 Rdelta: 0.01275
#> 36 Number of features: 25 Max AUC: 0.963 AUC: 0.940 Z: 0.408 Rdelta: 0.01020
#> 37 Number of features: 25 Max AUC: 0.963 AUC: 0.931 Z: 0.313 Rdelta: 0.00816
#> 38 Number of features: 25 Max AUC: 0.963 AUC: 0.933 Z: 0.275 Rdelta: 0.00653
#> 39 Number of features: 25 Max AUC: 0.963 AUC: 0.935 Z: 0.346 Rdelta: 0.00522
#> 40 Number of features: 25 Max AUC: 0.963 AUC: 0.936 Z: 0.304 Rdelta: 0.00418
#> 41 Number of features: 25 Max AUC: 0.963 AUC: 0.942 Z: 0.474 Rdelta: 0.00334
#> 42 Number of features: 25 Max AUC: 0.963 AUC: 0.943 Z: 0.393 Rdelta: 0.00267
#> 43 Number of features: 25 Max AUC: 0.963 AUC: 0.932 Z: 0.352 Rdelta: 0.00214
#> 44 Number of features: 25 Max AUC: 0.963 AUC: 0.874 Z: 0.218 Rdelta: 0.00171
#> 45 Number of features: 26 Max AUC: 0.963 AUC: 0.948 Z: 0.387 Rdelta: 0.01154
#> 46 Number of features: 26 Max AUC: 0.963 AUC: 0.890 Z: 0.372 Rdelta: 0.00923
#> 47 Number of features: 26 Max AUC: 0.963 AUC: 0.942 Z: 0.349 Rdelta: 0.00739
#> 48 Number of features: 26 Max AUC: 0.963 AUC: 0.921 Z: 0.405 Rdelta: 0.00591
#> 49 Number of features: 26 Max AUC: 0.963 AUC: 0.941 Z: 0.388 Rdelta: 0.00473
#> 50 Number of features: 26 Max AUC: 0.963 AUC: 0.934 Z: 0.345 Rdelta: 0.00378
#> 51 Number of features: 26 Max AUC: 0.963 AUC: 0.933 Z: 0.451 Rdelta: 0.00303
#> 52 Number of features: 27 Max AUC: 0.963 AUC: 0.945 Z: 0.364 Rdelta: 0.01272
#> 53 Number of features: 27 Max AUC: 0.963 AUC: 0.942 Z: 0.443 Rdelta: 0.01018
#> 54 Number of features: 27 Max AUC: 0.963 AUC: 0.936 Z: 0.398 Rdelta: 0.00814
#> 55 Number of features: 27 Max AUC: 0.963 AUC: 0.937 Z: 0.383 Rdelta: 0.00651
#> 56 Number of features: 27 Max AUC: 0.963 AUC: 0.934 Z: 0.358 Rdelta: 0.00521
#> 57 Number of features: 28 Max AUC: 0.963 AUC: 0.948 Z: 0.394 Rdelta: 0.01469
#> 58 Number of features: 28 Max AUC: 0.963 AUC: 0.850 Z: 0.374 Rdelta: 0.01175
#> 59 Number of features: 28 Max AUC: 0.963 AUC: 0.939 Z: 0.336 Rdelta: 0.00940
#> 60 Number of features: 28 Max AUC: 0.963 AUC: 0.940 Z: 0.392 Rdelta: 0.00752
#> 61 Number of features: 28 Max AUC: 0.963 AUC: 0.927 Z: 0.347 Rdelta: 0.00602
#> 62 Number of features: 28 Max AUC: 0.963 AUC: 0.858 Z: 0.375 Rdelta: 0.00481
#> 63 Number of features: 28 Max AUC: 0.963 AUC: 0.933 Z: 0.363 Rdelta: 0.00385
#> 64 Number of features: 28 Max AUC: 0.963 AUC: 0.933 Z: 0.395 Rdelta: 0.00308
#> 65 Number of features: 29 Max AUC: 0.963 AUC: 0.943 Z: 0.395 Rdelta: 0.01277
#> 66 Number of features: 30 Max AUC: 0.963 AUC: 0.942 Z: 0.414 Rdelta: 0.02150
#> 67 Number of features: 31 Max AUC: 0.963 AUC: 0.944 Z: 0.355 Rdelta: 0.02935
#> 68 Number of features: 31 Max AUC: 0.963 AUC: 0.934 Z: 0.361 Rdelta: 0.02348
#> 69 Number of features: 31 Max AUC: 0.963 AUC: 0.925 Z: 0.332 Rdelta: 0.01878
#> 70 Number of features: 31 Max AUC: 0.963 AUC: 0.937 Z: 0.403 Rdelta: 0.01503
#> 71 Number of features: 31 Max AUC: 0.963 AUC: 0.934 Z: 0.437 Rdelta: 0.01202
#> 72 Number of features: 32 Max AUC: 0.963 AUC: 0.945 Z: 0.429 Rdelta: 0.02082
#> 73 Number of features: 32 Max AUC: 0.963 AUC: 0.930 Z: 0.420 Rdelta: 0.01665
#> 74 Number of features: 32 Max AUC: 0.963 AUC: 0.937 Z: 0.382 Rdelta: 0.01332
#> 75 Number of features: 32 Max AUC: 0.963 AUC: 0.932 Z: 0.475 Rdelta: 0.01066
#> 76 Number of features: 33 Max AUC: 0.963 AUC: 0.940 Z: 0.376 Rdelta: 0.01959
#> 77 Number of features: 33 Max AUC: 0.963 AUC: 0.926 Z: 0.302 Rdelta: 0.01567
#> 78 Number of features: 34 Max AUC: 0.963 AUC: 0.942 Z: 0.350 Rdelta: 0.02411
#> 79 Number of features: 34 Max AUC: 0.963 AUC: 0.930 Z: 0.336 Rdelta: 0.01929
#> 80 Number of features: 34 Max AUC: 0.963 AUC: 0.930 Z: 0.362 Rdelta: 0.01543
#> 81 Number of features: 34 Max AUC: 0.963 AUC: 0.936 Z: 0.406 Rdelta: 0.01234
#> 82 Number of features: 35 Max AUC: 0.963 AUC: 0.945 Z: 0.408 Rdelta: 0.02111
#> 83 Number of features: 35 Max AUC: 0.963 AUC: 0.934 Z: 0.321 Rdelta: 0.01689
#> 84 Number of features: 35 Max AUC: 0.963 AUC: 0.926 Z: 0.348 Rdelta: 0.01351
#> 85 Number of features: 36 Max AUC: 0.963 AUC: 0.937 Z: 0.386 Rdelta: 0.02216
#> 86 Number of features: 36 Max AUC: 0.963 AUC: 0.917 Z: 0.536 Rdelta: 0.01773
#> 87 Number of features: 37 Max AUC: 0.963 AUC: 0.943 Z: 0.353 Rdelta: 0.02595
#> 88 Number of features: 37 Max AUC: 0.963 AUC: 0.888 Z: 0.406 Rdelta: 0.02076
#> 89 Number of features: 37 Max AUC: 0.963 AUC: 0.932 Z: 0.400 Rdelta: 0.01661
#> 90 Number of features: 38 Max AUC: 0.963 AUC: 0.940 Z: 0.404 Rdelta: 0.02495
#> 91 Number of features: 38 Max AUC: 0.963 AUC: 0.930 Z: 0.396 Rdelta: 0.01996
#> 92 Number of features: 39 Max AUC: 0.963 AUC: 0.936 Z: 0.391 Rdelta: 0.02796
#> 93 Number of features: 39 Max AUC: 0.963 AUC: 0.928 Z: 0.342 Rdelta: 0.02237
#> 94 Number of features: 40 Max AUC: 0.963 AUC: 0.939 Z: 0.314 Rdelta: 0.03013
#> 95 Number of features: 40 Max AUC: 0.963 AUC: 0.931 Z: 0.360 Rdelta: 0.02411
#> 96 Number of features: 40 Max AUC: 0.963 AUC: 0.888 Z: 0.337 Rdelta: 0.01929
#> 97 Number of features: 41 Max AUC: 0.963 AUC: 0.939 Z: 0.326 Rdelta: 0.02736
#> 98 Number of features: 42 Max AUC: 0.963 AUC: 0.936 Z: 0.317 Rdelta: 0.03462
#> 99 Number of features: 43 Max AUC: 0.963 AUC: 0.937 Z: 0.420 Rdelta: 0.04116
#> 100 Number of features: 43 Max AUC: 0.963 AUC: 0.928 Z: 0.338 Rdelta: 0.03293
#> 101 Number of features: 43 Max AUC: 0.963 AUC: 0.927 Z: 0.303 Rdelta: 0.02634
#> 102 Number of features: 43 Max AUC: 0.963 AUC: 0.930 Z: 0.339 Rdelta: 0.02107
#> 103 Number of features: 43 Max AUC: 0.963 AUC: 0.923 Z: 0.361 Rdelta: 0.01686
#> 104 Number of features: 44 Max AUC: 0.963 AUC: 0.936 Z: 0.363 Rdelta: 0.02517
#> 105 Number of features: 44 Max AUC: 0.963 AUC: 0.922 Z: 0.412 Rdelta: 0.02014
#> 106 Number of features: 45 Max AUC: 0.963 AUC: 0.933 Z: 0.310 Rdelta: 0.02812
#> 107 Number of features: 46 Max AUC: 0.963 AUC: 0.936 Z: 0.304 Rdelta: 0.03531
#> 108 Number of features: 47 Max AUC: 0.963 AUC: 0.934 Z: 0.328 Rdelta: 0.04178
#> 109 Number of features: 48 Max AUC: 0.963 AUC: 0.937 Z: 0.339 Rdelta: 0.04760
#> 110 Number of features: 49 Max AUC: 0.963 AUC: 0.933 Z: 0.318 Rdelta: 0.05284
#> 111 Number of features: 50 Max AUC: 0.963 AUC: 0.941 Z: 0.322 Rdelta: 0.05756
#> 112 Number of features: 51 Max AUC: 0.963 AUC: 0.936 Z: 0.364 Rdelta: 0.06180
#> 113 Number of features: 51 Max AUC: 0.963 AUC: 0.924 Z: 0.213 Rdelta: 0.04944
#> 114 Number of features: 51 Max AUC: 0.963 AUC: 0.930 Z: 0.327 Rdelta: 0.03955
#> 115 Number of features: 52 Max AUC: 0.963 AUC: 0.936 Z: 0.318 Rdelta: 0.04560
#> 116 Number of features: 53 Max AUC: 0.963 AUC: 0.937 Z: 0.360 Rdelta: 0.05104
#> 117 Number of features: 54 Max AUC: 0.963 AUC: 0.933 Z: 0.342 Rdelta: 0.05593
#> 118 Number of features: 55 Max AUC: 0.963 AUC: 0.935 Z: 0.342 Rdelta: 0.06034
#> 119 Number of features: 56 Max AUC: 0.963 AUC: 0.936 Z: 0.348 Rdelta: 0.06431
#> 120 Number of features: 56 Max AUC: 0.963 AUC: 0.903 Z: 0.360 Rdelta: 0.05145
#> 121 Number of features: 56 Max AUC: 0.963 AUC: 0.923 Z: 0.441 Rdelta: 0.04116
#> 122 Number of features: 56 Max AUC: 0.963 AUC: 0.924 Z: 0.362 Rdelta: 0.03293
#> 123 Number of features: 57 Max AUC: 0.963 AUC: 0.931 Z: 0.313 Rdelta: 0.03963
#> 124 Number of features: 57 Max AUC: 0.963 AUC: 0.892 Z: 0.396 Rdelta: 0.03171
#> 125 Number of features: 57 Max AUC: 0.963 AUC: 0.919 Z: 0.287 Rdelta: 0.02536
#> 126 Number of features: 57 Max AUC: 0.963 AUC: 0.849 Z: 0.323 Rdelta: 0.02029
#> 127 Number of features: 57 Max AUC: 0.963 AUC: 0.923 Z: 0.355 Rdelta: 0.01623
#> 128 Number of features: 57 Max AUC: 0.963 AUC: 0.891 Z: 0.347 Rdelta: 0.01299
#> 129 Number of features: 58 Max AUC: 0.963 AUC: 0.930 Z: 0.354 Rdelta: 0.02169
#> 130 Number of features: 59 Max AUC: 0.963 AUC: 0.939 Z: 0.352 Rdelta: 0.02952
#> 131 Number of features: 59 Max AUC: 0.963 AUC: 0.869 Z: 0.410 Rdelta: 0.02362
#> 132 Number of features: 59 Max AUC: 0.963 AUC: 0.920 Z: 0.377 Rdelta: 0.01889
#> 133 Number of features: 59 Max AUC: 0.963 AUC: 0.921 Z: 0.407 Rdelta: 0.01511
#> 134 Number of features: 59 Max AUC: 0.963 AUC: 0.921 Z: 0.364 Rdelta: 0.01209
#> 135 Number of features: 60 Max AUC: 0.963 AUC: 0.929 Z: 0.349 Rdelta: 0.02088
#> 136 Number of features: 60 Max AUC: 0.963 AUC: 0.924 Z: 0.341 Rdelta: 0.01671
#> 137 Number of features: 60 Max AUC: 0.963 AUC: 0.923 Z: 0.307 Rdelta: 0.01336
#> 138 Number of features: 60 Max AUC: 0.963 AUC: 0.927 Z: 0.307 Rdelta: 0.01069
#> 139 Number of features: 60 Max AUC: 0.963 AUC: 0.924 Z: 0.312 Rdelta: 0.00855
#> 140 Number of features: 60 Max AUC: 0.963 AUC: 0.885 Z: 0.310 Rdelta: 0.00684
#> 141 Number of features: 61 Max AUC: 0.963 AUC: 0.932 Z: 0.327 Rdelta: 0.01616
#> 142 Number of features: 61 Max AUC: 0.963 AUC: 0.924 Z: 0.342 Rdelta: 0.01293
#> 143 Number of features: 62 Max AUC: 0.963 AUC: 0.933 Z: 0.429 Rdelta: 0.02163
#> 144 Number of features: 62 Max AUC: 0.963 AUC: 0.922 Z: 0.344 Rdelta: 0.01731
#> 145 Number of features: 62 Max AUC: 0.963 AUC: 0.924 Z: 0.418 Rdelta: 0.01385
#> 146 Number of features: 63 Max AUC: 0.963 AUC: 0.930 Z: 0.501 Rdelta: 0.02246
#> 147 Number of features: 63 Max AUC: 0.963 AUC: 0.857 Z: 0.378 Rdelta: 0.01797
#> 148 Number of features: 63 Max AUC: 0.963 AUC: 0.923 Z: 0.391 Rdelta: 0.01438
#> 149 Number of features: 63 Max AUC: 0.963 AUC: 0.915 Z: 0.417 Rdelta: 0.01150
#> 150 Number of features: 63 Max AUC: 0.963 AUC: 0.925 Z: 0.408 Rdelta: 0.00920
#> 151 Number of features: 63 Max AUC: 0.963 AUC: 0.922 Z: 0.360 Rdelta: 0.00736
#> 152 Number of features: 64 Max AUC: 0.963 AUC: 0.928 Z: 0.416 Rdelta: 0.01662
#> 153 Number of features: 64 Max AUC: 0.963 AUC: 0.916 Z: 0.438 Rdelta: 0.01330
#> 154 Number of features: 64 Max AUC: 0.963 AUC: 0.916 Z: 0.382 Rdelta: 0.01064
#> 155 Number of features: 64 Max AUC: 0.963 AUC: 0.862 Z: 0.374 Rdelta: 0.00851
#> 156 Number of features: 64 Max AUC: 0.963 AUC: 0.920 Z: 0.422 Rdelta: 0.00681
#> 157 Number of features: 65 Max AUC: 0.963 AUC: 0.929 Z: 0.370 Rdelta: 0.01613
#> 158 Number of features: 65 Max AUC: 0.963 AUC: 0.926 Z: 0.362 Rdelta: 0.01290
#> 159 Number of features: 65 Max AUC: 0.963 AUC: 0.925 Z: 0.396 Rdelta: 0.01032
#> 160 Number of features: 66 Max AUC: 0.963 AUC: 0.929 Z: 0.442 Rdelta: 0.01929
#> 161 Number of features: 66 Max AUC: 0.963 AUC: 0.921 Z: 0.427 Rdelta: 0.01543
#> 162 Number of features: 66 Max AUC: 0.963 AUC: 0.925 Z: 0.393 Rdelta: 0.01235
#> 163 Number of features: 67 Max AUC: 0.963 AUC: 0.934 Z: 0.448 Rdelta: 0.02111
#> 164 Number of features: 67 Max AUC: 0.963 AUC: 0.924 Z: 0.420 Rdelta: 0.01689
#> 165 Number of features: 68 Max AUC: 0.963 AUC: 0.929 Z: 0.418 Rdelta: 0.02520
#> 166 Number of features: 68 Max AUC: 0.963 AUC: 0.924 Z: 0.432 Rdelta: 0.02016
#> 167 Number of features: 69 Max AUC: 0.963 AUC: 0.933 Z: 0.447 Rdelta: 0.02814
#> 168 Number of features: 69 Max AUC: 0.963 AUC: 0.924 Z: 0.341 Rdelta: 0.02252
#> 169 Number of features: 69 Max AUC: 0.963 AUC: 0.921 Z: 0.370 Rdelta: 0.01801
#> 170 Number of features: 69 Max AUC: 0.963 AUC: 0.922 Z: 0.338 Rdelta: 0.01441
#> 171 Number of features: 70 Max AUC: 0.963 AUC: 0.928 Z: 0.479 Rdelta: 0.02297
#> 172 Number of features: 71 Max AUC: 0.963 AUC: 0.929 Z: 0.396 Rdelta: 0.03067
#> 173 Number of features: 72 Max AUC: 0.963 AUC: 0.926 Z: 0.448 Rdelta: 0.03760
#> 174 Number of features: 72 Max AUC: 0.963 AUC: 0.925 Z: 0.408 Rdelta: 0.03008
#> 175 Number of features: 72 Max AUC: 0.963 AUC: 0.923 Z: 0.451 Rdelta: 0.02407
#> 176 Number of features: 72 Max AUC: 0.963 AUC: 0.921 Z: 0.485 Rdelta: 0.01925
#> 177 Number of features: 72 Max AUC: 0.963 AUC: 0.922 Z: 0.441 Rdelta: 0.01540
#> 178 Number of features: 72 Max AUC: 0.963 AUC: 0.920 Z: 0.379 Rdelta: 0.01232
#> 179 Number of features: 72 Max AUC: 0.963 AUC: 0.919 Z: 0.368 Rdelta: 0.00986
#> 180 Number of features: 72 Max AUC: 0.963 AUC: 0.923 Z: 0.426 Rdelta: 0.00789
#> 181 Number of features: 73 Max AUC: 0.963 AUC: 0.929 Z: 0.368 Rdelta: 0.01710
#> 182 Number of features: 74 Max AUC: 0.963 AUC: 0.931 Z: 0.459 Rdelta: 0.02539
#> 183 Number of features: 75 Max AUC: 0.963 AUC: 0.930 Z: 0.414 Rdelta: 0.03285
#> 184 Number of features: 76 Max AUC: 0.963 AUC: 0.927 Z: 0.363 Rdelta: 0.03956
#> 185 Number of features: 77 Max AUC: 0.963 AUC: 0.929 Z: 0.432 Rdelta: 0.04561
#> 186 Number of features: 77 Max AUC: 0.963 AUC: 0.894 Z: 0.348 Rdelta: 0.03649
#> 187 Number of features: 77 Max AUC: 0.963 AUC: 0.910 Z: 0.325 Rdelta: 0.02919
#> 188 Number of features: 77 Max AUC: 0.963 AUC: 0.917 Z: 0.336 Rdelta: 0.02335
#> 189 Number of features: 77 Max AUC: 0.963 AUC: 0.917 Z: 0.332 Rdelta: 0.01868
#> 190 Number of features: 77 Max AUC: 0.963 AUC: 0.924 Z: 0.443 Rdelta: 0.01494
#> 191 Number of features: 78 Max AUC: 0.963 AUC: 0.928 Z: 0.473 Rdelta: 0.02345
#> 192 Number of features: 78 Max AUC: 0.963 AUC: 0.922 Z: 0.365 Rdelta: 0.01876
#> 193 Number of features: 78 Max AUC: 0.963 AUC: 0.915 Z: 0.356 Rdelta: 0.01501
#> 194 Number of features: 78 Max AUC: 0.963 AUC: 0.860 Z: 0.444 Rdelta: 0.01201
#> 195 Number of features: 78 Max AUC: 0.963 AUC: 0.916 Z: 0.401 Rdelta: 0.00961
#> 196 Number of features: 78 Max AUC: 0.963 AUC: 0.920 Z: 0.362 Rdelta: 0.00768
#> 197 Number of features: 78 Max AUC: 0.963 AUC: 0.912 Z: 0.408 Rdelta: 0.00615
#> 198 Number of features: 79 Max AUC: 0.963 AUC: 0.927 Z: 0.414 Rdelta: 0.01553
#> 199 Number of features: 79 Max AUC: 0.963 AUC: 0.924 Z: 0.453 Rdelta: 0.01243
#> 200 Number of features: 79 Max AUC: 0.963 AUC: 0.905 Z: 0.259 Rdelta: 0.00994
#> 201 Number of features: 79 Max AUC: 0.963 AUC: 0.909 Z: 0.356 Rdelta: 0.00795
#> 202 Number of features: 79 Max AUC: 0.963 AUC: 0.919 Z: 0.427 Rdelta: 0.00636
#> 203 Number of features: 79 Max AUC: 0.963 AUC: 0.904 Z: 0.292 Rdelta: 0.00509
#> 204 Number of features: 79 Max AUC: 0.963 AUC: 0.924 Z: 0.386 Rdelta: 0.00407
#> 205 Number of features: 79 Max AUC: 0.963 AUC: 0.915 Z: 0.459 Rdelta: 0.00326
#> 206 Number of features: 79 Max AUC: 0.963 AUC: 0.919 Z: 0.400 Rdelta: 0.00261
#> 207 Number of features: 79 Max AUC: 0.963 AUC: 0.902 Z: 0.396 Rdelta: 0.00208
#> 208 Number of features: 80 Max AUC: 0.963 AUC: 0.925 Z: 0.459 Rdelta: 0.01188
#> 209 Number of features: 80 Max AUC: 0.963 AUC: 0.916 Z: 0.373 Rdelta: 0.00950
#> 210 Number of features: 80 Max AUC: 0.963 AUC: 0.911 Z: 0.391 Rdelta: 0.00760
#> 211 Number of features: 80 Max AUC: 0.963 AUC: 0.910 Z: 0.386 Rdelta: 0.00608
#> 212 Number of features: 80 Max AUC: 0.963 AUC: 0.917 Z: 0.336 Rdelta: 0.00486
#> 213 Number of features: 80 Max AUC: 0.963 AUC: 0.909 Z: 0.354 Rdelta: 0.00389
#> 214 Number of features: 80 Max AUC: 0.963 AUC: 0.924 Z: 0.370 Rdelta: 0.00311
#> 215 Number of features: 80 Max AUC: 0.963 AUC: 0.915 Z: 0.373 Rdelta: 0.00249
#> 216 Number of features: 80 Max AUC: 0.963 AUC: 0.916 Z: 0.367 Rdelta: 0.00199
#> 217 Number of features: 80 Max AUC: 0.963 AUC: 0.919 Z: 0.396 Rdelta: 0.00159
#> 218 Number of features: 80 Max AUC: 0.963 AUC: 0.912 Z: 0.436 Rdelta: 0.00128
#> 219 Number of features: 80 Max AUC: 0.963 AUC: 0.916 Z: 0.409 Rdelta: 0.00102
#> 220 Number of features: 80 Max AUC: 0.963 AUC: 0.891 Z: 0.037 Rdelta: 0.00082
#> 221 Number of features: 80 Max AUC: 0.963 AUC: 0.914 Z: 0.395 Rdelta: 0.00065
#> 222 Number of features: 80 Max AUC: 0.963 AUC: 0.921 Z: 0.406 Rdelta: 0.00052
#> 223 Number of features: 80 Max AUC: 0.963 AUC: 0.918 Z: 0.391 Rdelta: 0.00042
#> 224 Number of features: 80 Max AUC: 0.963 AUC: 0.914 Z: 0.427 Rdelta: 0.00033
#> 225 Number of features: 80 Max AUC: 0.963 AUC: 0.918 Z: 0.341 Rdelta: 0.00027
#> 226 Number of features: 80 Max AUC: 0.963 AUC: 0.920 Z: 0.436 Rdelta: 0.00021
#> 227 Number of features: 80 Max AUC: 0.963 AUC: 0.915 Z: 0.387 Rdelta: 0.00017
#> 228 Number of features: 80 Max AUC: 0.963 AUC: 0.912 Z: 0.393 Rdelta: 0.00014
#> 229 Number of features: 80 Max AUC: 0.963 AUC: 0.918 Z: 0.358 Rdelta: 0.00011
#> 230 Number of features: 80 Max AUC: 0.963 AUC: 0.923 Z: 0.423 Rdelta: 0.00009
#> user system elapsed
#> 144.41 0.00 144.54
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#> 7 Number of features: 7 Max AUC: 0.301 AUC: 0.296 Z: -0.619 Rdelta: 0.10000
#> 8 Number of features: 7 Max AUC: 0.301 AUC: 0.282 Z: -0.705 Rdelta: 0.08000
#> 9 Number of features: 7 Max AUC: 0.301 AUC: 0.285 Z: -0.699 Rdelta: 0.06400
#> 10 Number of features: 7 Max AUC: 0.301 AUC: 0.280 Z: -0.675 Rdelta: 0.05120
#> 11 Number of features: 7 Max AUC: 0.301 AUC: 0.281 Z: -0.755 Rdelta: 0.04096
#> 12 Number of features: 7 Max AUC: 0.301 AUC: 0.253 Z: -0.818 Rdelta: 0.03277
#> 13 Number of features: 8 Max AUC: 0.301 AUC: 0.290 Z: -0.488 Rdelta: 0.03949
#> 14 Number of features: 9 Max AUC: 0.301 AUC: 0.294 Z: -0.665 Rdelta: 0.04554
#> 15 Number of features: 9 Max AUC: 0.301 AUC: 0.267 Z: -0.716 Rdelta: 0.03643
#> 16 Number of features: 9 Max AUC: 0.301 AUC: 0.281 Z: -0.747 Rdelta: 0.02915
#> 17 Number of features: 9 Max AUC: 0.301 AUC: 0.282 Z: -0.739 Rdelta: 0.02332
#> 18 Number of features: 9 Max AUC: 0.301 AUC: 0.271 Z: -0.653 Rdelta: 0.01865
#> 19 Number of features: 9 Max AUC: 0.301 AUC: 0.276 Z: -0.700 Rdelta: 0.01492
#> 20 Number of features: 9 Max AUC: 0.301 AUC: 0.240 Z: -0.752 Rdelta: 0.01194
#> 21 Number of features: 9 Max AUC: 0.301 AUC: 0.281 Z: -0.691 Rdelta: 0.00955
#> 22 Number of features: 9 Max AUC: 0.301 AUC: 0.271 Z: -0.741 Rdelta: 0.00764
#> 23 Number of features: 9 Max AUC: 0.301 AUC: 0.268 Z: -0.738 Rdelta: 0.00611
#> 24 Number of features: 9 Max AUC: 0.301 AUC: 0.250 Z: -0.744 Rdelta: 0.00489
#> 25 Number of features: 9 Max AUC: 0.301 AUC: 0.259 Z: -0.773 Rdelta: 0.00391
#> 26 Number of features: 9 Max AUC: 0.301 AUC: 0.261 Z: -0.705 Rdelta: 0.00313
#> 27 Number of features: 9 Max AUC: 0.301 AUC: 0.265 Z: -0.805 Rdelta: 0.00250
#> 28 Number of features: 9 Max AUC: 0.301 AUC: 0.269 Z: -0.670 Rdelta: 0.00200
#> 29 Number of features: 10 Max AUC: 0.301 AUC: 0.292 Z: -0.724 Rdelta: 0.01180
#> 30 Number of features: 10 Max AUC: 0.301 AUC: 0.244 Z: -0.689 Rdelta: 0.00944
#> 31 Number of features: 10 Max AUC: 0.301 AUC: 0.264 Z: -0.703 Rdelta: 0.00755
#> 32 Number of features: 11 Max AUC: 0.301 AUC: 0.285 Z: -0.634 Rdelta: 0.01680
#> 33 Number of features: 12 Max AUC: 0.301 AUC: 0.289 Z: -0.709 Rdelta: 0.02512
#> 34 Number of features: 13 Max AUC: 0.301 AUC: 0.290 Z: -0.658 Rdelta: 0.03261
#> 35 Number of features: 13 Max AUC: 0.301 AUC: 0.263 Z: -0.736 Rdelta: 0.02609
#> 36 Number of features: 13 Max AUC: 0.301 AUC: 0.274 Z: -0.635 Rdelta: 0.02087
#> 37 Number of features: 13 Max AUC: 0.301 AUC: 0.274 Z: -0.642 Rdelta: 0.01669
#> 38 Number of features: 13 Max AUC: 0.301 AUC: 0.274 Z: -0.717 Rdelta: 0.01336
#> 39 Number of features: 13 Max AUC: 0.301 AUC: 0.266 Z: -0.727 Rdelta: 0.01068
#> 40 Number of features: 13 Max AUC: 0.301 AUC: 0.241 Z: -0.742 Rdelta: 0.00855
#> 41 Number of features: 13 Max AUC: 0.301 AUC: 0.268 Z: -0.653 Rdelta: 0.00684
#> 42 Number of features: 13 Max AUC: 0.301 AUC: 0.243 Z: -0.793 Rdelta: 0.00547
#> 43 Number of features: 14 Max AUC: 0.413 AUC: 0.413 Z: -0.376 Rdelta: 0.01492
#> 44 Number of features: 15 Max AUC: 0.489 AUC: 0.489 Z: -0.045 Rdelta: 0.02343
#> 45 Number of features: 16 Max AUC: 0.493 AUC: 0.493 Z: 0.002 Rdelta: 0.03109
#> 46 Number of features: 16 Max AUC: 0.493 AUC: 0.485 Z: -0.048 Rdelta: 0.02487
#> 47 Number of features: 16 Max AUC: 0.493 AUC: 0.476 Z: -0.030 Rdelta: 0.01990
#> 48 Number of features: 17 Max AUC: 0.535 AUC: 0.535 Z: 0.081 Rdelta: 0.02791
#> 49 Number of features: 17 Max AUC: 0.535 AUC: 0.520 Z: 0.050 Rdelta: 0.02233
#> 50 Number of features: 17 Max AUC: 0.535 AUC: 0.519 Z: 0.006 Rdelta: 0.01786
#> 51 Number of features: 18 Max AUC: 0.536 AUC: 0.536 Z: 0.047 Rdelta: 0.02607
#> 52 Number of features: 19 Max AUC: 0.575 AUC: 0.575 Z: 0.145 Rdelta: 0.03347
#> 53 Number of features: 19 Max AUC: 0.575 AUC: 0.528 Z: 0.008 Rdelta: 0.02677
#> 54 Number of features: 19 Max AUC: 0.575 AUC: 0.537 Z: -0.006 Rdelta: 0.02142
#> 55 Number of features: 19 Max AUC: 0.575 AUC: 0.497 Z: -0.045 Rdelta: 0.01714
#> 56 Number of features: 19 Max AUC: 0.575 AUC: 0.555 Z: 0.138 Rdelta: 0.01371
#> 57 Number of features: 19 Max AUC: 0.575 AUC: 0.557 Z: 0.178 Rdelta: 0.01097
#> 58 Number of features: 19 Max AUC: 0.575 AUC: 0.491 Z: 0.031 Rdelta: 0.00877
#> 59 Number of features: 19 Max AUC: 0.575 AUC: 0.536 Z: 0.026 Rdelta: 0.00702
#> 60 Number of features: 19 Max AUC: 0.575 AUC: 0.514 Z: -0.003 Rdelta: 0.00561
#> 61 Number of features: 19 Max AUC: 0.575 AUC: 0.543 Z: 0.015 Rdelta: 0.00449
#> 62 Number of features: 19 Max AUC: 0.575 AUC: 0.547 Z: 0.017 Rdelta: 0.00359
#> 63 Number of features: 19 Max AUC: 0.575 AUC: 0.551 Z: 0.007 Rdelta: 0.00287
#> 64 Number of features: 19 Max AUC: 0.575 AUC: 0.565 Z: 0.133 Rdelta: 0.00230
#> 65 Number of features: 19 Max AUC: 0.575 AUC: 0.541 Z: 0.076 Rdelta: 0.00184
#> 66 Number of features: 19 Max AUC: 0.575 AUC: 0.557 Z: 0.097 Rdelta: 0.00147
#> 67 Number of features: 19 Max AUC: 0.575 AUC: 0.537 Z: 0.033 Rdelta: 0.00118
#> 68 Number of features: 19 Max AUC: 0.575 AUC: 0.532 Z: 0.028 Rdelta: 0.00094
#> 69 Number of features: 19 Max AUC: 0.575 AUC: 0.562 Z: 0.115 Rdelta: 0.00075
#> 70 Number of features: 19 Max AUC: 0.575 AUC: 0.536 Z: 0.061 Rdelta: 0.00060
#> 71 Number of features: 19 Max AUC: 0.575 AUC: 0.541 Z: 0.074 Rdelta: 0.00048
#> 72 Number of features: 19 Max AUC: 0.575 AUC: 0.550 Z: 0.150 Rdelta: 0.00039
#> 73 Number of features: 19 Max AUC: 0.575 AUC: 0.565 Z: 0.112 Rdelta: 0.00031
#> 74 Number of features: 19 Max AUC: 0.575 AUC: 0.553 Z: 0.026 Rdelta: 0.00025
#> 75 Number of features: 19 Max AUC: 0.575 AUC: 0.537 Z: 0.034 Rdelta: 0.00020
#> 76 Number of features: 19 Max AUC: 0.575 AUC: 0.541 Z: 0.036 Rdelta: 0.00016
#> 77 Number of features: 20 Max AUC: 0.575 AUC: 0.570 Z: 0.103 Rdelta: 0.01014
#> 78 Number of features: 20 Max AUC: 0.575 AUC: 0.544 Z: 0.074 Rdelta: 0.00811
#> 79 Number of features: 20 Max AUC: 0.575 AUC: 0.530 Z: 0.002 Rdelta: 0.00649
#> 80 Number of features: 20 Max AUC: 0.575 AUC: 0.533 Z: 0.006 Rdelta: 0.00519
#> 81 Number of features: 20 Max AUC: 0.575 AUC: 0.504 Z: 0.030 Rdelta: 0.00415
#> 82 Number of features: 20 Max AUC: 0.575 AUC: 0.549 Z: 0.086 Rdelta: 0.00332
#> 83 Number of features: 20 Max AUC: 0.575 AUC: 0.541 Z: 0.087 Rdelta: 0.00266
#> 84 Number of features: 20 Max AUC: 0.575 AUC: 0.526 Z: 0.036 Rdelta: 0.00213
#> 85 Number of features: 21 Max AUC: 0.575 AUC: 0.570 Z: 0.008 Rdelta: 0.01191
#> 86 Number of features: 21 Max AUC: 0.575 AUC: 0.558 Z: 0.007 Rdelta: 0.00953
#> 87 Number of features: 21 Max AUC: 0.575 AUC: 0.555 Z: 0.068 Rdelta: 0.00763
#> 88 Number of features: 22 Max AUC: 0.575 AUC: 0.566 Z: 0.170 Rdelta: 0.01686
#> 89 Number of features: 23 Max AUC: 0.575 AUC: 0.570 Z: 0.032 Rdelta: 0.02518
#> 90 Number of features: 23 Max AUC: 0.575 AUC: 0.517 Z: 0.008 Rdelta: 0.02014
#> 91 Number of features: 23 Max AUC: 0.575 AUC: 0.535 Z: 0.009 Rdelta: 0.01611
#> 92 Number of features: 23 Max AUC: 0.575 AUC: 0.550 Z: 0.104 Rdelta: 0.01289
#> 93 Number of features: 23 Max AUC: 0.575 AUC: 0.536 Z: 0.051 Rdelta: 0.01031
#> 94 Number of features: 23 Max AUC: 0.575 AUC: 0.546 Z: 0.119 Rdelta: 0.00825
#> 95 Number of features: 23 Max AUC: 0.575 AUC: 0.527 Z: -0.003 Rdelta: 0.00660
#> 96 Number of features: 24 Max AUC: 0.601 AUC: 0.601 Z: 0.085 Rdelta: 0.01594
#> 97 Number of features: 25 Max AUC: 0.601 AUC: 0.596 Z: 0.167 Rdelta: 0.02435
#> 98 Number of features: 25 Max AUC: 0.601 AUC: 0.553 Z: 0.024 Rdelta: 0.01948
#> 99 Number of features: 25 Max AUC: 0.601 AUC: 0.592 Z: 0.009 Rdelta: 0.01558
#> 100 Number of features: 25 Max AUC: 0.601 AUC: 0.555 Z: 0.111 Rdelta: 0.01247
#> 101 Number of features: 25 Max AUC: 0.601 AUC: 0.582 Z: 0.145 Rdelta: 0.00997
#> 102 Number of features: 25 Max AUC: 0.601 AUC: 0.581 Z: 0.040 Rdelta: 0.00798
#> 103 Number of features: 25 Max AUC: 0.601 AUC: 0.588 Z: 0.265 Rdelta: 0.00638
#> 104 Number of features: 26 Max AUC: 0.608 AUC: 0.608 Z: 0.196 Rdelta: 0.01574
#> 105 Number of features: 26 Max AUC: 0.608 AUC: 0.602 Z: 0.148 Rdelta: 0.01260
#> 106 Number of features: 26 Max AUC: 0.608 AUC: 0.556 Z: 0.040 Rdelta: 0.01008
#> 107 Number of features: 26 Max AUC: 0.608 AUC: 0.572 Z: 0.085 Rdelta: 0.00806
#> 108 Number of features: 26 Max AUC: 0.608 AUC: 0.572 Z: 0.130 Rdelta: 0.00645
#> 109 Number of features: 26 Max AUC: 0.608 AUC: 0.566 Z: 0.083 Rdelta: 0.00516
#> 110 Number of features: 26 Max AUC: 0.608 AUC: 0.574 Z: 0.095 Rdelta: 0.00413
#> 111 Number of features: 26 Max AUC: 0.608 AUC: 0.590 Z: 0.119 Rdelta: 0.00330
#> 112 Number of features: 26 Max AUC: 0.608 AUC: 0.580 Z: 0.094 Rdelta: 0.00264
#> 113 Number of features: 26 Max AUC: 0.608 AUC: 0.582 Z: 0.114 Rdelta: 0.00211
#> 114 Number of features: 26 Max AUC: 0.608 AUC: 0.578 Z: 0.032 Rdelta: 0.00169
#> 115 Number of features: 26 Max AUC: 0.608 AUC: 0.600 Z: 0.069 Rdelta: 0.00135
#> 116 Number of features: 26 Max AUC: 0.608 AUC: 0.543 Z: 0.023 Rdelta: 0.00108
#> 117 Number of features: 26 Max AUC: 0.608 AUC: 0.576 Z: 0.226 Rdelta: 0.00087
#> 118 Number of features: 26 Max AUC: 0.608 AUC: 0.564 Z: 0.060 Rdelta: 0.00069
#> 119 Number of features: 26 Max AUC: 0.608 AUC: 0.572 Z: 0.099 Rdelta: 0.00055
#> 120 Number of features: 27 Max AUC: 0.641 AUC: 0.641 Z: 0.221 Rdelta: 0.01050
#> 121 Number of features: 27 Max AUC: 0.641 AUC: 0.615 Z: 0.048 Rdelta: 0.00840
#> 122 Number of features: 28 Max AUC: 0.647 AUC: 0.647 Z: 0.101 Rdelta: 0.01756
#> 123 Number of features: 29 Max AUC: 0.647 AUC: 0.642 Z: 0.197 Rdelta: 0.02580
#> 124 Number of features: 29 Max AUC: 0.647 AUC: 0.622 Z: 0.045 Rdelta: 0.02064
#> 125 Number of features: 29 Max AUC: 0.647 AUC: 0.625 Z: 0.180 Rdelta: 0.01651
#> 126 Number of features: 29 Max AUC: 0.647 AUC: 0.605 Z: 0.003 Rdelta: 0.01321
#> 127 Number of features: 30 Max AUC: 0.647 AUC: 0.641 Z: 0.075 Rdelta: 0.02189
#> 128 Number of features: 30 Max AUC: 0.647 AUC: 0.635 Z: 0.010 Rdelta: 0.01751
#> 129 Number of features: 31 Max AUC: 0.647 AUC: 0.647 Z: 0.310 Rdelta: 0.02576
#> 130 Number of features: 31 Max AUC: 0.647 AUC: 0.613 Z: 0.011 Rdelta: 0.02061
#> 131 Number of features: 31 Max AUC: 0.647 AUC: 0.607 Z: 0.209 Rdelta: 0.01649
#> 132 Number of features: 31 Max AUC: 0.647 AUC: 0.626 Z: 0.080 Rdelta: 0.01319
#> 133 Number of features: 31 Max AUC: 0.647 AUC: 0.610 Z: 0.035 Rdelta: 0.01055
#> 134 Number of features: 31 Max AUC: 0.647 AUC: 0.614 Z: 0.040 Rdelta: 0.00844
#> 135 Number of features: 31 Max AUC: 0.647 AUC: 0.612 Z: 0.197 Rdelta: 0.00675
#> 136 Number of features: 31 Max AUC: 0.647 AUC: 0.589 Z: 0.076 Rdelta: 0.00540
#> 137 Number of features: 31 Max AUC: 0.647 AUC: 0.593 Z: 0.092 Rdelta: 0.00432
#> 138 Number of features: 31 Max AUC: 0.647 AUC: 0.604 Z: 0.066 Rdelta: 0.00346
#> 139 Number of features: 31 Max AUC: 0.647 AUC: 0.622 Z: 0.237 Rdelta: 0.00277
#> 140 Number of features: 31 Max AUC: 0.647 AUC: 0.640 Z: 0.170 Rdelta: 0.00221
#> 141 Number of features: 31 Max AUC: 0.647 AUC: 0.634 Z: 0.248 Rdelta: 0.00177
#> 142 Number of features: 31 Max AUC: 0.647 AUC: 0.624 Z: 0.227 Rdelta: 0.00142
#> 143 Number of features: 31 Max AUC: 0.647 AUC: 0.591 Z: 0.049 Rdelta: 0.00113
#> 144 Number of features: 31 Max AUC: 0.647 AUC: 0.607 Z: 0.015 Rdelta: 0.00091
#> 145 Number of features: 31 Max AUC: 0.647 AUC: 0.552 Z: -0.044 Rdelta: 0.00073
#> 146 Number of features: 31 Max AUC: 0.647 AUC: 0.630 Z: 0.286 Rdelta: 0.00058
#> 147 Number of features: 31 Max AUC: 0.647 AUC: 0.630 Z: 0.064 Rdelta: 0.00046
#> 148 Number of features: 31 Max AUC: 0.647 AUC: 0.614 Z: 0.183 Rdelta: 0.00037
#> 149 Number of features: 31 Max AUC: 0.647 AUC: 0.628 Z: 0.149 Rdelta: 0.00030
#> 150 Number of features: 31 Max AUC: 0.647 AUC: 0.608 Z: 0.144 Rdelta: 0.00024
#> 151 Number of features: 31 Max AUC: 0.647 AUC: 0.632 Z: 0.176 Rdelta: 0.00019
#> 152 Number of features: 31 Max AUC: 0.647 AUC: 0.614 Z: 0.099 Rdelta: 0.00015
#> 153 Number of features: 31 Max AUC: 0.647 AUC: 0.597 Z: 0.058 Rdelta: 0.00012
#> 154 Number of features: 31 Max AUC: 0.647 AUC: 0.595 Z: 0.180 Rdelta: 0.00010
#> user system elapsed
#> 50.24 0.00 50.29
testDistance_control <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#> 7 Number of features: 7 Max AUC: 0.776 AUC: 0.766 Z: 0.948 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.776 AUC: 0.767 Z: 1.474 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.810 AUC: 0.810 Z: 1.689 Rdelta: 0.10000
#> 10 Number of features: 9 Max AUC: 0.810 AUC: 0.792 Z: 1.419 Rdelta: 0.08000
#> 11 Number of features: 10 Max AUC: 0.830 AUC: 0.830 Z: 1.769 Rdelta: 0.08200
#> 12 Number of features: 11 Max AUC: 0.837 AUC: 0.837 Z: 1.792 Rdelta: 0.08380
#> 13 Number of features: 11 Max AUC: 0.837 AUC: 0.817 Z: 1.805 Rdelta: 0.06704
#> 14 Number of features: 12 Max AUC: 0.837 AUC: 0.828 Z: 1.795 Rdelta: 0.07034
#> 15 Number of features: 13 Max AUC: 0.837 AUC: 0.820 Z: 1.931 Rdelta: 0.07330
#> 16 Number of features: 14 Max AUC: 0.837 AUC: 0.822 Z: 1.974 Rdelta: 0.07597
#> 17 Number of features: 15 Max AUC: 0.837 AUC: 0.827 Z: 1.078 Rdelta: 0.07837
#> 18 Number of features: 16 Max AUC: 0.838 AUC: 0.838 Z: 0.689 Rdelta: 0.08054
#> 19 Number of features: 16 Max AUC: 0.838 AUC: 0.827 Z: 0.325 Rdelta: 0.06443
#> 20 Number of features: 17 Max AUC: 0.839 AUC: 0.839 Z: 0.647 Rdelta: 0.06799
#> 21 Number of features: 18 Max AUC: 0.839 AUC: 0.838 Z: 0.658 Rdelta: 0.07119
#> 22 Number of features: 19 Max AUC: 0.839 AUC: 0.832 Z: 0.720 Rdelta: 0.07407
#> 23 Number of features: 20 Max AUC: 0.850 AUC: 0.850 Z: 0.752 Rdelta: 0.07666
#> 24 Number of features: 21 Max AUC: 0.864 AUC: 0.864 Z: 0.510 Rdelta: 0.07900
#> 25 Number of features: 21 Max AUC: 0.864 AUC: 0.845 Z: 0.625 Rdelta: 0.06320
#> 26 Number of features: 21 Max AUC: 0.864 AUC: 0.845 Z: 0.532 Rdelta: 0.05056
#> 27 Number of features: 21 Max AUC: 0.864 AUC: 0.840 Z: 0.631 Rdelta: 0.04045
#> 28 Number of features: 22 Max AUC: 0.864 AUC: 0.854 Z: 0.493 Rdelta: 0.04640
#> 29 Number of features: 22 Max AUC: 0.864 AUC: 0.849 Z: 0.478 Rdelta: 0.03712
#> 30 Number of features: 22 Max AUC: 0.864 AUC: 0.838 Z: 0.570 Rdelta: 0.02970
#> 31 Number of features: 22 Max AUC: 0.864 AUC: 0.848 Z: 0.574 Rdelta: 0.02376
#> 32 Number of features: 23 Max AUC: 0.864 AUC: 0.858 Z: 0.412 Rdelta: 0.03138
#> 33 Number of features: 23 Max AUC: 0.864 AUC: 0.836 Z: 0.543 Rdelta: 0.02511
#> 34 Number of features: 23 Max AUC: 0.864 AUC: 0.836 Z: 0.411 Rdelta: 0.02008
#> 35 Number of features: 23 Max AUC: 0.864 AUC: 0.830 Z: 0.551 Rdelta: 0.01607
#> 36 Number of features: 24 Max AUC: 0.864 AUC: 0.857 Z: 0.447 Rdelta: 0.02446
#> 37 Number of features: 24 Max AUC: 0.864 AUC: 0.823 Z: 0.342 Rdelta: 0.01957
#> 38 Number of features: 25 Max AUC: 0.864 AUC: 0.855 Z: 0.476 Rdelta: 0.02761
#> 39 Number of features: 25 Max AUC: 0.864 AUC: 0.841 Z: 0.483 Rdelta: 0.02209
#> 40 Number of features: 26 Max AUC: 0.864 AUC: 0.861 Z: 0.462 Rdelta: 0.02988
#> 41 Number of features: 27 Max AUC: 0.864 AUC: 0.864 Z: 0.409 Rdelta: 0.03689
#> 42 Number of features: 27 Max AUC: 0.864 AUC: 0.851 Z: 0.141 Rdelta: 0.02951
#> 43 Number of features: 27 Max AUC: 0.864 AUC: 0.843 Z: 0.529 Rdelta: 0.02361
#> 44 Number of features: 27 Max AUC: 0.864 AUC: 0.847 Z: 0.520 Rdelta: 0.01889
#> 45 Number of features: 27 Max AUC: 0.864 AUC: 0.851 Z: 0.533 Rdelta: 0.01511
#> 46 Number of features: 27 Max AUC: 0.864 AUC: 0.838 Z: 0.543 Rdelta: 0.01209
#> 47 Number of features: 28 Max AUC: 0.864 AUC: 0.858 Z: 0.529 Rdelta: 0.02088
#> 48 Number of features: 29 Max AUC: 0.864 AUC: 0.863 Z: 0.129 Rdelta: 0.02879
#> 49 Number of features: 30 Max AUC: 0.864 AUC: 0.853 Z: 0.544 Rdelta: 0.03591
#> 50 Number of features: 31 Max AUC: 0.864 AUC: 0.857 Z: 0.701 Rdelta: 0.04232
#> 51 Number of features: 31 Max AUC: 0.864 AUC: 0.841 Z: 0.467 Rdelta: 0.03386
#> 52 Number of features: 32 Max AUC: 0.864 AUC: 0.861 Z: 0.576 Rdelta: 0.04047
#> 53 Number of features: 33 Max AUC: 0.864 AUC: 0.852 Z: 0.617 Rdelta: 0.04642
#> 54 Number of features: 33 Max AUC: 0.864 AUC: 0.848 Z: 0.367 Rdelta: 0.03714
#> 55 Number of features: 34 Max AUC: 0.864 AUC: 0.859 Z: 0.518 Rdelta: 0.04343
#> 56 Number of features: 35 Max AUC: 0.864 AUC: 0.862 Z: 0.489 Rdelta: 0.04908
#> 57 Number of features: 36 Max AUC: 0.864 AUC: 0.863 Z: 0.585 Rdelta: 0.05417
#> 58 Number of features: 36 Max AUC: 0.864 AUC: 0.812 Z: 0.662 Rdelta: 0.04334
#> 59 Number of features: 36 Max AUC: 0.864 AUC: 0.854 Z: 0.539 Rdelta: 0.03467
#> 60 Number of features: 37 Max AUC: 0.864 AUC: 0.864 Z: 0.539 Rdelta: 0.04120
#> 61 Number of features: 38 Max AUC: 0.864 AUC: 0.862 Z: 0.510 Rdelta: 0.04708
#> 62 Number of features: 38 Max AUC: 0.864 AUC: 0.814 Z: 0.546 Rdelta: 0.03767
#> 63 Number of features: 39 Max AUC: 0.864 AUC: 0.861 Z: 0.565 Rdelta: 0.04390
#> 64 Number of features: 40 Max AUC: 0.864 AUC: 0.862 Z: 0.563 Rdelta: 0.04951
#> 65 Number of features: 41 Max AUC: 0.864 AUC: 0.856 Z: 0.488 Rdelta: 0.05456
#> 66 Number of features: 42 Max AUC: 0.864 AUC: 0.854 Z: 0.584 Rdelta: 0.05910
#> 67 Number of features: 42 Max AUC: 0.864 AUC: 0.851 Z: 0.568 Rdelta: 0.04728
#> 68 Number of features: 42 Max AUC: 0.864 AUC: 0.843 Z: 0.540 Rdelta: 0.03783
#> 69 Number of features: 42 Max AUC: 0.864 AUC: 0.840 Z: 0.368 Rdelta: 0.03026
#> 70 Number of features: 43 Max AUC: 0.864 AUC: 0.859 Z: 0.592 Rdelta: 0.03723
#> 71 Number of features: 44 Max AUC: 0.864 AUC: 0.857 Z: 0.537 Rdelta: 0.04351
#> 72 Number of features: 44 Max AUC: 0.864 AUC: 0.847 Z: 0.551 Rdelta: 0.03481
#> 73 Number of features: 45 Max AUC: 0.864 AUC: 0.851 Z: 0.556 Rdelta: 0.04133
#> 74 Number of features: 45 Max AUC: 0.864 AUC: 0.844 Z: 0.551 Rdelta: 0.03306
#> 75 Number of features: 46 Max AUC: 0.864 AUC: 0.861 Z: 0.634 Rdelta: 0.03976
#> 76 Number of features: 46 Max AUC: 0.864 AUC: 0.838 Z: 0.482 Rdelta: 0.03181
#> 77 Number of features: 46 Max AUC: 0.864 AUC: 0.820 Z: 0.442 Rdelta: 0.02544
#> 78 Number of features: 46 Max AUC: 0.864 AUC: 0.844 Z: 0.538 Rdelta: 0.02036
#> 79 Number of features: 47 Max AUC: 0.864 AUC: 0.857 Z: 0.562 Rdelta: 0.02832
#> 80 Number of features: 47 Max AUC: 0.864 AUC: 0.848 Z: 0.409 Rdelta: 0.02266
#> 81 Number of features: 47 Max AUC: 0.864 AUC: 0.848 Z: 0.579 Rdelta: 0.01812
#> 82 Number of features: 47 Max AUC: 0.864 AUC: 0.846 Z: 0.536 Rdelta: 0.01450
#> 83 Number of features: 48 Max AUC: 0.864 AUC: 0.860 Z: 0.497 Rdelta: 0.02305
#> 84 Number of features: 48 Max AUC: 0.864 AUC: 0.843 Z: 0.235 Rdelta: 0.01844
#> 85 Number of features: 48 Max AUC: 0.864 AUC: 0.843 Z: 0.581 Rdelta: 0.01475
#> 86 Number of features: 49 Max AUC: 0.864 AUC: 0.854 Z: 0.471 Rdelta: 0.02328
#> 87 Number of features: 49 Max AUC: 0.864 AUC: 0.835 Z: 0.450 Rdelta: 0.01862
#> 88 Number of features: 49 Max AUC: 0.864 AUC: 0.809 Z: 0.542 Rdelta: 0.01490
#> 89 Number of features: 49 Max AUC: 0.864 AUC: 0.824 Z: 0.495 Rdelta: 0.01192
#> 90 Number of features: 49 Max AUC: 0.864 AUC: 0.851 Z: 0.607 Rdelta: 0.00953
#> 91 Number of features: 50 Max AUC: 0.864 AUC: 0.860 Z: 0.504 Rdelta: 0.01858
#> 92 Number of features: 50 Max AUC: 0.864 AUC: 0.850 Z: 0.544 Rdelta: 0.01486
#> 93 Number of features: 50 Max AUC: 0.864 AUC: 0.841 Z: 0.553 Rdelta: 0.01189
#> 94 Number of features: 50 Max AUC: 0.864 AUC: 0.833 Z: 0.529 Rdelta: 0.00951
#> 95 Number of features: 50 Max AUC: 0.864 AUC: 0.835 Z: 0.571 Rdelta: 0.00761
#> 96 Number of features: 50 Max AUC: 0.864 AUC: 0.818 Z: 0.550 Rdelta: 0.00609
#> 97 Number of features: 50 Max AUC: 0.864 AUC: 0.843 Z: 0.540 Rdelta: 0.00487
#> 98 Number of features: 50 Max AUC: 0.864 AUC: 0.845 Z: 0.571 Rdelta: 0.00390
#> 99 Number of features: 50 Max AUC: 0.864 AUC: 0.824 Z: 0.502 Rdelta: 0.00312
#> 100 Number of features: 50 Max AUC: 0.864 AUC: 0.820 Z: 0.480 Rdelta: 0.00249
#> 101 Number of features: 51 Max AUC: 0.864 AUC: 0.856 Z: 0.539 Rdelta: 0.01224
#> 102 Number of features: 51 Max AUC: 0.864 AUC: 0.847 Z: 0.493 Rdelta: 0.00980
#> 103 Number of features: 52 Max AUC: 0.864 AUC: 0.857 Z: 0.509 Rdelta: 0.01882
#> 104 Number of features: 52 Max AUC: 0.864 AUC: 0.842 Z: 0.505 Rdelta: 0.01505
#> 105 Number of features: 52 Max AUC: 0.864 AUC: 0.804 Z: 0.550 Rdelta: 0.01204
#> 106 Number of features: 52 Max AUC: 0.864 AUC: 0.825 Z: 0.448 Rdelta: 0.00963
#> 107 Number of features: 52 Max AUC: 0.864 AUC: 0.847 Z: 0.507 Rdelta: 0.00771
#> 108 Number of features: 52 Max AUC: 0.864 AUC: 0.833 Z: 0.509 Rdelta: 0.00617
#> 109 Number of features: 52 Max AUC: 0.864 AUC: 0.850 Z: 0.476 Rdelta: 0.00493
#> 110 Number of features: 52 Max AUC: 0.864 AUC: 0.834 Z: 0.565 Rdelta: 0.00395
#> 111 Number of features: 52 Max AUC: 0.864 AUC: 0.847 Z: 0.532 Rdelta: 0.00316
#> 112 Number of features: 52 Max AUC: 0.864 AUC: 0.836 Z: 0.217 Rdelta: 0.00253
#> 113 Number of features: 52 Max AUC: 0.864 AUC: 0.840 Z: 0.602 Rdelta: 0.00202
#> 114 Number of features: 53 Max AUC: 0.864 AUC: 0.851 Z: 0.509 Rdelta: 0.01182
#> 115 Number of features: 53 Max AUC: 0.864 AUC: 0.839 Z: 0.576 Rdelta: 0.00945
#> 116 Number of features: 53 Max AUC: 0.864 AUC: 0.843 Z: 0.516 Rdelta: 0.00756
#> 117 Number of features: 53 Max AUC: 0.864 AUC: 0.836 Z: 0.506 Rdelta: 0.00605
#> 118 Number of features: 53 Max AUC: 0.864 AUC: 0.841 Z: 0.289 Rdelta: 0.00484
#> 119 Number of features: 53 Max AUC: 0.864 AUC: 0.842 Z: 0.489 Rdelta: 0.00387
#> 120 Number of features: 53 Max AUC: 0.864 AUC: 0.825 Z: 0.538 Rdelta: 0.00310
#> 121 Number of features: 53 Max AUC: 0.864 AUC: 0.822 Z: 0.276 Rdelta: 0.00248
#> 122 Number of features: 53 Max AUC: 0.864 AUC: 0.849 Z: 0.578 Rdelta: 0.00198
#> 123 Number of features: 53 Max AUC: 0.864 AUC: 0.834 Z: 0.224 Rdelta: 0.00159
#> 124 Number of features: 54 Max AUC: 0.864 AUC: 0.860 Z: 0.621 Rdelta: 0.01143
#> 125 Number of features: 54 Max AUC: 0.864 AUC: 0.841 Z: 0.316 Rdelta: 0.00914
#> 126 Number of features: 54 Max AUC: 0.864 AUC: 0.823 Z: 0.521 Rdelta: 0.00731
#> 127 Number of features: 54 Max AUC: 0.864 AUC: 0.825 Z: 0.580 Rdelta: 0.00585
#> 128 Number of features: 54 Max AUC: 0.864 AUC: 0.819 Z: 0.502 Rdelta: 0.00468
#> 129 Number of features: 55 Max AUC: 0.864 AUC: 0.856 Z: 0.599 Rdelta: 0.01421
#> 130 Number of features: 55 Max AUC: 0.864 AUC: 0.840 Z: 0.438 Rdelta: 0.01137
#> 131 Number of features: 55 Max AUC: 0.864 AUC: 0.818 Z: 0.385 Rdelta: 0.00910
#> 132 Number of features: 55 Max AUC: 0.864 AUC: 0.833 Z: 0.481 Rdelta: 0.00728
#> 133 Number of features: 55 Max AUC: 0.864 AUC: 0.834 Z: 0.361 Rdelta: 0.00582
#> 134 Number of features: 55 Max AUC: 0.864 AUC: 0.841 Z: 0.482 Rdelta: 0.00466
#> 135 Number of features: 55 Max AUC: 0.864 AUC: 0.838 Z: 0.574 Rdelta: 0.00373
#> 136 Number of features: 55 Max AUC: 0.864 AUC: 0.834 Z: 0.513 Rdelta: 0.00298
#> 137 Number of features: 55 Max AUC: 0.864 AUC: 0.797 Z: 0.498 Rdelta: 0.00238
#> 138 Number of features: 55 Max AUC: 0.864 AUC: 0.818 Z: 0.464 Rdelta: 0.00191
#> 139 Number of features: 55 Max AUC: 0.864 AUC: 0.834 Z: 0.479 Rdelta: 0.00153
#> 140 Number of features: 55 Max AUC: 0.864 AUC: 0.791 Z: 0.466 Rdelta: 0.00122
#> 141 Number of features: 55 Max AUC: 0.864 AUC: 0.824 Z: 0.587 Rdelta: 0.00098
#> 142 Number of features: 55 Max AUC: 0.864 AUC: 0.838 Z: 0.476 Rdelta: 0.00078
#> 143 Number of features: 55 Max AUC: 0.864 AUC: 0.840 Z: 0.236 Rdelta: 0.00063
#> 144 Number of features: 55 Max AUC: 0.864 AUC: 0.834 Z: 0.339 Rdelta: 0.00050
#> 145 Number of features: 56 Max AUC: 0.864 AUC: 0.862 Z: 0.542 Rdelta: 0.01045
#> 146 Number of features: 56 Max AUC: 0.864 AUC: 0.844 Z: 0.559 Rdelta: 0.00836
#> 147 Number of features: 56 Max AUC: 0.864 AUC: 0.807 Z: 0.568 Rdelta: 0.00669
#> 148 Number of features: 56 Max AUC: 0.864 AUC: 0.812 Z: 0.576 Rdelta: 0.00535
#> 149 Number of features: 56 Max AUC: 0.864 AUC: 0.822 Z: 0.643 Rdelta: 0.00428
#> 150 Number of features: 56 Max AUC: 0.864 AUC: 0.819 Z: 0.463 Rdelta: 0.00342
#> 151 Number of features: 57 Max AUC: 0.864 AUC: 0.852 Z: 0.637 Rdelta: 0.01308
#> 152 Number of features: 57 Max AUC: 0.864 AUC: 0.806 Z: 0.499 Rdelta: 0.01047
#> 153 Number of features: 57 Max AUC: 0.864 AUC: 0.841 Z: 0.360 Rdelta: 0.00837
#> 154 Number of features: 57 Max AUC: 0.864 AUC: 0.793 Z: 0.570 Rdelta: 0.00670
#> 155 Number of features: 57 Max AUC: 0.864 AUC: 0.801 Z: 0.590 Rdelta: 0.00536
#> 156 Number of features: 57 Max AUC: 0.864 AUC: 0.836 Z: 0.396 Rdelta: 0.00429
#> 157 Number of features: 57 Max AUC: 0.864 AUC: 0.822 Z: 0.491 Rdelta: 0.00343
#> 158 Number of features: 57 Max AUC: 0.864 AUC: 0.841 Z: 0.592 Rdelta: 0.00274
#> 159 Number of features: 57 Max AUC: 0.864 AUC: 0.839 Z: 0.569 Rdelta: 0.00219
#> 160 Number of features: 57 Max AUC: 0.864 AUC: 0.796 Z: 0.416 Rdelta: 0.00176
#> 161 Number of features: 57 Max AUC: 0.864 AUC: 0.828 Z: 0.532 Rdelta: 0.00140
#> 162 Number of features: 57 Max AUC: 0.864 AUC: 0.824 Z: 0.366 Rdelta: 0.00112
#> 163 Number of features: 57 Max AUC: 0.864 AUC: 0.835 Z: 0.566 Rdelta: 0.00090
#> 164 Number of features: 57 Max AUC: 0.864 AUC: 0.807 Z: 0.389 Rdelta: 0.00072
#> 165 Number of features: 57 Max AUC: 0.864 AUC: 0.823 Z: 0.515 Rdelta: 0.00058
#> 166 Number of features: 57 Max AUC: 0.864 AUC: 0.827 Z: 0.310 Rdelta: 0.00046
#> 167 Number of features: 57 Max AUC: 0.864 AUC: 0.819 Z: 0.541 Rdelta: 0.00037
#> 168 Number of features: 57 Max AUC: 0.864 AUC: 0.846 Z: 0.608 Rdelta: 0.00029
#> 169 Number of features: 57 Max AUC: 0.864 AUC: 0.830 Z: 0.514 Rdelta: 0.00024
#> 170 Number of features: 57 Max AUC: 0.864 AUC: 0.834 Z: 0.301 Rdelta: 0.00019
#> 171 Number of features: 57 Max AUC: 0.864 AUC: 0.812 Z: 0.104 Rdelta: 0.00015
#> 172 Number of features: 57 Max AUC: 0.864 AUC: 0.822 Z: 0.556 Rdelta: 0.00012
#> 173 Number of features: 57 Max AUC: 0.864 AUC: 0.830 Z: 0.598 Rdelta: 0.00010
#> user system elapsed
#> 93.21 0.00 93.32
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################
varlist <- names(arceneCVTwo$bagging$frequencyTable)
#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#> 7 Number of features: 7 Max AUC: 0.525 AUC: 0.525 Z: 0.083 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.525 AUC: 0.525 Z: 0.066 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.525 AUC: 0.517 Z: 0.062 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.534 AUC: 0.534 Z: 0.066 Rdelta: 0.10000
#> 11 Number of features: 10 Max AUC: 0.534 AUC: 0.522 Z: 0.098 Rdelta: 0.08000
#> 12 Number of features: 10 Max AUC: 0.534 AUC: 0.504 Z: -0.009 Rdelta: 0.06400
#> 13 Number of features: 11 Max AUC: 0.534 AUC: 0.524 Z: 0.100 Rdelta: 0.06760
#> 14 Number of features: 12 Max AUC: 0.534 AUC: 0.520 Z: 0.068 Rdelta: 0.07084
#> 15 Number of features: 13 Max AUC: 0.534 AUC: 0.526 Z: 0.111 Rdelta: 0.07376
#> 16 Number of features: 14 Max AUC: 0.540 AUC: 0.540 Z: 0.161 Rdelta: 0.07638
#> 17 Number of features: 15 Max AUC: 0.560 AUC: 0.560 Z: 0.273 Rdelta: 0.07874
#> 18 Number of features: 15 Max AUC: 0.560 AUC: 0.543 Z: 0.174 Rdelta: 0.06299
#> 19 Number of features: 15 Max AUC: 0.560 AUC: 0.545 Z: 0.191 Rdelta: 0.05040
#> 20 Number of features: 15 Max AUC: 0.560 AUC: 0.540 Z: 0.105 Rdelta: 0.04032
#> 21 Number of features: 15 Max AUC: 0.560 AUC: 0.529 Z: 0.085 Rdelta: 0.03225
#> 22 Number of features: 15 Max AUC: 0.560 AUC: 0.530 Z: 0.135 Rdelta: 0.02580
#> 23 Number of features: 15 Max AUC: 0.560 AUC: 0.527 Z: 0.109 Rdelta: 0.02064
#> 24 Number of features: 16 Max AUC: 0.706 AUC: 0.706 Z: 0.880 Rdelta: 0.02858
#> 25 Number of features: 17 Max AUC: 0.708 AUC: 0.708 Z: 0.948 Rdelta: 0.03572
#> 26 Number of features: 18 Max AUC: 0.713 AUC: 0.713 Z: 0.962 Rdelta: 0.04215
#> 27 Number of features: 19 Max AUC: 0.713 AUC: 0.713 Z: 0.964 Rdelta: 0.04793
#> 28 Number of features: 20 Max AUC: 0.713 AUC: 0.710 Z: 0.965 Rdelta: 0.05314
#> 29 Number of features: 21 Max AUC: 0.716 AUC: 0.716 Z: 1.002 Rdelta: 0.05783
#> 30 Number of features: 22 Max AUC: 0.716 AUC: 0.716 Z: 1.059 Rdelta: 0.06204
#> 31 Number of features: 23 Max AUC: 0.716 AUC: 0.716 Z: 1.027 Rdelta: 0.06584
#> 32 Number of features: 24 Max AUC: 0.726 AUC: 0.726 Z: 1.069 Rdelta: 0.06926
#> 33 Number of features: 25 Max AUC: 0.726 AUC: 0.722 Z: 1.038 Rdelta: 0.07233
#> 34 Number of features: 26 Max AUC: 0.726 AUC: 0.717 Z: 1.014 Rdelta: 0.07510
#> 35 Number of features: 27 Max AUC: 0.726 AUC: 0.723 Z: 1.033 Rdelta: 0.07759
#> 36 Number of features: 28 Max AUC: 0.726 AUC: 0.719 Z: 0.994 Rdelta: 0.07983
#> 37 Number of features: 29 Max AUC: 0.727 AUC: 0.727 Z: 1.099 Rdelta: 0.08185
#> 38 Number of features: 29 Max AUC: 0.727 AUC: 0.717 Z: 1.047 Rdelta: 0.06548
#> 39 Number of features: 29 Max AUC: 0.727 AUC: 0.708 Z: 1.058 Rdelta: 0.05238
#> 40 Number of features: 30 Max AUC: 0.737 AUC: 0.737 Z: 1.095 Rdelta: 0.05714
#> 41 Number of features: 31 Max AUC: 0.743 AUC: 0.743 Z: 1.131 Rdelta: 0.06143
#> 42 Number of features: 31 Max AUC: 0.743 AUC: 0.724 Z: 1.146 Rdelta: 0.04914
#> 43 Number of features: 31 Max AUC: 0.743 AUC: 0.720 Z: 1.178 Rdelta: 0.03931
#> 44 Number of features: 31 Max AUC: 0.743 AUC: 0.733 Z: 1.195 Rdelta: 0.03145
#> 45 Number of features: 32 Max AUC: 0.751 AUC: 0.751 Z: 1.320 Rdelta: 0.03831
#> 46 Number of features: 33 Max AUC: 0.751 AUC: 0.748 Z: 1.395 Rdelta: 0.04448
#> 47 Number of features: 34 Max AUC: 0.756 AUC: 0.756 Z: 1.362 Rdelta: 0.05003
#> 48 Number of features: 35 Max AUC: 0.756 AUC: 0.756 Z: 1.422 Rdelta: 0.05503
#> 49 Number of features: 35 Max AUC: 0.756 AUC: 0.697 Z: 0.993 Rdelta: 0.04402
#> 50 Number of features: 36 Max AUC: 0.756 AUC: 0.749 Z: 1.453 Rdelta: 0.04962
#> 51 Number of features: 36 Max AUC: 0.756 AUC: 0.734 Z: 1.329 Rdelta: 0.03969
#> 52 Number of features: 36 Max AUC: 0.756 AUC: 0.737 Z: 1.375 Rdelta: 0.03176
#> 53 Number of features: 37 Max AUC: 0.756 AUC: 0.751 Z: 1.395 Rdelta: 0.03858
#> 54 Number of features: 38 Max AUC: 0.756 AUC: 0.753 Z: 1.405 Rdelta: 0.04472
#> 55 Number of features: 39 Max AUC: 0.761 AUC: 0.761 Z: 1.440 Rdelta: 0.05025
#> 56 Number of features: 39 Max AUC: 0.761 AUC: 0.745 Z: 1.392 Rdelta: 0.04020
#> 57 Number of features: 40 Max AUC: 0.765 AUC: 0.765 Z: 1.442 Rdelta: 0.04618
#> 58 Number of features: 40 Max AUC: 0.765 AUC: 0.727 Z: 1.381 Rdelta: 0.03694
#> 59 Number of features: 41 Max AUC: 0.765 AUC: 0.765 Z: 1.426 Rdelta: 0.04325
#> 60 Number of features: 41 Max AUC: 0.765 AUC: 0.751 Z: 1.415 Rdelta: 0.03460
#> 61 Number of features: 42 Max AUC: 0.765 AUC: 0.761 Z: 1.471 Rdelta: 0.04114
#> 62 Number of features: 42 Max AUC: 0.765 AUC: 0.744 Z: 1.502 Rdelta: 0.03291
#> 63 Number of features: 42 Max AUC: 0.765 AUC: 0.754 Z: 1.438 Rdelta: 0.02633
#> 64 Number of features: 43 Max AUC: 0.765 AUC: 0.764 Z: 1.451 Rdelta: 0.03370
#> 65 Number of features: 44 Max AUC: 0.765 AUC: 0.758 Z: 1.448 Rdelta: 0.04033
#> 66 Number of features: 45 Max AUC: 0.765 AUC: 0.760 Z: 1.474 Rdelta: 0.04629
#> 67 Number of features: 45 Max AUC: 0.765 AUC: 0.752 Z: 1.453 Rdelta: 0.03704
#> 68 Number of features: 46 Max AUC: 0.771 AUC: 0.771 Z: 1.456 Rdelta: 0.04333
#> 69 Number of features: 47 Max AUC: 0.771 AUC: 0.771 Z: 1.490 Rdelta: 0.04900
#> 70 Number of features: 47 Max AUC: 0.771 AUC: 0.751 Z: 1.441 Rdelta: 0.03920
#> 71 Number of features: 48 Max AUC: 0.775 AUC: 0.775 Z: 1.491 Rdelta: 0.04528
#> 72 Number of features: 48 Max AUC: 0.775 AUC: 0.748 Z: 1.432 Rdelta: 0.03622
#> 73 Number of features: 48 Max AUC: 0.775 AUC: 0.760 Z: 1.467 Rdelta: 0.02898
#> 74 Number of features: 48 Max AUC: 0.775 AUC: 0.749 Z: 1.478 Rdelta: 0.02318
#> 75 Number of features: 48 Max AUC: 0.775 AUC: 0.759 Z: 1.400 Rdelta: 0.01855
#> 76 Number of features: 48 Max AUC: 0.775 AUC: 0.765 Z: 1.526 Rdelta: 0.01484
#> 77 Number of features: 48 Max AUC: 0.775 AUC: 0.752 Z: 1.401 Rdelta: 0.01187
#> 78 Number of features: 48 Max AUC: 0.775 AUC: 0.711 Z: 1.068 Rdelta: 0.00950
#> 79 Number of features: 48 Max AUC: 0.775 AUC: 0.761 Z: 1.427 Rdelta: 0.00760
#> 80 Number of features: 49 Max AUC: 0.775 AUC: 0.769 Z: 1.430 Rdelta: 0.01684
#> 81 Number of features: 49 Max AUC: 0.775 AUC: 0.759 Z: 1.435 Rdelta: 0.01347
#> 82 Number of features: 49 Max AUC: 0.775 AUC: 0.755 Z: 1.357 Rdelta: 0.01078
#> 83 Number of features: 49 Max AUC: 0.775 AUC: 0.722 Z: 1.151 Rdelta: 0.00862
#> 84 Number of features: 49 Max AUC: 0.775 AUC: 0.750 Z: 1.367 Rdelta: 0.00690
#> 85 Number of features: 49 Max AUC: 0.775 AUC: 0.759 Z: 1.447 Rdelta: 0.00552
#> 86 Number of features: 49 Max AUC: 0.775 AUC: 0.762 Z: 1.439 Rdelta: 0.00441
#> 87 Number of features: 49 Max AUC: 0.775 AUC: 0.684 Z: 0.952 Rdelta: 0.00353
#> 88 Number of features: 49 Max AUC: 0.775 AUC: 0.745 Z: 1.352 Rdelta: 0.00282
#> 89 Number of features: 49 Max AUC: 0.775 AUC: 0.747 Z: 1.401 Rdelta: 0.00226
#> 90 Number of features: 49 Max AUC: 0.775 AUC: 0.744 Z: 1.318 Rdelta: 0.00181
#> 91 Number of features: 49 Max AUC: 0.775 AUC: 0.762 Z: 1.466 Rdelta: 0.00145
#> 92 Number of features: 49 Max AUC: 0.775 AUC: 0.747 Z: 1.361 Rdelta: 0.00116
#> 93 Number of features: 49 Max AUC: 0.775 AUC: 0.742 Z: 1.333 Rdelta: 0.00093
#> 94 Number of features: 49 Max AUC: 0.775 AUC: 0.760 Z: 1.388 Rdelta: 0.00074
#> 95 Number of features: 49 Max AUC: 0.775 AUC: 0.679 Z: 0.950 Rdelta: 0.00059
#> 96 Number of features: 49 Max AUC: 0.775 AUC: 0.730 Z: 1.146 Rdelta: 0.00047
#> 97 Number of features: 49 Max AUC: 0.775 AUC: 0.675 Z: 0.953 Rdelta: 0.00038
#> 98 Number of features: 49 Max AUC: 0.775 AUC: 0.689 Z: 0.931 Rdelta: 0.00030
#> 99 Number of features: 49 Max AUC: 0.775 AUC: 0.732 Z: 1.217 Rdelta: 0.00024
#> 100 Number of features: 49 Max AUC: 0.775 AUC: 0.724 Z: 1.284 Rdelta: 0.00019
#> 101 Number of features: 49 Max AUC: 0.775 AUC: 0.751 Z: 1.392 Rdelta: 0.00016
#> 102 Number of features: 49 Max AUC: 0.775 AUC: 0.751 Z: 1.384 Rdelta: 0.00012
#> 103 Number of features: 50 Max AUC: 0.775 AUC: 0.775 Z: 1.473 Rdelta: 0.01011
#> 104 Number of features: 50 Max AUC: 0.775 AUC: 0.731 Z: 1.143 Rdelta: 0.00809
#> 105 Number of features: 50 Max AUC: 0.775 AUC: 0.754 Z: 1.411 Rdelta: 0.00647
#> 106 Number of features: 50 Max AUC: 0.775 AUC: 0.675 Z: 0.916 Rdelta: 0.00518
#> 107 Number of features: 50 Max AUC: 0.775 AUC: 0.746 Z: 1.393 Rdelta: 0.00414
#> 108 Number of features: 50 Max AUC: 0.775 AUC: 0.741 Z: 1.324 Rdelta: 0.00331
#> 109 Number of features: 50 Max AUC: 0.775 AUC: 0.750 Z: 1.386 Rdelta: 0.00265
#> 110 Number of features: 51 Max AUC: 0.775 AUC: 0.767 Z: 1.450 Rdelta: 0.01239
#> 111 Number of features: 51 Max AUC: 0.775 AUC: 0.759 Z: 1.444 Rdelta: 0.00991
#> 112 Number of features: 51 Max AUC: 0.775 AUC: 0.763 Z: 1.413 Rdelta: 0.00793
#> 113 Number of features: 51 Max AUC: 0.775 AUC: 0.751 Z: 1.361 Rdelta: 0.00634
#> 114 Number of features: 51 Max AUC: 0.775 AUC: 0.750 Z: 1.377 Rdelta: 0.00507
#> 115 Number of features: 51 Max AUC: 0.775 AUC: 0.719 Z: 1.319 Rdelta: 0.00406
#> 116 Number of features: 52 Max AUC: 0.775 AUC: 0.768 Z: 1.390 Rdelta: 0.01365
#> 117 Number of features: 52 Max AUC: 0.775 AUC: 0.742 Z: 1.390 Rdelta: 0.01092
#> 118 Number of features: 52 Max AUC: 0.775 AUC: 0.758 Z: 1.424 Rdelta: 0.00874
#> 119 Number of features: 53 Max AUC: 0.775 AUC: 0.769 Z: 1.404 Rdelta: 0.01786
#> 120 Number of features: 53 Max AUC: 0.775 AUC: 0.762 Z: 1.420 Rdelta: 0.01429
#> 121 Number of features: 53 Max AUC: 0.775 AUC: 0.744 Z: 1.394 Rdelta: 0.01143
#> 122 Number of features: 53 Max AUC: 0.775 AUC: 0.754 Z: 1.442 Rdelta: 0.00915
#> 123 Number of features: 53 Max AUC: 0.775 AUC: 0.761 Z: 1.394 Rdelta: 0.00732
#> 124 Number of features: 53 Max AUC: 0.775 AUC: 0.727 Z: 1.249 Rdelta: 0.00585
#> 125 Number of features: 54 Max AUC: 0.775 AUC: 0.767 Z: 1.478 Rdelta: 0.01527
#> 126 Number of features: 54 Max AUC: 0.775 AUC: 0.764 Z: 1.448 Rdelta: 0.01221
#> 127 Number of features: 54 Max AUC: 0.775 AUC: 0.736 Z: 1.138 Rdelta: 0.00977
#> 128 Number of features: 54 Max AUC: 0.775 AUC: 0.758 Z: 1.430 Rdelta: 0.00782
#> 129 Number of features: 54 Max AUC: 0.775 AUC: 0.757 Z: 1.451 Rdelta: 0.00625
#> 130 Number of features: 54 Max AUC: 0.775 AUC: 0.755 Z: 1.366 Rdelta: 0.00500
#> 131 Number of features: 54 Max AUC: 0.775 AUC: 0.756 Z: 1.426 Rdelta: 0.00400
#> 132 Number of features: 54 Max AUC: 0.775 AUC: 0.699 Z: 1.077 Rdelta: 0.00320
#> 133 Number of features: 54 Max AUC: 0.775 AUC: 0.763 Z: 1.413 Rdelta: 0.00256
#> 134 Number of features: 54 Max AUC: 0.775 AUC: 0.759 Z: 1.426 Rdelta: 0.00205
#> 135 Number of features: 54 Max AUC: 0.775 AUC: 0.758 Z: 1.431 Rdelta: 0.00164
#> 136 Number of features: 54 Max AUC: 0.775 AUC: 0.728 Z: 1.181 Rdelta: 0.00131
#> 137 Number of features: 54 Max AUC: 0.775 AUC: 0.752 Z: 1.395 Rdelta: 0.00105
#> 138 Number of features: 55 Max AUC: 0.775 AUC: 0.769 Z: 1.447 Rdelta: 0.01094
#> 139 Number of features: 55 Max AUC: 0.775 AUC: 0.765 Z: 1.426 Rdelta: 0.00876
#> 140 Number of features: 55 Max AUC: 0.775 AUC: 0.746 Z: 1.188 Rdelta: 0.00700
#> 141 Number of features: 55 Max AUC: 0.775 AUC: 0.746 Z: 1.371 Rdelta: 0.00560
#> 142 Number of features: 55 Max AUC: 0.775 AUC: 0.747 Z: 1.376 Rdelta: 0.00448
#> 143 Number of features: 56 Max AUC: 0.775 AUC: 0.772 Z: 1.233 Rdelta: 0.01403
#> 144 Number of features: 57 Max AUC: 0.775 AUC: 0.772 Z: 1.245 Rdelta: 0.02263
#> 145 Number of features: 57 Max AUC: 0.775 AUC: 0.674 Z: 0.937 Rdelta: 0.01810
#> 146 Number of features: 58 Max AUC: 0.775 AUC: 0.772 Z: 1.278 Rdelta: 0.02629
#> 147 Number of features: 58 Max AUC: 0.775 AUC: 0.751 Z: 1.135 Rdelta: 0.02104
#> 148 Number of features: 58 Max AUC: 0.775 AUC: 0.750 Z: 1.212 Rdelta: 0.01683
#> 149 Number of features: 59 Max AUC: 0.776 AUC: 0.776 Z: 1.249 Rdelta: 0.02515
#> 150 Number of features: 60 Max AUC: 0.776 AUC: 0.769 Z: 1.205 Rdelta: 0.03263
#> 151 Number of features: 60 Max AUC: 0.776 AUC: 0.713 Z: 1.014 Rdelta: 0.02610
#> 152 Number of features: 60 Max AUC: 0.776 AUC: 0.753 Z: 1.196 Rdelta: 0.02088
#> 153 Number of features: 60 Max AUC: 0.776 AUC: 0.736 Z: 1.109 Rdelta: 0.01671
#> 154 Number of features: 61 Max AUC: 0.776 AUC: 0.771 Z: 1.234 Rdelta: 0.02504
#> 155 Number of features: 61 Max AUC: 0.776 AUC: 0.755 Z: 1.198 Rdelta: 0.02003
#> 156 Number of features: 61 Max AUC: 0.776 AUC: 0.750 Z: 1.135 Rdelta: 0.01602
#> 157 Number of features: 61 Max AUC: 0.776 AUC: 0.724 Z: 1.139 Rdelta: 0.01282
#> 158 Number of features: 61 Max AUC: 0.776 AUC: 0.761 Z: 1.226 Rdelta: 0.01025
#> 159 Number of features: 61 Max AUC: 0.776 AUC: 0.765 Z: 1.250 Rdelta: 0.00820
#> 160 Number of features: 61 Max AUC: 0.776 AUC: 0.750 Z: 1.182 Rdelta: 0.00656
#> 161 Number of features: 61 Max AUC: 0.776 AUC: 0.759 Z: 1.166 Rdelta: 0.00525
#> 162 Number of features: 61 Max AUC: 0.776 AUC: 0.761 Z: 1.212 Rdelta: 0.00420
#> 163 Number of features: 61 Max AUC: 0.776 AUC: 0.746 Z: 1.175 Rdelta: 0.00336
#> 164 Number of features: 61 Max AUC: 0.776 AUC: 0.734 Z: 1.167 Rdelta: 0.00269
#> 165 Number of features: 61 Max AUC: 0.776 AUC: 0.762 Z: 1.213 Rdelta: 0.00215
#> 166 Number of features: 62 Max AUC: 0.776 AUC: 0.770 Z: 1.225 Rdelta: 0.01194
#> 167 Number of features: 62 Max AUC: 0.776 AUC: 0.744 Z: 1.131 Rdelta: 0.00955
#> 168 Number of features: 62 Max AUC: 0.776 AUC: 0.705 Z: 0.839 Rdelta: 0.00764
#> 169 Number of features: 62 Max AUC: 0.776 AUC: 0.730 Z: 1.123 Rdelta: 0.00611
#> 170 Number of features: 62 Max AUC: 0.776 AUC: 0.757 Z: 1.171 Rdelta: 0.00489
#> 171 Number of features: 62 Max AUC: 0.776 AUC: 0.765 Z: 1.208 Rdelta: 0.00391
#> 172 Number of features: 62 Max AUC: 0.776 AUC: 0.756 Z: 1.171 Rdelta: 0.00313
#> 173 Number of features: 62 Max AUC: 0.776 AUC: 0.759 Z: 1.212 Rdelta: 0.00250
#> 174 Number of features: 62 Max AUC: 0.776 AUC: 0.757 Z: 1.195 Rdelta: 0.00200
#> 175 Number of features: 62 Max AUC: 0.776 AUC: 0.750 Z: 1.152 Rdelta: 0.00160
#> 176 Number of features: 62 Max AUC: 0.776 AUC: 0.756 Z: 1.188 Rdelta: 0.00128
#> 177 Number of features: 62 Max AUC: 0.776 AUC: 0.766 Z: 1.157 Rdelta: 0.00103
#> 178 Number of features: 62 Max AUC: 0.776 AUC: 0.757 Z: 1.190 Rdelta: 0.00082
#> 179 Number of features: 62 Max AUC: 0.776 AUC: 0.757 Z: 1.151 Rdelta: 0.00066
#> 180 Number of features: 62 Max AUC: 0.776 AUC: 0.754 Z: 1.226 Rdelta: 0.00052
#> 181 Number of features: 62 Max AUC: 0.776 AUC: 0.754 Z: 1.217 Rdelta: 0.00042
#> 182 Number of features: 62 Max AUC: 0.776 AUC: 0.735 Z: 0.995 Rdelta: 0.00034
#> 183 Number of features: 62 Max AUC: 0.776 AUC: 0.763 Z: 1.234 Rdelta: 0.00027
#> 184 Number of features: 62 Max AUC: 0.776 AUC: 0.694 Z: 1.070 Rdelta: 0.00022
#> 185 Number of features: 62 Max AUC: 0.776 AUC: 0.738 Z: 1.143 Rdelta: 0.00017
#> 186 Number of features: 62 Max AUC: 0.776 AUC: 0.745 Z: 1.116 Rdelta: 0.00014
#> 187 Number of features: 62 Max AUC: 0.776 AUC: 0.756 Z: 1.177 Rdelta: 0.00011
#> 188 Number of features: 62 Max AUC: 0.776 AUC: 0.764 Z: 1.221 Rdelta: 0.00009
#> user system elapsed
#> 109.02 0.01 109.09
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#> 7 Number of features: 7 Max AUC: 0.715 AUC: 0.715 Z: 0.952 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.715 AUC: 0.709 Z: 0.962 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.715 AUC: 0.709 Z: 1.200 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.715 AUC: 0.707 Z: 0.954 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.726 AUC: 0.726 Z: 1.209 Rdelta: 0.10000
#> 12 Number of features: 11 Max AUC: 0.726 AUC: 0.712 Z: 1.139 Rdelta: 0.08000
#> 13 Number of features: 12 Max AUC: 0.726 AUC: 0.717 Z: 1.227 Rdelta: 0.08200
#> 14 Number of features: 13 Max AUC: 0.743 AUC: 0.743 Z: 1.374 Rdelta: 0.08380
#> 15 Number of features: 14 Max AUC: 0.748 AUC: 0.748 Z: 1.500 Rdelta: 0.08542
#> 16 Number of features: 14 Max AUC: 0.748 AUC: 0.744 Z: 0.525 Rdelta: 0.06834
#> 17 Number of features: 15 Max AUC: 0.750 AUC: 0.750 Z: 0.218 Rdelta: 0.07150
#> 18 Number of features: 16 Max AUC: 0.756 AUC: 0.756 Z: 0.239 Rdelta: 0.07435
#> 19 Number of features: 17 Max AUC: 0.768 AUC: 0.768 Z: 0.235 Rdelta: 0.07692
#> 20 Number of features: 18 Max AUC: 0.774 AUC: 0.774 Z: 0.221 Rdelta: 0.07923
#> 21 Number of features: 19 Max AUC: 0.781 AUC: 0.781 Z: 0.233 Rdelta: 0.08130
#> 22 Number of features: 19 Max AUC: 0.781 AUC: 0.759 Z: 0.288 Rdelta: 0.06504
#> 23 Number of features: 20 Max AUC: 0.781 AUC: 0.776 Z: 0.263 Rdelta: 0.06854
#> 24 Number of features: 20 Max AUC: 0.781 AUC: 0.719 Z: 0.227 Rdelta: 0.05483
#> 25 Number of features: 21 Max AUC: 0.781 AUC: 0.779 Z: 0.263 Rdelta: 0.05935
#> 26 Number of features: 21 Max AUC: 0.781 AUC: 0.755 Z: 0.231 Rdelta: 0.04748
#> 27 Number of features: 22 Max AUC: 0.785 AUC: 0.785 Z: 0.225 Rdelta: 0.05273
#> 28 Number of features: 22 Max AUC: 0.785 AUC: 0.748 Z: 0.246 Rdelta: 0.04218
#> 29 Number of features: 23 Max AUC: 0.785 AUC: 0.781 Z: 0.260 Rdelta: 0.04797
#> 30 Number of features: 23 Max AUC: 0.785 AUC: 0.770 Z: 0.233 Rdelta: 0.03837
#> 31 Number of features: 23 Max AUC: 0.785 AUC: 0.750 Z: 0.260 Rdelta: 0.03070
#> 32 Number of features: 24 Max AUC: 0.785 AUC: 0.783 Z: 0.225 Rdelta: 0.03763
#> 33 Number of features: 24 Max AUC: 0.785 AUC: 0.766 Z: 0.237 Rdelta: 0.03010
#> 34 Number of features: 24 Max AUC: 0.785 AUC: 0.764 Z: 0.231 Rdelta: 0.02408
#> 35 Number of features: 24 Max AUC: 0.785 AUC: 0.764 Z: 0.257 Rdelta: 0.01927
#> 36 Number of features: 25 Max AUC: 0.788 AUC: 0.788 Z: 0.224 Rdelta: 0.02734
#> 37 Number of features: 26 Max AUC: 0.795 AUC: 0.795 Z: 0.254 Rdelta: 0.03461
#> 38 Number of features: 26 Max AUC: 0.795 AUC: 0.785 Z: 0.252 Rdelta: 0.02768
#> 39 Number of features: 26 Max AUC: 0.795 AUC: 0.785 Z: 0.259 Rdelta: 0.02215
#> 40 Number of features: 26 Max AUC: 0.795 AUC: 0.755 Z: 0.265 Rdelta: 0.01772
#> 41 Number of features: 27 Max AUC: 0.795 AUC: 0.791 Z: 0.282 Rdelta: 0.02595
#> 42 Number of features: 27 Max AUC: 0.795 AUC: 0.776 Z: 0.328 Rdelta: 0.02076
#> 43 Number of features: 27 Max AUC: 0.795 AUC: 0.776 Z: 0.341 Rdelta: 0.01661
#> 44 Number of features: 28 Max AUC: 0.795 AUC: 0.785 Z: 0.323 Rdelta: 0.02494
#> 45 Number of features: 28 Max AUC: 0.795 AUC: 0.776 Z: 0.304 Rdelta: 0.01996
#> 46 Number of features: 28 Max AUC: 0.795 AUC: 0.779 Z: 0.360 Rdelta: 0.01596
#> 47 Number of features: 28 Max AUC: 0.795 AUC: 0.773 Z: 0.325 Rdelta: 0.01277
#> 48 Number of features: 29 Max AUC: 0.795 AUC: 0.793 Z: 0.307 Rdelta: 0.02149
#> 49 Number of features: 29 Max AUC: 0.795 AUC: 0.748 Z: 0.290 Rdelta: 0.01720
#> 50 Number of features: 29 Max AUC: 0.795 AUC: 0.775 Z: 0.265 Rdelta: 0.01376
#> 51 Number of features: 29 Max AUC: 0.795 AUC: 0.774 Z: 0.286 Rdelta: 0.01101
#> 52 Number of features: 30 Max AUC: 0.795 AUC: 0.790 Z: 0.286 Rdelta: 0.01990
#> 53 Number of features: 30 Max AUC: 0.795 AUC: 0.756 Z: 0.268 Rdelta: 0.01592
#> 54 Number of features: 30 Max AUC: 0.795 AUC: 0.763 Z: 0.266 Rdelta: 0.01274
#> 55 Number of features: 30 Max AUC: 0.795 AUC: 0.776 Z: 0.273 Rdelta: 0.01019
#> 56 Number of features: 31 Max AUC: 0.795 AUC: 0.791 Z: 0.311 Rdelta: 0.01917
#> 57 Number of features: 31 Max AUC: 0.795 AUC: 0.766 Z: 0.267 Rdelta: 0.01534
#> 58 Number of features: 31 Max AUC: 0.795 AUC: 0.760 Z: 0.274 Rdelta: 0.01227
#> 59 Number of features: 31 Max AUC: 0.795 AUC: 0.758 Z: 0.270 Rdelta: 0.00982
#> 60 Number of features: 31 Max AUC: 0.795 AUC: 0.779 Z: 0.268 Rdelta: 0.00785
#> 61 Number of features: 31 Max AUC: 0.795 AUC: 0.773 Z: 0.323 Rdelta: 0.00628
#> 62 Number of features: 32 Max AUC: 0.795 AUC: 0.790 Z: 0.290 Rdelta: 0.01565
#> 63 Number of features: 33 Max AUC: 0.795 AUC: 0.791 Z: 0.176 Rdelta: 0.02409
#> 64 Number of features: 33 Max AUC: 0.795 AUC: 0.774 Z: 0.191 Rdelta: 0.01927
#> 65 Number of features: 33 Max AUC: 0.795 AUC: 0.781 Z: 0.215 Rdelta: 0.01542
#> 66 Number of features: 33 Max AUC: 0.795 AUC: 0.774 Z: 0.223 Rdelta: 0.01233
#> 67 Number of features: 33 Max AUC: 0.795 AUC: 0.770 Z: 0.203 Rdelta: 0.00987
#> 68 Number of features: 34 Max AUC: 0.797 AUC: 0.797 Z: 0.213 Rdelta: 0.01888
#> 69 Number of features: 34 Max AUC: 0.797 AUC: 0.767 Z: 0.236 Rdelta: 0.01510
#> 70 Number of features: 34 Max AUC: 0.797 AUC: 0.773 Z: 0.204 Rdelta: 0.01208
#> 71 Number of features: 34 Max AUC: 0.797 AUC: 0.773 Z: 0.196 Rdelta: 0.00967
#> 72 Number of features: 34 Max AUC: 0.797 AUC: 0.767 Z: 0.223 Rdelta: 0.00773
#> 73 Number of features: 34 Max AUC: 0.797 AUC: 0.779 Z: 0.222 Rdelta: 0.00619
#> 74 Number of features: 34 Max AUC: 0.797 AUC: 0.767 Z: 0.206 Rdelta: 0.00495
#> 75 Number of features: 34 Max AUC: 0.797 AUC: 0.749 Z: 0.200 Rdelta: 0.00396
#> 76 Number of features: 34 Max AUC: 0.797 AUC: 0.771 Z: 0.210 Rdelta: 0.00317
#> 77 Number of features: 34 Max AUC: 0.797 AUC: 0.786 Z: 0.211 Rdelta: 0.00253
#> 78 Number of features: 34 Max AUC: 0.797 AUC: 0.767 Z: 0.223 Rdelta: 0.00203
#> 79 Number of features: 34 Max AUC: 0.797 AUC: 0.783 Z: 0.288 Rdelta: 0.00162
#> 80 Number of features: 34 Max AUC: 0.797 AUC: 0.769 Z: 0.215 Rdelta: 0.00130
#> 81 Number of features: 35 Max AUC: 0.797 AUC: 0.790 Z: 0.282 Rdelta: 0.01117
#> 82 Number of features: 36 Max AUC: 0.797 AUC: 0.788 Z: 0.279 Rdelta: 0.02005
#> 83 Number of features: 36 Max AUC: 0.797 AUC: 0.779 Z: 0.276 Rdelta: 0.01604
#> 84 Number of features: 36 Max AUC: 0.797 AUC: 0.776 Z: 0.306 Rdelta: 0.01283
#> 85 Number of features: 36 Max AUC: 0.797 AUC: 0.763 Z: 0.315 Rdelta: 0.01027
#> 86 Number of features: 36 Max AUC: 0.797 AUC: 0.780 Z: 0.318 Rdelta: 0.00821
#> 87 Number of features: 36 Max AUC: 0.797 AUC: 0.709 Z: 0.335 Rdelta: 0.00657
#> 88 Number of features: 36 Max AUC: 0.797 AUC: 0.778 Z: 0.358 Rdelta: 0.00526
#> 89 Number of features: 37 Max AUC: 0.804 AUC: 0.804 Z: 0.316 Rdelta: 0.01473
#> 90 Number of features: 37 Max AUC: 0.804 AUC: 0.794 Z: 0.293 Rdelta: 0.01178
#> 91 Number of features: 38 Max AUC: 0.804 AUC: 0.798 Z: 0.325 Rdelta: 0.02061
#> 92 Number of features: 39 Max AUC: 0.806 AUC: 0.806 Z: 0.281 Rdelta: 0.02855
#> 93 Number of features: 39 Max AUC: 0.806 AUC: 0.789 Z: 0.349 Rdelta: 0.02284
#> 94 Number of features: 39 Max AUC: 0.806 AUC: 0.784 Z: 0.339 Rdelta: 0.01827
#> 95 Number of features: 39 Max AUC: 0.806 AUC: 0.771 Z: 0.279 Rdelta: 0.01462
#> 96 Number of features: 39 Max AUC: 0.806 AUC: 0.741 Z: 0.348 Rdelta: 0.01169
#> 97 Number of features: 39 Max AUC: 0.806 AUC: 0.759 Z: 0.353 Rdelta: 0.00935
#> 98 Number of features: 39 Max AUC: 0.806 AUC: 0.715 Z: 0.403 Rdelta: 0.00748
#> 99 Number of features: 39 Max AUC: 0.806 AUC: 0.788 Z: 0.293 Rdelta: 0.00599
#> 100 Number of features: 39 Max AUC: 0.806 AUC: 0.738 Z: 0.348 Rdelta: 0.00479
#> 101 Number of features: 39 Max AUC: 0.806 AUC: 0.779 Z: 0.292 Rdelta: 0.00383
#> 102 Number of features: 39 Max AUC: 0.806 AUC: 0.782 Z: 0.297 Rdelta: 0.00307
#> 103 Number of features: 39 Max AUC: 0.806 AUC: 0.774 Z: 0.330 Rdelta: 0.00245
#> 104 Number of features: 39 Max AUC: 0.806 AUC: 0.689 Z: 0.343 Rdelta: 0.00196
#> 105 Number of features: 39 Max AUC: 0.806 AUC: 0.794 Z: 0.329 Rdelta: 0.00157
#> 106 Number of features: 39 Max AUC: 0.806 AUC: 0.756 Z: 0.352 Rdelta: 0.00126
#> 107 Number of features: 39 Max AUC: 0.806 AUC: 0.792 Z: 0.303 Rdelta: 0.00100
#> 108 Number of features: 39 Max AUC: 0.806 AUC: 0.789 Z: 0.327 Rdelta: 0.00080
#> 109 Number of features: 39 Max AUC: 0.806 AUC: 0.774 Z: 0.349 Rdelta: 0.00064
#> 110 Number of features: 39 Max AUC: 0.806 AUC: 0.775 Z: 0.396 Rdelta: 0.00051
#> 111 Number of features: 39 Max AUC: 0.806 AUC: 0.758 Z: 0.290 Rdelta: 0.00041
#> 112 Number of features: 39 Max AUC: 0.806 AUC: 0.785 Z: 0.403 Rdelta: 0.00033
#> 113 Number of features: 39 Max AUC: 0.806 AUC: 0.753 Z: 0.304 Rdelta: 0.00026
#> 114 Number of features: 39 Max AUC: 0.806 AUC: 0.788 Z: 0.426 Rdelta: 0.00021
#> 115 Number of features: 39 Max AUC: 0.806 AUC: 0.741 Z: 0.310 Rdelta: 0.00017
#> 116 Number of features: 39 Max AUC: 0.806 AUC: 0.775 Z: 0.308 Rdelta: 0.00013
#> 117 Number of features: 39 Max AUC: 0.806 AUC: 0.796 Z: 0.348 Rdelta: 0.00011
#> 118 Number of features: 39 Max AUC: 0.806 AUC: 0.791 Z: 0.336 Rdelta: 0.00009
#> user system elapsed
#> 48.47 0.00 48.50
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#> 7 Number of features: 7 Max AUC: 0.876 AUC: 0.872 Z: 1.020 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.904 AUC: 0.904 Z: 1.345 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.904 AUC: 0.887 Z: 1.129 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.904 AUC: 0.897 Z: 1.411 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.904 AUC: 0.899 Z: 1.457 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.904 AUC: 0.892 Z: 1.400 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.916 AUC: 0.916 Z: 1.374 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.920 AUC: 0.920 Z: 1.372 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.942 AUC: 0.942 Z: 1.726 Rdelta: 0.10000
#> 16 Number of features: 16 Max AUC: 0.948 AUC: 0.948 Z: 0.928 Rdelta: 0.10000
#> 17 Number of features: 17 Max AUC: 0.953 AUC: 0.953 Z: 0.344 Rdelta: 0.10000
#> 18 Number of features: 18 Max AUC: 0.955 AUC: 0.955 Z: 0.323 Rdelta: 0.10000
#> 19 Number of features: 19 Max AUC: 0.955 AUC: 0.951 Z: 0.293 Rdelta: 0.10000
#> 20 Number of features: 20 Max AUC: 0.955 AUC: 0.952 Z: 0.289 Rdelta: 0.10000
#> 21 Number of features: 21 Max AUC: 0.955 AUC: 0.942 Z: 0.336 Rdelta: 0.10000
#> 22 Number of features: 22 Max AUC: 0.955 AUC: 0.952 Z: 0.300 Rdelta: 0.10000
#> 23 Number of features: 23 Max AUC: 0.955 AUC: 0.942 Z: 0.313 Rdelta: 0.10000
#> 24 Number of features: 23 Max AUC: 0.955 AUC: 0.886 Z: 0.423 Rdelta: 0.08000
#> 25 Number of features: 24 Max AUC: 0.955 AUC: 0.940 Z: 0.381 Rdelta: 0.08200
#> 26 Number of features: 25 Max AUC: 0.955 AUC: 0.942 Z: 0.348 Rdelta: 0.08380
#> 27 Number of features: 26 Max AUC: 0.955 AUC: 0.947 Z: 0.346 Rdelta: 0.08542
#> 28 Number of features: 27 Max AUC: 0.955 AUC: 0.949 Z: 0.296 Rdelta: 0.08688
#> 29 Number of features: 28 Max AUC: 0.955 AUC: 0.939 Z: 0.258 Rdelta: 0.08819
#> 30 Number of features: 29 Max AUC: 0.955 AUC: 0.950 Z: 0.318 Rdelta: 0.08937
#> 31 Number of features: 30 Max AUC: 0.955 AUC: 0.946 Z: 0.309 Rdelta: 0.09043
#> 32 Number of features: 31 Max AUC: 0.955 AUC: 0.949 Z: 0.279 Rdelta: 0.09139
#> 33 Number of features: 31 Max AUC: 0.955 AUC: 0.932 Z: 0.271 Rdelta: 0.07311
#> 34 Number of features: 32 Max AUC: 0.955 AUC: 0.942 Z: 0.249 Rdelta: 0.07580
#> 35 Number of features: 33 Max AUC: 0.955 AUC: 0.943 Z: 0.307 Rdelta: 0.07822
#> 36 Number of features: 34 Max AUC: 0.955 AUC: 0.943 Z: 0.238 Rdelta: 0.08040
#> 37 Number of features: 35 Max AUC: 0.955 AUC: 0.942 Z: 0.255 Rdelta: 0.08236
#> 38 Number of features: 35 Max AUC: 0.955 AUC: 0.928 Z: 0.213 Rdelta: 0.06589
#> 39 Number of features: 36 Max AUC: 0.955 AUC: 0.938 Z: 0.278 Rdelta: 0.06930
#> 40 Number of features: 37 Max AUC: 0.955 AUC: 0.950 Z: 0.298 Rdelta: 0.07237
#> 41 Number of features: 38 Max AUC: 0.955 AUC: 0.946 Z: 0.437 Rdelta: 0.07513
#> 42 Number of features: 39 Max AUC: 0.955 AUC: 0.939 Z: 0.328 Rdelta: 0.07762
#> 43 Number of features: 40 Max AUC: 0.955 AUC: 0.940 Z: 0.369 Rdelta: 0.07986
#> 44 Number of features: 40 Max AUC: 0.955 AUC: 0.934 Z: 0.354 Rdelta: 0.06389
#> 45 Number of features: 41 Max AUC: 0.955 AUC: 0.938 Z: 0.331 Rdelta: 0.06750
#> 46 Number of features: 42 Max AUC: 0.955 AUC: 0.938 Z: 0.344 Rdelta: 0.07075
#> 47 Number of features: 43 Max AUC: 0.955 AUC: 0.939 Z: 0.338 Rdelta: 0.07367
#> 48 Number of features: 44 Max AUC: 0.955 AUC: 0.939 Z: 0.366 Rdelta: 0.07631
#> 49 Number of features: 44 Max AUC: 0.955 AUC: 0.926 Z: 0.287 Rdelta: 0.06104
#> 50 Number of features: 45 Max AUC: 0.955 AUC: 0.935 Z: 0.337 Rdelta: 0.06494
#> 51 Number of features: 45 Max AUC: 0.955 AUC: 0.930 Z: 0.262 Rdelta: 0.05195
#> 52 Number of features: 45 Max AUC: 0.955 AUC: 0.933 Z: 0.368 Rdelta: 0.04156
#> 53 Number of features: 46 Max AUC: 0.955 AUC: 0.936 Z: 0.337 Rdelta: 0.04741
#> 54 Number of features: 47 Max AUC: 0.955 AUC: 0.937 Z: 0.357 Rdelta: 0.05266
#> 55 Number of features: 48 Max AUC: 0.955 AUC: 0.935 Z: 0.345 Rdelta: 0.05740
#> 56 Number of features: 49 Max AUC: 0.955 AUC: 0.940 Z: 0.334 Rdelta: 0.06166
#> 57 Number of features: 49 Max AUC: 0.955 AUC: 0.928 Z: 0.352 Rdelta: 0.04933
#> 58 Number of features: 49 Max AUC: 0.955 AUC: 0.927 Z: 0.387 Rdelta: 0.03946
#> 59 Number of features: 50 Max AUC: 0.955 AUC: 0.943 Z: 0.347 Rdelta: 0.04552
#> 60 Number of features: 50 Max AUC: 0.955 AUC: 0.932 Z: 0.382 Rdelta: 0.03641
#> 61 Number of features: 50 Max AUC: 0.955 AUC: 0.928 Z: 0.314 Rdelta: 0.02913
#> 62 Number of features: 50 Max AUC: 0.955 AUC: 0.922 Z: 0.373 Rdelta: 0.02330
#> 63 Number of features: 50 Max AUC: 0.955 AUC: 0.932 Z: 0.283 Rdelta: 0.01864
#> 64 Number of features: 51 Max AUC: 0.955 AUC: 0.938 Z: 0.375 Rdelta: 0.02678
#> 65 Number of features: 51 Max AUC: 0.955 AUC: 0.933 Z: 0.352 Rdelta: 0.02142
#> 66 Number of features: 51 Max AUC: 0.955 AUC: 0.918 Z: 0.417 Rdelta: 0.01714
#> 67 Number of features: 51 Max AUC: 0.955 AUC: 0.921 Z: 0.346 Rdelta: 0.01371
#> 68 Number of features: 52 Max AUC: 0.955 AUC: 0.936 Z: 0.377 Rdelta: 0.02234
#> 69 Number of features: 52 Max AUC: 0.955 AUC: 0.926 Z: 0.401 Rdelta: 0.01787
#> 70 Number of features: 52 Max AUC: 0.955 AUC: 0.916 Z: 0.356 Rdelta: 0.01430
#> 71 Number of features: 53 Max AUC: 0.955 AUC: 0.933 Z: 0.373 Rdelta: 0.02287
#> 72 Number of features: 53 Max AUC: 0.955 AUC: 0.931 Z: 0.328 Rdelta: 0.01829
#> 73 Number of features: 53 Max AUC: 0.955 AUC: 0.924 Z: 0.235 Rdelta: 0.01464
#> 74 Number of features: 53 Max AUC: 0.955 AUC: 0.931 Z: 0.383 Rdelta: 0.01171
#> 75 Number of features: 53 Max AUC: 0.955 AUC: 0.925 Z: 0.384 Rdelta: 0.00937
#> 76 Number of features: 53 Max AUC: 0.955 AUC: 0.925 Z: 0.371 Rdelta: 0.00749
#> 77 Number of features: 54 Max AUC: 0.955 AUC: 0.933 Z: 0.294 Rdelta: 0.01674
#> 78 Number of features: 55 Max AUC: 0.955 AUC: 0.941 Z: 0.320 Rdelta: 0.02507
#> 79 Number of features: 56 Max AUC: 0.955 AUC: 0.937 Z: 0.411 Rdelta: 0.03256
#> 80 Number of features: 57 Max AUC: 0.955 AUC: 0.938 Z: 0.441 Rdelta: 0.03931
#> 81 Number of features: 58 Max AUC: 0.955 AUC: 0.931 Z: 0.468 Rdelta: 0.04538
#> 82 Number of features: 58 Max AUC: 0.955 AUC: 0.927 Z: 0.361 Rdelta: 0.03630
#> 83 Number of features: 59 Max AUC: 0.955 AUC: 0.933 Z: 0.430 Rdelta: 0.04267
#> 84 Number of features: 59 Max AUC: 0.955 AUC: 0.929 Z: 0.410 Rdelta: 0.03414
#> 85 Number of features: 60 Max AUC: 0.955 AUC: 0.931 Z: 0.393 Rdelta: 0.04072
#> 86 Number of features: 61 Max AUC: 0.955 AUC: 0.932 Z: 0.465 Rdelta: 0.04665
#> 87 Number of features: 61 Max AUC: 0.955 AUC: 0.862 Z: 0.246 Rdelta: 0.03732
#> 88 Number of features: 61 Max AUC: 0.955 AUC: 0.925 Z: 0.474 Rdelta: 0.02986
#> 89 Number of features: 62 Max AUC: 0.955 AUC: 0.941 Z: 0.471 Rdelta: 0.03687
#> 90 Number of features: 62 Max AUC: 0.955 AUC: 0.925 Z: 0.380 Rdelta: 0.02950
#> 91 Number of features: 62 Max AUC: 0.955 AUC: 0.901 Z: 0.454 Rdelta: 0.02360
#> 92 Number of features: 62 Max AUC: 0.955 AUC: 0.919 Z: 0.460 Rdelta: 0.01888
#> 93 Number of features: 62 Max AUC: 0.955 AUC: 0.931 Z: 0.473 Rdelta: 0.01510
#> 94 Number of features: 62 Max AUC: 0.955 AUC: 0.929 Z: 0.468 Rdelta: 0.01208
#> 95 Number of features: 62 Max AUC: 0.955 AUC: 0.925 Z: 0.447 Rdelta: 0.00967
#> 96 Number of features: 62 Max AUC: 0.955 AUC: 0.899 Z: 0.054 Rdelta: 0.00773
#> 97 Number of features: 62 Max AUC: 0.955 AUC: 0.915 Z: 0.464 Rdelta: 0.00619
#> 98 Number of features: 62 Max AUC: 0.955 AUC: 0.856 Z: 0.088 Rdelta: 0.00495
#> 99 Number of features: 62 Max AUC: 0.955 AUC: 0.927 Z: 0.366 Rdelta: 0.00396
#> 100 Number of features: 62 Max AUC: 0.955 AUC: 0.867 Z: 0.427 Rdelta: 0.00317
#> 101 Number of features: 62 Max AUC: 0.955 AUC: 0.931 Z: 0.424 Rdelta: 0.00253
#> 102 Number of features: 62 Max AUC: 0.955 AUC: 0.927 Z: 0.394 Rdelta: 0.00203
#> 103 Number of features: 63 Max AUC: 0.955 AUC: 0.934 Z: 0.447 Rdelta: 0.01182
#> 104 Number of features: 63 Max AUC: 0.955 AUC: 0.895 Z: 0.448 Rdelta: 0.00946
#> 105 Number of features: 63 Max AUC: 0.955 AUC: 0.922 Z: 0.249 Rdelta: 0.00757
#> 106 Number of features: 63 Max AUC: 0.955 AUC: 0.909 Z: 0.405 Rdelta: 0.00605
#> 107 Number of features: 64 Max AUC: 0.955 AUC: 0.937 Z: 0.421 Rdelta: 0.01545
#> 108 Number of features: 64 Max AUC: 0.955 AUC: 0.930 Z: 0.387 Rdelta: 0.01236
#> 109 Number of features: 64 Max AUC: 0.955 AUC: 0.926 Z: 0.408 Rdelta: 0.00989
#> 110 Number of features: 64 Max AUC: 0.955 AUC: 0.924 Z: 0.376 Rdelta: 0.00791
#> 111 Number of features: 64 Max AUC: 0.955 AUC: 0.919 Z: 0.403 Rdelta: 0.00633
#> 112 Number of features: 64 Max AUC: 0.955 AUC: 0.918 Z: 0.359 Rdelta: 0.00506
#> 113 Number of features: 64 Max AUC: 0.955 AUC: 0.892 Z: 0.227 Rdelta: 0.00405
#> 114 Number of features: 64 Max AUC: 0.955 AUC: 0.917 Z: 0.337 Rdelta: 0.00324
#> 115 Number of features: 64 Max AUC: 0.955 AUC: 0.890 Z: 0.392 Rdelta: 0.00259
#> 116 Number of features: 64 Max AUC: 0.955 AUC: 0.926 Z: 0.374 Rdelta: 0.00207
#> 117 Number of features: 64 Max AUC: 0.955 AUC: 0.928 Z: 0.405 Rdelta: 0.00166
#> 118 Number of features: 64 Max AUC: 0.955 AUC: 0.929 Z: 0.422 Rdelta: 0.00133
#> 119 Number of features: 64 Max AUC: 0.955 AUC: 0.931 Z: 0.415 Rdelta: 0.00106
#> 120 Number of features: 64 Max AUC: 0.955 AUC: 0.925 Z: 0.408 Rdelta: 0.00085
#> 121 Number of features: 64 Max AUC: 0.955 AUC: 0.930 Z: 0.387 Rdelta: 0.00068
#> 122 Number of features: 65 Max AUC: 0.955 AUC: 0.933 Z: 0.406 Rdelta: 0.01061
#> 123 Number of features: 65 Max AUC: 0.955 AUC: 0.926 Z: 0.429 Rdelta: 0.00849
#> 124 Number of features: 65 Max AUC: 0.955 AUC: 0.857 Z: 0.109 Rdelta: 0.00679
#> 125 Number of features: 65 Max AUC: 0.955 AUC: 0.919 Z: 0.293 Rdelta: 0.00543
#> 126 Number of features: 65 Max AUC: 0.955 AUC: 0.919 Z: 0.309 Rdelta: 0.00435
#> 127 Number of features: 65 Max AUC: 0.955 AUC: 0.931 Z: 0.356 Rdelta: 0.00348
#> 128 Number of features: 65 Max AUC: 0.955 AUC: 0.916 Z: 0.338 Rdelta: 0.00278
#> 129 Number of features: 66 Max AUC: 0.955 AUC: 0.935 Z: 0.343 Rdelta: 0.01250
#> 130 Number of features: 66 Max AUC: 0.955 AUC: 0.925 Z: 0.307 Rdelta: 0.01000
#> 131 Number of features: 67 Max AUC: 0.955 AUC: 0.932 Z: 0.354 Rdelta: 0.01900
#> 132 Number of features: 67 Max AUC: 0.955 AUC: 0.863 Z: 0.437 Rdelta: 0.01520
#> 133 Number of features: 67 Max AUC: 0.955 AUC: 0.925 Z: 0.262 Rdelta: 0.01216
#> 134 Number of features: 67 Max AUC: 0.955 AUC: 0.926 Z: 0.382 Rdelta: 0.00973
#> 135 Number of features: 67 Max AUC: 0.955 AUC: 0.904 Z: 0.358 Rdelta: 0.00778
#> 136 Number of features: 67 Max AUC: 0.955 AUC: 0.912 Z: 0.402 Rdelta: 0.00623
#> 137 Number of features: 67 Max AUC: 0.955 AUC: 0.909 Z: 0.306 Rdelta: 0.00498
#> 138 Number of features: 67 Max AUC: 0.955 AUC: 0.914 Z: 0.337 Rdelta: 0.00399
#> 139 Number of features: 67 Max AUC: 0.955 AUC: 0.929 Z: 0.400 Rdelta: 0.00319
#> 140 Number of features: 67 Max AUC: 0.955 AUC: 0.877 Z: 0.307 Rdelta: 0.00255
#> 141 Number of features: 67 Max AUC: 0.955 AUC: 0.920 Z: 0.275 Rdelta: 0.00204
#> 142 Number of features: 67 Max AUC: 0.955 AUC: 0.921 Z: 0.366 Rdelta: 0.00163
#> 143 Number of features: 67 Max AUC: 0.955 AUC: 0.883 Z: 0.409 Rdelta: 0.00131
#> 144 Number of features: 68 Max AUC: 0.955 AUC: 0.933 Z: 0.296 Rdelta: 0.01118
#> 145 Number of features: 68 Max AUC: 0.955 AUC: 0.900 Z: 0.350 Rdelta: 0.00894
#> 146 Number of features: 68 Max AUC: 0.955 AUC: 0.926 Z: 0.462 Rdelta: 0.00715
#> 147 Number of features: 68 Max AUC: 0.955 AUC: 0.925 Z: 0.301 Rdelta: 0.00572
#> 148 Number of features: 68 Max AUC: 0.955 AUC: 0.928 Z: 0.374 Rdelta: 0.00458
#> 149 Number of features: 68 Max AUC: 0.955 AUC: 0.929 Z: 0.296 Rdelta: 0.00366
#> 150 Number of features: 69 Max AUC: 0.955 AUC: 0.932 Z: 0.389 Rdelta: 0.01330
#> 151 Number of features: 69 Max AUC: 0.955 AUC: 0.903 Z: 0.302 Rdelta: 0.01064
#> 152 Number of features: 69 Max AUC: 0.955 AUC: 0.928 Z: 0.277 Rdelta: 0.00851
#> 153 Number of features: 69 Max AUC: 0.955 AUC: 0.923 Z: 0.307 Rdelta: 0.00681
#> 154 Number of features: 69 Max AUC: 0.955 AUC: 0.930 Z: 0.306 Rdelta: 0.00545
#> 155 Number of features: 69 Max AUC: 0.955 AUC: 0.926 Z: 0.311 Rdelta: 0.00436
#> 156 Number of features: 69 Max AUC: 0.955 AUC: 0.917 Z: 0.295 Rdelta: 0.00349
#> 157 Number of features: 69 Max AUC: 0.955 AUC: 0.907 Z: 0.323 Rdelta: 0.00279
#> 158 Number of features: 69 Max AUC: 0.955 AUC: 0.928 Z: 0.381 Rdelta: 0.00223
#> 159 Number of features: 70 Max AUC: 0.955 AUC: 0.934 Z: 0.374 Rdelta: 0.01201
#> 160 Number of features: 71 Max AUC: 0.955 AUC: 0.934 Z: 0.431 Rdelta: 0.02081
#> 161 Number of features: 71 Max AUC: 0.955 AUC: 0.928 Z: 0.318 Rdelta: 0.01665
#> 162 Number of features: 71 Max AUC: 0.955 AUC: 0.923 Z: 0.246 Rdelta: 0.01332
#> 163 Number of features: 71 Max AUC: 0.955 AUC: 0.925 Z: 0.326 Rdelta: 0.01065
#> 164 Number of features: 71 Max AUC: 0.955 AUC: 0.920 Z: 0.347 Rdelta: 0.00852
#> 165 Number of features: 71 Max AUC: 0.955 AUC: 0.922 Z: 0.384 Rdelta: 0.00682
#> 166 Number of features: 71 Max AUC: 0.955 AUC: 0.927 Z: 0.340 Rdelta: 0.00545
#> 167 Number of features: 71 Max AUC: 0.955 AUC: 0.931 Z: 0.291 Rdelta: 0.00436
#> 168 Number of features: 71 Max AUC: 0.955 AUC: 0.910 Z: 0.337 Rdelta: 0.00349
#> 169 Number of features: 72 Max AUC: 0.955 AUC: 0.933 Z: 0.347 Rdelta: 0.01314
#> 170 Number of features: 72 Max AUC: 0.955 AUC: 0.929 Z: 0.429 Rdelta: 0.01051
#> 171 Number of features: 72 Max AUC: 0.955 AUC: 0.924 Z: 0.398 Rdelta: 0.00841
#> 172 Number of features: 72 Max AUC: 0.955 AUC: 0.928 Z: 0.406 Rdelta: 0.00673
#> 173 Number of features: 72 Max AUC: 0.955 AUC: 0.906 Z: 0.336 Rdelta: 0.00538
#> 174 Number of features: 72 Max AUC: 0.955 AUC: 0.922 Z: 0.282 Rdelta: 0.00431
#> 175 Number of features: 72 Max AUC: 0.955 AUC: 0.928 Z: 0.387 Rdelta: 0.00345
#> 176 Number of features: 72 Max AUC: 0.955 AUC: 0.926 Z: 0.285 Rdelta: 0.00276
#> 177 Number of features: 72 Max AUC: 0.955 AUC: 0.922 Z: 0.369 Rdelta: 0.00220
#> 178 Number of features: 72 Max AUC: 0.955 AUC: 0.916 Z: 0.398 Rdelta: 0.00176
#> 179 Number of features: 72 Max AUC: 0.955 AUC: 0.928 Z: 0.392 Rdelta: 0.00141
#> 180 Number of features: 72 Max AUC: 0.955 AUC: 0.928 Z: 0.337 Rdelta: 0.00113
#> 181 Number of features: 72 Max AUC: 0.955 AUC: 0.922 Z: 0.440 Rdelta: 0.00090
#> 182 Number of features: 72 Max AUC: 0.955 AUC: 0.906 Z: 0.382 Rdelta: 0.00072
#> 183 Number of features: 72 Max AUC: 0.955 AUC: 0.915 Z: 0.286 Rdelta: 0.00058
#> 184 Number of features: 72 Max AUC: 0.955 AUC: 0.903 Z: 0.427 Rdelta: 0.00046
#> 185 Number of features: 72 Max AUC: 0.955 AUC: 0.922 Z: 0.360 Rdelta: 0.00037
#> 186 Number of features: 72 Max AUC: 0.955 AUC: 0.930 Z: 0.317 Rdelta: 0.00030
#> 187 Number of features: 72 Max AUC: 0.955 AUC: 0.925 Z: 0.400 Rdelta: 0.00024
#> 188 Number of features: 72 Max AUC: 0.955 AUC: 0.919 Z: 0.218 Rdelta: 0.00019
#> 189 Number of features: 72 Max AUC: 0.955 AUC: 0.908 Z: 0.308 Rdelta: 0.00015
#> 190 Number of features: 72 Max AUC: 0.955 AUC: 0.914 Z: 0.381 Rdelta: 0.00012
#> 191 Number of features: 72 Max AUC: 0.955 AUC: 0.916 Z: 0.272 Rdelta: 0.00010
#> user system elapsed
#> 127.22 0.00 127.26
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#> 7 Number of features: 7 Max AUC: 0.321 AUC: 0.321 Z: -0.467 Rdelta: 0.10000
#> 8 Number of features: 7 Max AUC: 0.321 AUC: 0.283 Z: -0.607 Rdelta: 0.08000
#> 9 Number of features: 8 Max AUC: 0.323 AUC: 0.323 Z: -0.369 Rdelta: 0.08200
#> 10 Number of features: 9 Max AUC: 0.326 AUC: 0.326 Z: -0.506 Rdelta: 0.08380
#> 11 Number of features: 10 Max AUC: 0.326 AUC: 0.325 Z: -0.502 Rdelta: 0.08542
#> 12 Number of features: 10 Max AUC: 0.326 AUC: 0.309 Z: -0.519 Rdelta: 0.06834
#> 13 Number of features: 10 Max AUC: 0.326 AUC: 0.309 Z: -0.544 Rdelta: 0.05467
#> 14 Number of features: 10 Max AUC: 0.326 AUC: 0.316 Z: -0.465 Rdelta: 0.04374
#> 15 Number of features: 10 Max AUC: 0.326 AUC: 0.309 Z: -0.538 Rdelta: 0.03499
#> 16 Number of features: 10 Max AUC: 0.326 AUC: 0.291 Z: -0.530 Rdelta: 0.02799
#> 17 Number of features: 10 Max AUC: 0.326 AUC: 0.293 Z: -0.600 Rdelta: 0.02239
#> 18 Number of features: 11 Max AUC: 0.336 AUC: 0.336 Z: -0.454 Rdelta: 0.03015
#> 19 Number of features: 12 Max AUC: 0.336 AUC: 0.334 Z: -0.464 Rdelta: 0.03714
#> 20 Number of features: 13 Max AUC: 0.338 AUC: 0.338 Z: -0.434 Rdelta: 0.04342
#> 21 Number of features: 13 Max AUC: 0.338 AUC: 0.300 Z: -0.537 Rdelta: 0.03474
#> 22 Number of features: 13 Max AUC: 0.338 AUC: 0.304 Z: -0.530 Rdelta: 0.02779
#> 23 Number of features: 14 Max AUC: 0.338 AUC: 0.334 Z: -0.480 Rdelta: 0.03501
#> 24 Number of features: 15 Max AUC: 0.448 AUC: 0.448 Z: -0.062 Rdelta: 0.04151
#> 25 Number of features: 15 Max AUC: 0.448 AUC: 0.431 Z: -0.016 Rdelta: 0.03321
#> 26 Number of features: 15 Max AUC: 0.448 AUC: 0.437 Z: -0.136 Rdelta: 0.02657
#> 27 Number of features: 16 Max AUC: 0.448 AUC: 0.444 Z: -0.131 Rdelta: 0.03391
#> 28 Number of features: 16 Max AUC: 0.448 AUC: 0.434 Z: -0.068 Rdelta: 0.02713
#> 29 Number of features: 16 Max AUC: 0.448 AUC: 0.428 Z: -0.194 Rdelta: 0.02170
#> 30 Number of features: 16 Max AUC: 0.448 AUC: 0.427 Z: -0.104 Rdelta: 0.01736
#> 31 Number of features: 16 Max AUC: 0.448 AUC: 0.435 Z: -0.184 Rdelta: 0.01389
#> 32 Number of features: 16 Max AUC: 0.448 AUC: 0.437 Z: -0.146 Rdelta: 0.01111
#> 33 Number of features: 17 Max AUC: 0.448 AUC: 0.446 Z: -0.042 Rdelta: 0.02000
#> 34 Number of features: 17 Max AUC: 0.448 AUC: 0.426 Z: -0.090 Rdelta: 0.01600
#> 35 Number of features: 17 Max AUC: 0.448 AUC: 0.430 Z: -0.140 Rdelta: 0.01280
#> 36 Number of features: 17 Max AUC: 0.448 AUC: 0.434 Z: -0.144 Rdelta: 0.01024
#> 37 Number of features: 17 Max AUC: 0.448 AUC: 0.417 Z: -0.183 Rdelta: 0.00819
#> 38 Number of features: 17 Max AUC: 0.448 AUC: 0.417 Z: -0.196 Rdelta: 0.00655
#> 39 Number of features: 17 Max AUC: 0.448 AUC: 0.413 Z: -0.117 Rdelta: 0.00524
#> 40 Number of features: 17 Max AUC: 0.448 AUC: 0.439 Z: -0.086 Rdelta: 0.00419
#> 41 Number of features: 17 Max AUC: 0.448 AUC: 0.432 Z: -0.080 Rdelta: 0.00336
#> 42 Number of features: 18 Max AUC: 0.448 AUC: 0.447 Z: -0.056 Rdelta: 0.01302
#> 43 Number of features: 18 Max AUC: 0.448 AUC: 0.425 Z: -0.151 Rdelta: 0.01042
#> 44 Number of features: 18 Max AUC: 0.448 AUC: 0.425 Z: -0.189 Rdelta: 0.00833
#> 45 Number of features: 18 Max AUC: 0.448 AUC: 0.403 Z: -0.199 Rdelta: 0.00667
#> 46 Number of features: 18 Max AUC: 0.448 AUC: 0.411 Z: -0.234 Rdelta: 0.00533
#> 47 Number of features: 18 Max AUC: 0.448 AUC: 0.419 Z: -0.215 Rdelta: 0.00427
#> 48 Number of features: 18 Max AUC: 0.448 AUC: 0.440 Z: -0.079 Rdelta: 0.00341
#> 49 Number of features: 19 Max AUC: 0.482 AUC: 0.482 Z: 0.017 Rdelta: 0.01307
#> 50 Number of features: 20 Max AUC: 0.482 AUC: 0.482 Z: 0.005 Rdelta: 0.02176
#> 51 Number of features: 20 Max AUC: 0.482 AUC: 0.472 Z: -0.002 Rdelta: 0.01741
#> 52 Number of features: 21 Max AUC: 0.494 AUC: 0.494 Z: 0.022 Rdelta: 0.02567
#> 53 Number of features: 21 Max AUC: 0.494 AUC: 0.474 Z: -0.002 Rdelta: 0.02054
#> 54 Number of features: 21 Max AUC: 0.494 AUC: 0.472 Z: 0.005 Rdelta: 0.01643
#> 55 Number of features: 21 Max AUC: 0.494 AUC: 0.459 Z: -0.017 Rdelta: 0.01314
#> 56 Number of features: 21 Max AUC: 0.494 AUC: 0.450 Z: -0.045 Rdelta: 0.01051
#> 57 Number of features: 21 Max AUC: 0.494 AUC: 0.452 Z: -0.015 Rdelta: 0.00841
#> 58 Number of features: 21 Max AUC: 0.494 AUC: 0.470 Z: -0.056 Rdelta: 0.00673
#> 59 Number of features: 21 Max AUC: 0.494 AUC: 0.457 Z: 0.001 Rdelta: 0.00538
#> 60 Number of features: 21 Max AUC: 0.494 AUC: 0.479 Z: 0.014 Rdelta: 0.00431
#> 61 Number of features: 21 Max AUC: 0.494 AUC: 0.441 Z: -0.106 Rdelta: 0.00345
#> 62 Number of features: 21 Max AUC: 0.494 AUC: 0.487 Z: 0.017 Rdelta: 0.00276
#> 63 Number of features: 21 Max AUC: 0.494 AUC: 0.421 Z: -0.061 Rdelta: 0.00221
#> 64 Number of features: 21 Max AUC: 0.494 AUC: 0.468 Z: -0.002 Rdelta: 0.00176
#> 65 Number of features: 21 Max AUC: 0.494 AUC: 0.450 Z: -0.019 Rdelta: 0.00141
#> 66 Number of features: 21 Max AUC: 0.494 AUC: 0.458 Z: -0.061 Rdelta: 0.00113
#> 67 Number of features: 21 Max AUC: 0.494 AUC: 0.439 Z: -0.004 Rdelta: 0.00090
#> 68 Number of features: 21 Max AUC: 0.494 AUC: 0.462 Z: -0.007 Rdelta: 0.00072
#> 69 Number of features: 21 Max AUC: 0.494 AUC: 0.440 Z: -0.023 Rdelta: 0.00058
#> 70 Number of features: 21 Max AUC: 0.494 AUC: 0.441 Z: -0.132 Rdelta: 0.00046
#> 71 Number of features: 21 Max AUC: 0.494 AUC: 0.462 Z: -0.004 Rdelta: 0.00037
#> 72 Number of features: 21 Max AUC: 0.494 AUC: 0.474 Z: 0.011 Rdelta: 0.00030
#> 73 Number of features: 21 Max AUC: 0.494 AUC: 0.464 Z: 0.009 Rdelta: 0.00024
#> 74 Number of features: 21 Max AUC: 0.494 AUC: 0.459 Z: -0.019 Rdelta: 0.00019
#> 75 Number of features: 21 Max AUC: 0.494 AUC: 0.474 Z: 0.000 Rdelta: 0.00015
#> 76 Number of features: 21 Max AUC: 0.494 AUC: 0.459 Z: -0.017 Rdelta: 0.00012
#> 77 Number of features: 21 Max AUC: 0.494 AUC: 0.477 Z: 0.035 Rdelta: 0.00010
#> user system elapsed
#> 21.34 0.00 21.36
testDistance_control <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#> 7 Number of features: 7 Max AUC: 0.733 AUC: 0.733 Z: 1.279 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.733 AUC: 0.720 Z: 1.491 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.733 AUC: 0.715 Z: 1.383 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.762 AUC: 0.762 Z: 1.620 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.781 AUC: 0.781 Z: 1.532 Rdelta: 0.10000
#> 12 Number of features: 11 Max AUC: 0.781 AUC: 0.755 Z: 1.497 Rdelta: 0.08000
#> 13 Number of features: 12 Max AUC: 0.792 AUC: 0.792 Z: 1.742 Rdelta: 0.08200
#> 14 Number of features: 13 Max AUC: 0.804 AUC: 0.804 Z: 1.665 Rdelta: 0.08380
#> 15 Number of features: 14 Max AUC: 0.821 AUC: 0.821 Z: 1.880 Rdelta: 0.08542
#> 16 Number of features: 15 Max AUC: 0.825 AUC: 0.825 Z: 0.806 Rdelta: 0.08688
#> 17 Number of features: 16 Max AUC: 0.825 AUC: 0.825 Z: 0.326 Rdelta: 0.08819
#> 18 Number of features: 17 Max AUC: 0.832 AUC: 0.832 Z: 0.407 Rdelta: 0.08937
#> 19 Number of features: 18 Max AUC: 0.832 AUC: 0.825 Z: 0.458 Rdelta: 0.09043
#> 20 Number of features: 19 Max AUC: 0.840 AUC: 0.840 Z: 0.447 Rdelta: 0.09139
#> 21 Number of features: 20 Max AUC: 0.840 AUC: 0.840 Z: 0.310 Rdelta: 0.09225
#> 22 Number of features: 20 Max AUC: 0.840 AUC: 0.823 Z: 0.388 Rdelta: 0.07380
#> 23 Number of features: 21 Max AUC: 0.840 AUC: 0.831 Z: 0.313 Rdelta: 0.07642
#> 24 Number of features: 21 Max AUC: 0.840 AUC: 0.813 Z: 0.349 Rdelta: 0.06114
#> 25 Number of features: 22 Max AUC: 0.841 AUC: 0.841 Z: 0.341 Rdelta: 0.06502
#> 26 Number of features: 23 Max AUC: 0.841 AUC: 0.833 Z: 0.359 Rdelta: 0.06852
#> 27 Number of features: 24 Max AUC: 0.841 AUC: 0.841 Z: 0.410 Rdelta: 0.07167
#> 28 Number of features: 25 Max AUC: 0.856 AUC: 0.856 Z: 0.303 Rdelta: 0.07450
#> 29 Number of features: 26 Max AUC: 0.856 AUC: 0.851 Z: 0.376 Rdelta: 0.07705
#> 30 Number of features: 26 Max AUC: 0.856 AUC: 0.840 Z: 0.307 Rdelta: 0.06164
#> 31 Number of features: 26 Max AUC: 0.856 AUC: 0.844 Z: 0.328 Rdelta: 0.04931
#> 32 Number of features: 27 Max AUC: 0.856 AUC: 0.850 Z: 0.309 Rdelta: 0.05438
#> 33 Number of features: 28 Max AUC: 0.856 AUC: 0.853 Z: 0.306 Rdelta: 0.05894
#> 34 Number of features: 28 Max AUC: 0.856 AUC: 0.843 Z: 0.307 Rdelta: 0.04715
#> 35 Number of features: 29 Max AUC: 0.856 AUC: 0.850 Z: 0.338 Rdelta: 0.05244
#> 36 Number of features: 30 Max AUC: 0.856 AUC: 0.848 Z: 0.313 Rdelta: 0.05720
#> 37 Number of features: 31 Max AUC: 0.862 AUC: 0.862 Z: 0.294 Rdelta: 0.06148
#> 38 Number of features: 32 Max AUC: 0.862 AUC: 0.861 Z: 0.326 Rdelta: 0.06533
#> 39 Number of features: 33 Max AUC: 0.866 AUC: 0.866 Z: 0.380 Rdelta: 0.06880
#> 40 Number of features: 34 Max AUC: 0.867 AUC: 0.867 Z: 0.330 Rdelta: 0.07192
#> 41 Number of features: 34 Max AUC: 0.867 AUC: 0.856 Z: 0.363 Rdelta: 0.05753
#> 42 Number of features: 34 Max AUC: 0.867 AUC: 0.853 Z: 0.378 Rdelta: 0.04603
#> 43 Number of features: 34 Max AUC: 0.867 AUC: 0.849 Z: 0.397 Rdelta: 0.03682
#> 44 Number of features: 35 Max AUC: 0.867 AUC: 0.859 Z: 0.383 Rdelta: 0.04314
#> 45 Number of features: 36 Max AUC: 0.867 AUC: 0.862 Z: 0.328 Rdelta: 0.04882
#> 46 Number of features: 36 Max AUC: 0.867 AUC: 0.845 Z: 0.355 Rdelta: 0.03906
#> 47 Number of features: 36 Max AUC: 0.867 AUC: 0.850 Z: 0.404 Rdelta: 0.03125
#> 48 Number of features: 36 Max AUC: 0.867 AUC: 0.850 Z: 0.366 Rdelta: 0.02500
#> 49 Number of features: 36 Max AUC: 0.867 AUC: 0.828 Z: 0.371 Rdelta: 0.02000
#> 50 Number of features: 36 Max AUC: 0.867 AUC: 0.844 Z: 0.405 Rdelta: 0.01600
#> 51 Number of features: 37 Max AUC: 0.867 AUC: 0.857 Z: 0.374 Rdelta: 0.02440
#> 52 Number of features: 37 Max AUC: 0.867 AUC: 0.845 Z: 0.370 Rdelta: 0.01952
#> 53 Number of features: 38 Max AUC: 0.867 AUC: 0.857 Z: 0.430 Rdelta: 0.02757
#> 54 Number of features: 38 Max AUC: 0.867 AUC: 0.853 Z: 0.403 Rdelta: 0.02205
#> 55 Number of features: 39 Max AUC: 0.867 AUC: 0.857 Z: 0.338 Rdelta: 0.02985
#> 56 Number of features: 40 Max AUC: 0.867 AUC: 0.855 Z: 0.408 Rdelta: 0.03686
#> 57 Number of features: 40 Max AUC: 0.867 AUC: 0.847 Z: 0.374 Rdelta: 0.02949
#> 58 Number of features: 40 Max AUC: 0.867 AUC: 0.844 Z: 0.348 Rdelta: 0.02359
#> 59 Number of features: 41 Max AUC: 0.867 AUC: 0.853 Z: 0.353 Rdelta: 0.03123
#> 60 Number of features: 42 Max AUC: 0.867 AUC: 0.853 Z: 0.368 Rdelta: 0.03811
#> 61 Number of features: 42 Max AUC: 0.867 AUC: 0.846 Z: 0.459 Rdelta: 0.03049
#> 62 Number of features: 42 Max AUC: 0.867 AUC: 0.842 Z: 0.363 Rdelta: 0.02439
#> 63 Number of features: 42 Max AUC: 0.867 AUC: 0.852 Z: 0.241 Rdelta: 0.01951
#> 64 Number of features: 42 Max AUC: 0.867 AUC: 0.834 Z: 0.379 Rdelta: 0.01561
#> 65 Number of features: 43 Max AUC: 0.867 AUC: 0.858 Z: 0.411 Rdelta: 0.02405
#> 66 Number of features: 43 Max AUC: 0.867 AUC: 0.836 Z: 0.419 Rdelta: 0.01924
#> 67 Number of features: 43 Max AUC: 0.867 AUC: 0.838 Z: 0.438 Rdelta: 0.01539
#> 68 Number of features: 44 Max AUC: 0.867 AUC: 0.860 Z: 0.379 Rdelta: 0.02385
#> 69 Number of features: 45 Max AUC: 0.867 AUC: 0.853 Z: 0.332 Rdelta: 0.03147
#> 70 Number of features: 45 Max AUC: 0.867 AUC: 0.839 Z: 0.400 Rdelta: 0.02517
#> 71 Number of features: 46 Max AUC: 0.867 AUC: 0.852 Z: 0.370 Rdelta: 0.03266
#> 72 Number of features: 46 Max AUC: 0.867 AUC: 0.840 Z: 0.378 Rdelta: 0.02612
#> 73 Number of features: 46 Max AUC: 0.867 AUC: 0.847 Z: 0.355 Rdelta: 0.02090
#> 74 Number of features: 46 Max AUC: 0.867 AUC: 0.846 Z: 0.400 Rdelta: 0.01672
#> 75 Number of features: 46 Max AUC: 0.867 AUC: 0.825 Z: 0.348 Rdelta: 0.01338
#> 76 Number of features: 46 Max AUC: 0.867 AUC: 0.834 Z: 0.380 Rdelta: 0.01070
#> 77 Number of features: 47 Max AUC: 0.867 AUC: 0.853 Z: 0.400 Rdelta: 0.01963
#> 78 Number of features: 47 Max AUC: 0.867 AUC: 0.824 Z: 0.404 Rdelta: 0.01570
#> 79 Number of features: 47 Max AUC: 0.867 AUC: 0.837 Z: 0.451 Rdelta: 0.01256
#> 80 Number of features: 47 Max AUC: 0.867 AUC: 0.834 Z: 0.418 Rdelta: 0.01005
#> 81 Number of features: 47 Max AUC: 0.867 AUC: 0.842 Z: 0.449 Rdelta: 0.00804
#> 82 Number of features: 48 Max AUC: 0.867 AUC: 0.850 Z: 0.405 Rdelta: 0.01724
#> 83 Number of features: 48 Max AUC: 0.867 AUC: 0.825 Z: 0.457 Rdelta: 0.01379
#> 84 Number of features: 48 Max AUC: 0.867 AUC: 0.836 Z: 0.450 Rdelta: 0.01103
#> 85 Number of features: 48 Max AUC: 0.867 AUC: 0.839 Z: 0.439 Rdelta: 0.00883
#> 86 Number of features: 48 Max AUC: 0.867 AUC: 0.847 Z: 0.442 Rdelta: 0.00706
#> 87 Number of features: 48 Max AUC: 0.867 AUC: 0.751 Z: 0.482 Rdelta: 0.00565
#> 88 Number of features: 48 Max AUC: 0.867 AUC: 0.831 Z: 0.465 Rdelta: 0.00452
#> 89 Number of features: 49 Max AUC: 0.867 AUC: 0.849 Z: 0.500 Rdelta: 0.01407
#> 90 Number of features: 49 Max AUC: 0.867 AUC: 0.839 Z: 0.461 Rdelta: 0.01125
#> 91 Number of features: 49 Max AUC: 0.867 AUC: 0.846 Z: 0.460 Rdelta: 0.00900
#> 92 Number of features: 49 Max AUC: 0.867 AUC: 0.840 Z: 0.450 Rdelta: 0.00720
#> 93 Number of features: 49 Max AUC: 0.867 AUC: 0.838 Z: 0.442 Rdelta: 0.00576
#> 94 Number of features: 49 Max AUC: 0.867 AUC: 0.842 Z: 0.423 Rdelta: 0.00461
#> 95 Number of features: 49 Max AUC: 0.867 AUC: 0.828 Z: 0.425 Rdelta: 0.00369
#> 96 Number of features: 49 Max AUC: 0.867 AUC: 0.837 Z: 0.443 Rdelta: 0.00295
#> 97 Number of features: 49 Max AUC: 0.867 AUC: 0.803 Z: 0.461 Rdelta: 0.00236
#> 98 Number of features: 49 Max AUC: 0.867 AUC: 0.759 Z: 0.459 Rdelta: 0.00189
#> 99 Number of features: 49 Max AUC: 0.867 AUC: 0.848 Z: 0.451 Rdelta: 0.00151
#> 100 Number of features: 49 Max AUC: 0.867 AUC: 0.840 Z: 0.520 Rdelta: 0.00121
#> 101 Number of features: 49 Max AUC: 0.867 AUC: 0.836 Z: 0.400 Rdelta: 0.00097
#> 102 Number of features: 49 Max AUC: 0.867 AUC: 0.824 Z: 0.489 Rdelta: 0.00077
#> 103 Number of features: 49 Max AUC: 0.867 AUC: 0.837 Z: 0.316 Rdelta: 0.00062
#> 104 Number of features: 49 Max AUC: 0.867 AUC: 0.785 Z: 0.456 Rdelta: 0.00049
#> 105 Number of features: 49 Max AUC: 0.867 AUC: 0.833 Z: 0.415 Rdelta: 0.00040
#> 106 Number of features: 49 Max AUC: 0.867 AUC: 0.803 Z: 0.299 Rdelta: 0.00032
#> 107 Number of features: 49 Max AUC: 0.867 AUC: 0.835 Z: 0.395 Rdelta: 0.00025
#> 108 Number of features: 49 Max AUC: 0.867 AUC: 0.847 Z: 0.492 Rdelta: 0.00020
#> 109 Number of features: 49 Max AUC: 0.867 AUC: 0.845 Z: 0.448 Rdelta: 0.00016
#> 110 Number of features: 49 Max AUC: 0.867 AUC: 0.839 Z: 0.516 Rdelta: 0.00013
#> 111 Number of features: 49 Max AUC: 0.867 AUC: 0.830 Z: 0.447 Rdelta: 0.00010
#> 112 Number of features: 49 Max AUC: 0.867 AUC: 0.836 Z: 0.553 Rdelta: 0.00008
#> user system elapsed
#> 53.15 0.00 53.20
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################
varlist <- names(arceneCVThree$bagging$frequencyTable)
#############################################################################################
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="pearson"))
#> 7 Number of features: 7 Max AUC: 0.480 AUC: 0.480 Z: -0.174 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.488 AUC: 0.488 Z: -0.092 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.528 AUC: 0.528 Z: 0.109 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.539 AUC: 0.539 Z: 0.161 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.558 AUC: 0.558 Z: 0.212 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.566 AUC: 0.566 Z: 0.247 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.573 AUC: 0.573 Z: 0.240 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.582 AUC: 0.582 Z: 0.309 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.582 AUC: 0.577 Z: 0.279 Rdelta: 0.10000
#> 16 Number of features: 15 Max AUC: 0.582 AUC: 0.567 Z: 0.329 Rdelta: 0.08000
#> 17 Number of features: 16 Max AUC: 0.582 AUC: 0.579 Z: 0.326 Rdelta: 0.08200
#> 18 Number of features: 17 Max AUC: 0.586 AUC: 0.586 Z: 0.330 Rdelta: 0.08380
#> 19 Number of features: 17 Max AUC: 0.586 AUC: 0.566 Z: 0.271 Rdelta: 0.06704
#> 20 Number of features: 18 Max AUC: 0.586 AUC: 0.584 Z: 0.311 Rdelta: 0.07034
#> 21 Number of features: 18 Max AUC: 0.586 AUC: 0.574 Z: 0.362 Rdelta: 0.05627
#> 22 Number of features: 19 Max AUC: 0.704 AUC: 0.704 Z: 1.287 Rdelta: 0.06064
#> 23 Number of features: 20 Max AUC: 0.704 AUC: 0.702 Z: 1.362 Rdelta: 0.06458
#> 24 Number of features: 21 Max AUC: 0.708 AUC: 0.708 Z: 1.376 Rdelta: 0.06812
#> 25 Number of features: 22 Max AUC: 0.711 AUC: 0.711 Z: 1.386 Rdelta: 0.07131
#> 26 Number of features: 22 Max AUC: 0.711 AUC: 0.702 Z: 1.252 Rdelta: 0.05705
#> 27 Number of features: 23 Max AUC: 0.711 AUC: 0.704 Z: 1.320 Rdelta: 0.06134
#> 28 Number of features: 24 Max AUC: 0.711 AUC: 0.706 Z: 1.288 Rdelta: 0.06521
#> 29 Number of features: 24 Max AUC: 0.711 AUC: 0.689 Z: 1.331 Rdelta: 0.05217
#> 30 Number of features: 24 Max AUC: 0.711 AUC: 0.682 Z: 1.208 Rdelta: 0.04173
#> 31 Number of features: 24 Max AUC: 0.711 AUC: 0.701 Z: 1.276 Rdelta: 0.03339
#> 32 Number of features: 24 Max AUC: 0.711 AUC: 0.691 Z: 1.246 Rdelta: 0.02671
#> 33 Number of features: 24 Max AUC: 0.711 AUC: 0.693 Z: 1.300 Rdelta: 0.02137
#> 34 Number of features: 24 Max AUC: 0.711 AUC: 0.691 Z: 1.130 Rdelta: 0.01709
#> 35 Number of features: 24 Max AUC: 0.711 AUC: 0.699 Z: 1.290 Rdelta: 0.01368
#> 36 Number of features: 25 Max AUC: 0.711 AUC: 0.700 Z: 1.324 Rdelta: 0.02231
#> 37 Number of features: 26 Max AUC: 0.711 AUC: 0.709 Z: 1.379 Rdelta: 0.03008
#> 38 Number of features: 27 Max AUC: 0.711 AUC: 0.706 Z: 1.233 Rdelta: 0.03707
#> 39 Number of features: 27 Max AUC: 0.711 AUC: 0.695 Z: 1.234 Rdelta: 0.02966
#> 40 Number of features: 27 Max AUC: 0.711 AUC: 0.676 Z: 1.060 Rdelta: 0.02372
#> 41 Number of features: 28 Max AUC: 0.735 AUC: 0.735 Z: 1.244 Rdelta: 0.03135
#> 42 Number of features: 29 Max AUC: 0.738 AUC: 0.738 Z: 1.314 Rdelta: 0.03822
#> 43 Number of features: 30 Max AUC: 0.738 AUC: 0.732 Z: 1.309 Rdelta: 0.04439
#> 44 Number of features: 30 Max AUC: 0.738 AUC: 0.729 Z: 1.252 Rdelta: 0.03552
#> 45 Number of features: 30 Max AUC: 0.738 AUC: 0.730 Z: 1.230 Rdelta: 0.02841
#> 46 Number of features: 30 Max AUC: 0.738 AUC: 0.730 Z: 1.176 Rdelta: 0.02273
#> 47 Number of features: 31 Max AUC: 0.738 AUC: 0.731 Z: 1.230 Rdelta: 0.03046
#> 48 Number of features: 31 Max AUC: 0.738 AUC: 0.729 Z: 1.225 Rdelta: 0.02437
#> 49 Number of features: 32 Max AUC: 0.766 AUC: 0.766 Z: 1.441 Rdelta: 0.03193
#> 50 Number of features: 33 Max AUC: 0.775 AUC: 0.775 Z: 1.597 Rdelta: 0.03874
#> 51 Number of features: 34 Max AUC: 0.775 AUC: 0.772 Z: 1.567 Rdelta: 0.04486
#> 52 Number of features: 34 Max AUC: 0.775 AUC: 0.766 Z: 1.591 Rdelta: 0.03589
#> 53 Number of features: 35 Max AUC: 0.775 AUC: 0.774 Z: 1.519 Rdelta: 0.04230
#> 54 Number of features: 35 Max AUC: 0.775 AUC: 0.764 Z: 1.566 Rdelta: 0.03384
#> 55 Number of features: 36 Max AUC: 0.786 AUC: 0.786 Z: 1.727 Rdelta: 0.04046
#> 56 Number of features: 36 Max AUC: 0.786 AUC: 0.778 Z: 1.690 Rdelta: 0.03237
#> 57 Number of features: 37 Max AUC: 0.786 AUC: 0.785 Z: 1.736 Rdelta: 0.03913
#> 58 Number of features: 37 Max AUC: 0.786 AUC: 0.778 Z: 1.681 Rdelta: 0.03130
#> 59 Number of features: 38 Max AUC: 0.786 AUC: 0.785 Z: 1.712 Rdelta: 0.03817
#> 60 Number of features: 38 Max AUC: 0.786 AUC: 0.774 Z: 1.589 Rdelta: 0.03054
#> 61 Number of features: 39 Max AUC: 0.786 AUC: 0.782 Z: 1.674 Rdelta: 0.03748
#> 62 Number of features: 39 Max AUC: 0.786 AUC: 0.768 Z: 1.654 Rdelta: 0.02999
#> 63 Number of features: 40 Max AUC: 0.786 AUC: 0.781 Z: 1.673 Rdelta: 0.03699
#> 64 Number of features: 40 Max AUC: 0.786 AUC: 0.773 Z: 1.684 Rdelta: 0.02959
#> 65 Number of features: 41 Max AUC: 0.786 AUC: 0.781 Z: 1.646 Rdelta: 0.03663
#> 66 Number of features: 42 Max AUC: 0.786 AUC: 0.779 Z: 1.672 Rdelta: 0.04297
#> 67 Number of features: 42 Max AUC: 0.786 AUC: 0.767 Z: 1.656 Rdelta: 0.03437
#> 68 Number of features: 43 Max AUC: 0.786 AUC: 0.777 Z: 1.685 Rdelta: 0.04094
#> 69 Number of features: 44 Max AUC: 0.786 AUC: 0.785 Z: 1.798 Rdelta: 0.04684
#> 70 Number of features: 45 Max AUC: 0.786 AUC: 0.782 Z: 1.790 Rdelta: 0.05216
#> 71 Number of features: 46 Max AUC: 0.812 AUC: 0.812 Z: 1.901 Rdelta: 0.05694
#> 72 Number of features: 46 Max AUC: 0.812 AUC: 0.801 Z: 1.821 Rdelta: 0.04555
#> 73 Number of features: 47 Max AUC: 0.812 AUC: 0.812 Z: 1.918 Rdelta: 0.05100
#> 74 Number of features: 48 Max AUC: 0.814 AUC: 0.814 Z: 1.948 Rdelta: 0.05590
#> 75 Number of features: 49 Max AUC: 0.814 AUC: 0.808 Z: 1.915 Rdelta: 0.06031
#> 76 Number of features: 50 Max AUC: 0.814 AUC: 0.806 Z: 1.869 Rdelta: 0.06428
#> 77 Number of features: 51 Max AUC: 0.814 AUC: 0.806 Z: 1.848 Rdelta: 0.06785
#> 78 Number of features: 51 Max AUC: 0.814 AUC: 0.798 Z: 1.899 Rdelta: 0.05428
#> 79 Number of features: 51 Max AUC: 0.814 AUC: 0.799 Z: 1.849 Rdelta: 0.04342
#> 80 Number of features: 51 Max AUC: 0.814 AUC: 0.804 Z: 1.864 Rdelta: 0.03474
#> 81 Number of features: 52 Max AUC: 0.814 AUC: 0.806 Z: 1.823 Rdelta: 0.04127
#> 82 Number of features: 53 Max AUC: 0.814 AUC: 0.808 Z: 1.857 Rdelta: 0.04714
#> 83 Number of features: 53 Max AUC: 0.814 AUC: 0.750 Z: 1.478 Rdelta: 0.03771
#> 84 Number of features: 54 Max AUC: 0.814 AUC: 0.806 Z: 1.840 Rdelta: 0.04394
#> 85 Number of features: 55 Max AUC: 0.814 AUC: 0.806 Z: 1.898 Rdelta: 0.04955
#> 86 Number of features: 55 Max AUC: 0.814 AUC: 0.798 Z: 1.821 Rdelta: 0.03964
#> 87 Number of features: 55 Max AUC: 0.814 AUC: 0.796 Z: 1.817 Rdelta: 0.03171
#> 88 Number of features: 55 Max AUC: 0.814 AUC: 0.799 Z: 1.899 Rdelta: 0.02537
#> 89 Number of features: 55 Max AUC: 0.814 AUC: 0.794 Z: 1.780 Rdelta: 0.02029
#> 90 Number of features: 56 Max AUC: 0.814 AUC: 0.805 Z: 1.842 Rdelta: 0.02826
#> 91 Number of features: 56 Max AUC: 0.814 AUC: 0.798 Z: 1.852 Rdelta: 0.02261
#> 92 Number of features: 56 Max AUC: 0.814 AUC: 0.788 Z: 1.833 Rdelta: 0.01809
#> 93 Number of features: 56 Max AUC: 0.814 AUC: 0.793 Z: 1.826 Rdelta: 0.01447
#> 94 Number of features: 56 Max AUC: 0.814 AUC: 0.787 Z: 1.775 Rdelta: 0.01158
#> 95 Number of features: 56 Max AUC: 0.814 AUC: 0.791 Z: 1.787 Rdelta: 0.00926
#> 96 Number of features: 56 Max AUC: 0.814 AUC: 0.793 Z: 1.764 Rdelta: 0.00741
#> 97 Number of features: 56 Max AUC: 0.814 AUC: 0.802 Z: 1.881 Rdelta: 0.00593
#> 98 Number of features: 56 Max AUC: 0.814 AUC: 0.793 Z: 1.810 Rdelta: 0.00474
#> 99 Number of features: 56 Max AUC: 0.814 AUC: 0.782 Z: 1.763 Rdelta: 0.00379
#> 100 Number of features: 56 Max AUC: 0.814 AUC: 0.791 Z: 1.792 Rdelta: 0.00303
#> 101 Number of features: 56 Max AUC: 0.814 AUC: 0.803 Z: 1.828 Rdelta: 0.00243
#> 102 Number of features: 57 Max AUC: 0.814 AUC: 0.804 Z: 1.856 Rdelta: 0.01219
#> 103 Number of features: 57 Max AUC: 0.814 AUC: 0.797 Z: 1.850 Rdelta: 0.00975
#> 104 Number of features: 57 Max AUC: 0.814 AUC: 0.789 Z: 1.859 Rdelta: 0.00780
#> 105 Number of features: 57 Max AUC: 0.814 AUC: 0.794 Z: 1.821 Rdelta: 0.00624
#> 106 Number of features: 57 Max AUC: 0.814 AUC: 0.802 Z: 1.929 Rdelta: 0.00499
#> 107 Number of features: 58 Max AUC: 0.814 AUC: 0.811 Z: 1.909 Rdelta: 0.01449
#> 108 Number of features: 58 Max AUC: 0.814 AUC: 0.792 Z: 1.833 Rdelta: 0.01159
#> 109 Number of features: 58 Max AUC: 0.814 AUC: 0.801 Z: 1.904 Rdelta: 0.00927
#> 110 Number of features: 59 Max AUC: 0.816 AUC: 0.816 Z: 1.959 Rdelta: 0.01835
#> 111 Number of features: 59 Max AUC: 0.816 AUC: 0.804 Z: 1.871 Rdelta: 0.01468
#> 112 Number of features: 60 Max AUC: 0.816 AUC: 0.810 Z: 1.973 Rdelta: 0.02321
#> 113 Number of features: 60 Max AUC: 0.816 AUC: 0.800 Z: 1.651 Rdelta: 0.01857
#> 114 Number of features: 60 Max AUC: 0.816 AUC: 0.798 Z: 1.924 Rdelta: 0.01485
#> 115 Number of features: 60 Max AUC: 0.816 AUC: 0.807 Z: 1.971 Rdelta: 0.01188
#> 116 Number of features: 60 Max AUC: 0.816 AUC: 0.807 Z: 1.970 Rdelta: 0.00951
#> 117 Number of features: 61 Max AUC: 0.816 AUC: 0.812 Z: 2.044 Rdelta: 0.01856
#> 118 Number of features: 61 Max AUC: 0.816 AUC: 0.806 Z: 1.972 Rdelta: 0.01484
#> 119 Number of features: 62 Max AUC: 0.820 AUC: 0.820 Z: 2.071 Rdelta: 0.02336
#> 120 Number of features: 63 Max AUC: 0.824 AUC: 0.824 Z: 2.094 Rdelta: 0.03102
#> 121 Number of features: 64 Max AUC: 0.824 AUC: 0.817 Z: 2.064 Rdelta: 0.03792
#> 122 Number of features: 64 Max AUC: 0.824 AUC: 0.809 Z: 2.051 Rdelta: 0.03034
#> 123 Number of features: 64 Max AUC: 0.824 AUC: 0.803 Z: 1.909 Rdelta: 0.02427
#> 124 Number of features: 64 Max AUC: 0.824 AUC: 0.810 Z: 2.067 Rdelta: 0.01942
#> 125 Number of features: 65 Max AUC: 0.826 AUC: 0.826 Z: 2.075 Rdelta: 0.02747
#> 126 Number of features: 65 Max AUC: 0.826 AUC: 0.809 Z: 2.062 Rdelta: 0.02198
#> 127 Number of features: 66 Max AUC: 0.826 AUC: 0.822 Z: 1.763 Rdelta: 0.02978
#> 128 Number of features: 67 Max AUC: 0.828 AUC: 0.828 Z: 1.829 Rdelta: 0.03680
#> 129 Number of features: 68 Max AUC: 0.831 AUC: 0.831 Z: 1.872 Rdelta: 0.04312
#> 130 Number of features: 68 Max AUC: 0.831 AUC: 0.819 Z: 1.837 Rdelta: 0.03450
#> 131 Number of features: 68 Max AUC: 0.831 AUC: 0.780 Z: 1.456 Rdelta: 0.02760
#> 132 Number of features: 68 Max AUC: 0.831 AUC: 0.818 Z: 1.851 Rdelta: 0.02208
#> 133 Number of features: 69 Max AUC: 0.831 AUC: 0.827 Z: 1.898 Rdelta: 0.02987
#> 134 Number of features: 70 Max AUC: 0.831 AUC: 0.828 Z: 1.873 Rdelta: 0.03688
#> 135 Number of features: 71 Max AUC: 0.831 AUC: 0.822 Z: 1.868 Rdelta: 0.04320
#> 136 Number of features: 71 Max AUC: 0.831 AUC: 0.769 Z: 1.567 Rdelta: 0.03456
#> 137 Number of features: 72 Max AUC: 0.831 AUC: 0.831 Z: 1.863 Rdelta: 0.04110
#> 138 Number of features: 73 Max AUC: 0.831 AUC: 0.824 Z: 1.879 Rdelta: 0.04699
#> 139 Number of features: 73 Max AUC: 0.831 AUC: 0.821 Z: 1.884 Rdelta: 0.03759
#> 140 Number of features: 73 Max AUC: 0.831 AUC: 0.817 Z: 1.813 Rdelta: 0.03007
#> 141 Number of features: 74 Max AUC: 0.831 AUC: 0.823 Z: 1.833 Rdelta: 0.03707
#> 142 Number of features: 74 Max AUC: 0.831 AUC: 0.813 Z: 1.790 Rdelta: 0.02965
#> 143 Number of features: 74 Max AUC: 0.831 AUC: 0.819 Z: 1.798 Rdelta: 0.02372
#> 144 Number of features: 74 Max AUC: 0.831 AUC: 0.819 Z: 1.815 Rdelta: 0.01898
#> 145 Number of features: 74 Max AUC: 0.831 AUC: 0.770 Z: 1.484 Rdelta: 0.01518
#> 146 Number of features: 74 Max AUC: 0.831 AUC: 0.819 Z: 1.774 Rdelta: 0.01215
#> 147 Number of features: 74 Max AUC: 0.831 AUC: 0.731 Z: 1.077 Rdelta: 0.00972
#> 148 Number of features: 74 Max AUC: 0.831 AUC: 0.819 Z: 1.812 Rdelta: 0.00777
#> 149 Number of features: 75 Max AUC: 0.832 AUC: 0.832 Z: 1.862 Rdelta: 0.01700
#> 150 Number of features: 76 Max AUC: 0.832 AUC: 0.825 Z: 1.842 Rdelta: 0.02530
#> 151 Number of features: 76 Max AUC: 0.832 AUC: 0.727 Z: 1.077 Rdelta: 0.02024
#> 152 Number of features: 76 Max AUC: 0.832 AUC: 0.796 Z: 1.801 Rdelta: 0.01619
#> 153 Number of features: 76 Max AUC: 0.832 AUC: 0.819 Z: 1.829 Rdelta: 0.01295
#> 154 Number of features: 76 Max AUC: 0.832 AUC: 0.751 Z: 1.386 Rdelta: 0.01036
#> 155 Number of features: 77 Max AUC: 0.832 AUC: 0.825 Z: 1.831 Rdelta: 0.01933
#> 156 Number of features: 77 Max AUC: 0.832 AUC: 0.817 Z: 1.820 Rdelta: 0.01546
#> 157 Number of features: 77 Max AUC: 0.832 AUC: 0.819 Z: 1.837 Rdelta: 0.01237
#> 158 Number of features: 77 Max AUC: 0.832 AUC: 0.775 Z: 1.547 Rdelta: 0.00989
#> 159 Number of features: 77 Max AUC: 0.832 AUC: 0.820 Z: 1.823 Rdelta: 0.00792
#> 160 Number of features: 77 Max AUC: 0.832 AUC: 0.809 Z: 1.775 Rdelta: 0.00633
#> 161 Number of features: 77 Max AUC: 0.832 AUC: 0.812 Z: 1.755 Rdelta: 0.00507
#> 162 Number of features: 77 Max AUC: 0.832 AUC: 0.813 Z: 1.708 Rdelta: 0.00405
#> 163 Number of features: 77 Max AUC: 0.832 AUC: 0.817 Z: 1.840 Rdelta: 0.00324
#> 164 Number of features: 77 Max AUC: 0.832 AUC: 0.813 Z: 1.773 Rdelta: 0.00259
#> 165 Number of features: 78 Max AUC: 0.832 AUC: 0.824 Z: 1.830 Rdelta: 0.01233
#> 166 Number of features: 78 Max AUC: 0.832 AUC: 0.816 Z: 1.826 Rdelta: 0.00987
#> 167 Number of features: 78 Max AUC: 0.832 AUC: 0.807 Z: 1.837 Rdelta: 0.00789
#> 168 Number of features: 79 Max AUC: 0.832 AUC: 0.829 Z: 1.866 Rdelta: 0.01710
#> 169 Number of features: 80 Max AUC: 0.832 AUC: 0.825 Z: 1.902 Rdelta: 0.02539
#> 170 Number of features: 80 Max AUC: 0.832 AUC: 0.808 Z: 1.789 Rdelta: 0.02032
#> 171 Number of features: 80 Max AUC: 0.832 AUC: 0.819 Z: 1.798 Rdelta: 0.01625
#> 172 Number of features: 81 Max AUC: 0.832 AUC: 0.824 Z: 1.865 Rdelta: 0.02463
#> 173 Number of features: 82 Max AUC: 0.841 AUC: 0.841 Z: 1.969 Rdelta: 0.03216
#> 174 Number of features: 83 Max AUC: 0.841 AUC: 0.836 Z: 1.994 Rdelta: 0.03895
#> 175 Number of features: 84 Max AUC: 0.841 AUC: 0.836 Z: 1.958 Rdelta: 0.04505
#> 176 Number of features: 84 Max AUC: 0.841 AUC: 0.806 Z: 1.772 Rdelta: 0.03604
#> 177 Number of features: 84 Max AUC: 0.841 AUC: 0.803 Z: 1.781 Rdelta: 0.02883
#> 178 Number of features: 85 Max AUC: 0.841 AUC: 0.837 Z: 1.898 Rdelta: 0.03595
#> 179 Number of features: 86 Max AUC: 0.841 AUC: 0.841 Z: 1.881 Rdelta: 0.04236
#> 180 Number of features: 86 Max AUC: 0.841 AUC: 0.831 Z: 1.827 Rdelta: 0.03388
#> 181 Number of features: 86 Max AUC: 0.841 AUC: 0.755 Z: 1.497 Rdelta: 0.02711
#> 182 Number of features: 86 Max AUC: 0.841 AUC: 0.750 Z: 1.373 Rdelta: 0.02169
#> 183 Number of features: 86 Max AUC: 0.841 AUC: 0.826 Z: 1.820 Rdelta: 0.01735
#> 184 Number of features: 86 Max AUC: 0.841 AUC: 0.833 Z: 1.849 Rdelta: 0.01388
#> 185 Number of features: 87 Max AUC: 0.841 AUC: 0.838 Z: 1.865 Rdelta: 0.02249
#> 186 Number of features: 88 Max AUC: 0.841 AUC: 0.838 Z: 1.867 Rdelta: 0.03024
#> 187 Number of features: 88 Max AUC: 0.841 AUC: 0.832 Z: 1.812 Rdelta: 0.02419
#> 188 Number of features: 88 Max AUC: 0.841 AUC: 0.831 Z: 1.704 Rdelta: 0.01935
#> 189 Number of features: 88 Max AUC: 0.841 AUC: 0.822 Z: 1.791 Rdelta: 0.01548
#> 190 Number of features: 89 Max AUC: 0.841 AUC: 0.836 Z: 1.824 Rdelta: 0.02394
#> 191 Number of features: 90 Max AUC: 0.841 AUC: 0.833 Z: 1.889 Rdelta: 0.03154
#> 192 Number of features: 91 Max AUC: 0.841 AUC: 0.836 Z: 1.868 Rdelta: 0.03839
#> 193 Number of features: 91 Max AUC: 0.841 AUC: 0.783 Z: 1.621 Rdelta: 0.03071
#> 194 Number of features: 92 Max AUC: 0.841 AUC: 0.837 Z: 1.856 Rdelta: 0.03764
#> 195 Number of features: 93 Max AUC: 0.841 AUC: 0.835 Z: 1.867 Rdelta: 0.04388
#> 196 Number of features: 94 Max AUC: 0.845 AUC: 0.845 Z: 1.890 Rdelta: 0.04949
#> 197 Number of features: 94 Max AUC: 0.845 AUC: 0.834 Z: 1.856 Rdelta: 0.03959
#> 198 Number of features: 94 Max AUC: 0.845 AUC: 0.789 Z: 1.556 Rdelta: 0.03167
#> 199 Number of features: 94 Max AUC: 0.845 AUC: 0.828 Z: 1.847 Rdelta: 0.02534
#> 200 Number of features: 95 Max AUC: 0.846 AUC: 0.846 Z: 1.859 Rdelta: 0.03280
#> 201 Number of features: 95 Max AUC: 0.846 AUC: 0.828 Z: 1.845 Rdelta: 0.02624
#> 202 Number of features: 95 Max AUC: 0.846 AUC: 0.837 Z: 1.840 Rdelta: 0.02099
#> 203 Number of features: 95 Max AUC: 0.846 AUC: 0.835 Z: 1.834 Rdelta: 0.01680
#> 204 Number of features: 95 Max AUC: 0.846 AUC: 0.829 Z: 1.808 Rdelta: 0.01344
#> 205 Number of features: 95 Max AUC: 0.846 AUC: 0.828 Z: 1.837 Rdelta: 0.01075
#> 206 Number of features: 96 Max AUC: 0.846 AUC: 0.837 Z: 1.863 Rdelta: 0.01967
#> 207 Number of features: 96 Max AUC: 0.846 AUC: 0.837 Z: 1.902 Rdelta: 0.01574
#> 208 Number of features: 96 Max AUC: 0.846 AUC: 0.831 Z: 1.828 Rdelta: 0.01259
#> 209 Number of features: 96 Max AUC: 0.846 AUC: 0.750 Z: 1.317 Rdelta: 0.01007
#> 210 Number of features: 96 Max AUC: 0.846 AUC: 0.827 Z: 1.843 Rdelta: 0.00806
#> 211 Number of features: 96 Max AUC: 0.846 AUC: 0.836 Z: 1.882 Rdelta: 0.00645
#> 212 Number of features: 97 Max AUC: 0.846 AUC: 0.838 Z: 1.818 Rdelta: 0.01580
#> 213 Number of features: 98 Max AUC: 0.846 AUC: 0.838 Z: 1.905 Rdelta: 0.02422
#> 214 Number of features: 98 Max AUC: 0.846 AUC: 0.831 Z: 1.831 Rdelta: 0.01938
#> 215 Number of features: 98 Max AUC: 0.846 AUC: 0.823 Z: 1.719 Rdelta: 0.01550
#> 216 Number of features: 98 Max AUC: 0.846 AUC: 0.813 Z: 1.730 Rdelta: 0.01240
#> 217 Number of features: 98 Max AUC: 0.846 AUC: 0.818 Z: 1.842 Rdelta: 0.00992
#> 218 Number of features: 98 Max AUC: 0.846 AUC: 0.805 Z: 1.801 Rdelta: 0.00794
#> 219 Number of features: 98 Max AUC: 0.846 AUC: 0.803 Z: 1.767 Rdelta: 0.00635
#> 220 Number of features: 98 Max AUC: 0.846 AUC: 0.833 Z: 1.851 Rdelta: 0.00508
#> 221 Number of features: 98 Max AUC: 0.846 AUC: 0.828 Z: 1.842 Rdelta: 0.00406
#> 222 Number of features: 99 Max AUC: 0.846 AUC: 0.843 Z: 1.834 Rdelta: 0.01366
#> 223 Number of features: 99 Max AUC: 0.846 AUC: 0.822 Z: 1.806 Rdelta: 0.01093
#> 224 Number of features: 99 Max AUC: 0.846 AUC: 0.836 Z: 1.866 Rdelta: 0.00874
#> 225 Number of features: 99 Max AUC: 0.846 AUC: 0.823 Z: 1.861 Rdelta: 0.00699
#> 226 Number of features: 99 Max AUC: 0.846 AUC: 0.824 Z: 1.878 Rdelta: 0.00559
#> 227 Number of features: 99 Max AUC: 0.846 AUC: 0.836 Z: 1.822 Rdelta: 0.00448
#> 228 Number of features: 99 Max AUC: 0.846 AUC: 0.829 Z: 1.795 Rdelta: 0.00358
#> 229 Number of features: 99 Max AUC: 0.846 AUC: 0.818 Z: 1.730 Rdelta: 0.00286
#> 230 Number of features: 99 Max AUC: 0.846 AUC: 0.806 Z: 1.720 Rdelta: 0.00229
#> 231 Number of features: 100 Max AUC: 0.846 AUC: 0.840 Z: 1.840 Rdelta: 0.01206
#> 232 Number of features: 100 Max AUC: 0.846 AUC: 0.831 Z: 1.872 Rdelta: 0.00965
#> 233 Number of features: 100 Max AUC: 0.846 AUC: 0.745 Z: 1.394 Rdelta: 0.00772
#> 234 Number of features: 100 Max AUC: 0.846 AUC: 0.828 Z: 1.869 Rdelta: 0.00618
#> 235 Number of features: 100 Max AUC: 0.846 AUC: 0.801 Z: 1.732 Rdelta: 0.00494
#> 236 Number of features: 100 Max AUC: 0.846 AUC: 0.733 Z: 1.346 Rdelta: 0.00395
#> 237 Number of features: 100 Max AUC: 0.846 AUC: 0.836 Z: 1.923 Rdelta: 0.00316
#> 238 Number of features: 100 Max AUC: 0.846 AUC: 0.836 Z: 1.889 Rdelta: 0.00253
#> 239 Number of features: 101 Max AUC: 0.846 AUC: 0.841 Z: 1.872 Rdelta: 0.01228
#> 240 Number of features: 101 Max AUC: 0.846 AUC: 0.821 Z: 1.777 Rdelta: 0.00982
#> 241 Number of features: 101 Max AUC: 0.846 AUC: 0.834 Z: 1.874 Rdelta: 0.00786
#> 242 Number of features: 101 Max AUC: 0.846 AUC: 0.830 Z: 1.852 Rdelta: 0.00629
#> 243 Number of features: 101 Max AUC: 0.846 AUC: 0.834 Z: 1.844 Rdelta: 0.00503
#> 244 Number of features: 102 Max AUC: 0.846 AUC: 0.838 Z: 1.867 Rdelta: 0.01453
#> 245 Number of features: 102 Max AUC: 0.846 AUC: 0.833 Z: 1.855 Rdelta: 0.01162
#> 246 Number of features: 102 Max AUC: 0.846 AUC: 0.800 Z: 1.749 Rdelta: 0.00930
#> 247 Number of features: 102 Max AUC: 0.846 AUC: 0.836 Z: 1.876 Rdelta: 0.00744
#> 248 Number of features: 102 Max AUC: 0.846 AUC: 0.835 Z: 1.870 Rdelta: 0.00595
#> 249 Number of features: 102 Max AUC: 0.846 AUC: 0.835 Z: 1.849 Rdelta: 0.00476
#> 250 Number of features: 102 Max AUC: 0.846 AUC: 0.750 Z: 1.503 Rdelta: 0.00381
#> 251 Number of features: 102 Max AUC: 0.846 AUC: 0.832 Z: 1.802 Rdelta: 0.00305
#> 252 Number of features: 102 Max AUC: 0.846 AUC: 0.820 Z: 1.837 Rdelta: 0.00244
#> 253 Number of features: 102 Max AUC: 0.846 AUC: 0.797 Z: 1.812 Rdelta: 0.00195
#> 254 Number of features: 102 Max AUC: 0.846 AUC: 0.823 Z: 1.877 Rdelta: 0.00156
#> 255 Number of features: 102 Max AUC: 0.846 AUC: 0.774 Z: 1.534 Rdelta: 0.00125
#> 256 Number of features: 102 Max AUC: 0.846 AUC: 0.827 Z: 1.895 Rdelta: 0.00100
#> 257 Number of features: 102 Max AUC: 0.846 AUC: 0.816 Z: 1.627 Rdelta: 0.00080
#> 258 Number of features: 102 Max AUC: 0.846 AUC: 0.708 Z: 1.344 Rdelta: 0.00064
#> 259 Number of features: 102 Max AUC: 0.846 AUC: 0.829 Z: 1.822 Rdelta: 0.00051
#> 260 Number of features: 102 Max AUC: 0.846 AUC: 0.771 Z: 1.563 Rdelta: 0.00041
#> 261 Number of features: 102 Max AUC: 0.846 AUC: 0.748 Z: 1.294 Rdelta: 0.00033
#> 262 Number of features: 102 Max AUC: 0.846 AUC: 0.833 Z: 1.841 Rdelta: 0.00026
#> 263 Number of features: 102 Max AUC: 0.846 AUC: 0.831 Z: 1.851 Rdelta: 0.00021
#> 264 Number of features: 102 Max AUC: 0.846 AUC: 0.826 Z: 1.863 Rdelta: 0.00017
#> 265 Number of features: 103 Max AUC: 0.846 AUC: 0.840 Z: 1.850 Rdelta: 0.01015
#> 266 Number of features: 103 Max AUC: 0.846 AUC: 0.827 Z: 1.814 Rdelta: 0.00812
#> 267 Number of features: 103 Max AUC: 0.846 AUC: 0.830 Z: 1.848 Rdelta: 0.00650
#> 268 Number of features: 103 Max AUC: 0.846 AUC: 0.824 Z: 1.775 Rdelta: 0.00520
#> 269 Number of features: 103 Max AUC: 0.846 AUC: 0.820 Z: 1.772 Rdelta: 0.00416
#> 270 Number of features: 103 Max AUC: 0.846 AUC: 0.821 Z: 1.794 Rdelta: 0.00333
#> 271 Number of features: 103 Max AUC: 0.846 AUC: 0.827 Z: 1.730 Rdelta: 0.00266
#> 272 Number of features: 103 Max AUC: 0.846 AUC: 0.825 Z: 1.873 Rdelta: 0.00213
#> 273 Number of features: 104 Max AUC: 0.846 AUC: 0.840 Z: 1.880 Rdelta: 0.01192
#> 274 Number of features: 104 Max AUC: 0.846 AUC: 0.768 Z: 1.467 Rdelta: 0.00953
#> 275 Number of features: 104 Max AUC: 0.846 AUC: 0.761 Z: 1.482 Rdelta: 0.00763
#> 276 Number of features: 104 Max AUC: 0.846 AUC: 0.766 Z: 1.495 Rdelta: 0.00610
#> 277 Number of features: 104 Max AUC: 0.846 AUC: 0.784 Z: 1.503 Rdelta: 0.00488
#> 278 Number of features: 104 Max AUC: 0.846 AUC: 0.800 Z: 1.646 Rdelta: 0.00390
#> 279 Number of features: 104 Max AUC: 0.846 AUC: 0.768 Z: 1.572 Rdelta: 0.00312
#> 280 Number of features: 104 Max AUC: 0.846 AUC: 0.836 Z: 1.861 Rdelta: 0.00250
#> 281 Number of features: 104 Max AUC: 0.846 AUC: 0.748 Z: 1.013 Rdelta: 0.00200
#> 282 Number of features: 104 Max AUC: 0.846 AUC: 0.836 Z: 1.900 Rdelta: 0.00160
#> 283 Number of features: 104 Max AUC: 0.846 AUC: 0.819 Z: 1.850 Rdelta: 0.00128
#> 284 Number of features: 104 Max AUC: 0.846 AUC: 0.798 Z: 1.671 Rdelta: 0.00102
#> 285 Number of features: 104 Max AUC: 0.846 AUC: 0.828 Z: 1.831 Rdelta: 0.00082
#> 286 Number of features: 104 Max AUC: 0.846 AUC: 0.778 Z: 1.532 Rdelta: 0.00066
#> 287 Number of features: 104 Max AUC: 0.846 AUC: 0.796 Z: 1.603 Rdelta: 0.00052
#> 288 Number of features: 104 Max AUC: 0.846 AUC: 0.812 Z: 1.685 Rdelta: 0.00042
#> 289 Number of features: 104 Max AUC: 0.846 AUC: 0.739 Z: 1.351 Rdelta: 0.00034
#> 290 Number of features: 104 Max AUC: 0.846 AUC: 0.818 Z: 1.798 Rdelta: 0.00027
#> 291 Number of features: 104 Max AUC: 0.846 AUC: 0.831 Z: 1.720 Rdelta: 0.00021
#> 292 Number of features: 104 Max AUC: 0.846 AUC: 0.796 Z: 1.669 Rdelta: 0.00017
#> 293 Number of features: 104 Max AUC: 0.846 AUC: 0.812 Z: 1.763 Rdelta: 0.00014
#> 294 Number of features: 104 Max AUC: 0.846 AUC: 0.706 Z: 0.827 Rdelta: 0.00011
#> 295 Number of features: 104 Max AUC: 0.846 AUC: 0.823 Z: 1.790 Rdelta: 0.00009
#> user system elapsed
#> 246.84 0.00 246.99
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"pearson")+signatureDistance(signature$controlTemplate,validLabeled,"pearson")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS"))
#> 7 Number of features: 7 Max AUC: 0.761 AUC: 0.761 Z: 1.054 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.768 AUC: 0.768 Z: 0.700 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.768 AUC: 0.755 Z: 0.661 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.772 AUC: 0.772 Z: 0.599 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.772 AUC: 0.765 Z: 0.779 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.772 AUC: 0.761 Z: 0.642 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.772 AUC: 0.763 Z: 0.361 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.772 AUC: 0.769 Z: 0.351 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.772 AUC: 0.767 Z: 0.422 Rdelta: 0.10000
#> 16 Number of features: 15 Max AUC: 0.772 AUC: 0.748 Z: 0.289 Rdelta: 0.08000
#> 17 Number of features: 16 Max AUC: 0.772 AUC: 0.759 Z: 0.507 Rdelta: 0.08200
#> 18 Number of features: 17 Max AUC: 0.781 AUC: 0.781 Z: 0.346 Rdelta: 0.08380
#> 19 Number of features: 17 Max AUC: 0.781 AUC: 0.760 Z: 0.437 Rdelta: 0.06704
#> 20 Number of features: 18 Max AUC: 0.781 AUC: 0.779 Z: 0.467 Rdelta: 0.07034
#> 21 Number of features: 18 Max AUC: 0.781 AUC: 0.767 Z: 0.325 Rdelta: 0.05627
#> 22 Number of features: 19 Max AUC: 0.781 AUC: 0.779 Z: 0.382 Rdelta: 0.06064
#> 23 Number of features: 20 Max AUC: 0.781 AUC: 0.777 Z: 0.286 Rdelta: 0.06458
#> 24 Number of features: 21 Max AUC: 0.783 AUC: 0.783 Z: 0.442 Rdelta: 0.06812
#> 25 Number of features: 22 Max AUC: 0.783 AUC: 0.783 Z: 0.426 Rdelta: 0.07131
#> 26 Number of features: 23 Max AUC: 0.794 AUC: 0.794 Z: 0.506 Rdelta: 0.07418
#> 27 Number of features: 24 Max AUC: 0.794 AUC: 0.789 Z: 0.470 Rdelta: 0.07676
#> 28 Number of features: 25 Max AUC: 0.803 AUC: 0.803 Z: 0.470 Rdelta: 0.07908
#> 29 Number of features: 26 Max AUC: 0.803 AUC: 0.801 Z: 0.459 Rdelta: 0.08118
#> 30 Number of features: 26 Max AUC: 0.803 AUC: 0.781 Z: 0.355 Rdelta: 0.06494
#> 31 Number of features: 27 Max AUC: 0.803 AUC: 0.802 Z: 0.290 Rdelta: 0.06845
#> 32 Number of features: 27 Max AUC: 0.803 AUC: 0.787 Z: 0.432 Rdelta: 0.05476
#> 33 Number of features: 27 Max AUC: 0.803 AUC: 0.784 Z: 0.246 Rdelta: 0.04381
#> 34 Number of features: 27 Max AUC: 0.803 AUC: 0.748 Z: 0.503 Rdelta: 0.03504
#> 35 Number of features: 27 Max AUC: 0.803 AUC: 0.784 Z: 0.308 Rdelta: 0.02804
#> 36 Number of features: 27 Max AUC: 0.803 AUC: 0.794 Z: 0.187 Rdelta: 0.02243
#> 37 Number of features: 27 Max AUC: 0.803 AUC: 0.788 Z: 0.357 Rdelta: 0.01794
#> 38 Number of features: 27 Max AUC: 0.803 AUC: 0.782 Z: 0.383 Rdelta: 0.01435
#> 39 Number of features: 27 Max AUC: 0.803 AUC: 0.777 Z: 0.258 Rdelta: 0.01148
#> 40 Number of features: 27 Max AUC: 0.803 AUC: 0.735 Z: 0.237 Rdelta: 0.00919
#> 41 Number of features: 27 Max AUC: 0.803 AUC: 0.764 Z: 0.426 Rdelta: 0.00735
#> 42 Number of features: 28 Max AUC: 0.803 AUC: 0.798 Z: 0.407 Rdelta: 0.01661
#> 43 Number of features: 29 Max AUC: 0.803 AUC: 0.800 Z: 0.377 Rdelta: 0.02495
#> 44 Number of features: 30 Max AUC: 0.812 AUC: 0.812 Z: 0.359 Rdelta: 0.03246
#> 45 Number of features: 30 Max AUC: 0.812 AUC: 0.801 Z: 0.327 Rdelta: 0.02597
#> 46 Number of features: 30 Max AUC: 0.812 AUC: 0.743 Z: 0.313 Rdelta: 0.02077
#> 47 Number of features: 30 Max AUC: 0.812 AUC: 0.784 Z: 0.470 Rdelta: 0.01662
#> 48 Number of features: 30 Max AUC: 0.812 AUC: 0.795 Z: 0.335 Rdelta: 0.01329
#> 49 Number of features: 30 Max AUC: 0.812 AUC: 0.791 Z: 0.552 Rdelta: 0.01064
#> 50 Number of features: 30 Max AUC: 0.812 AUC: 0.792 Z: 0.362 Rdelta: 0.00851
#> 51 Number of features: 31 Max AUC: 0.812 AUC: 0.807 Z: 0.502 Rdelta: 0.01766
#> 52 Number of features: 32 Max AUC: 0.812 AUC: 0.811 Z: 0.361 Rdelta: 0.02589
#> 53 Number of features: 33 Max AUC: 0.812 AUC: 0.800 Z: 0.639 Rdelta: 0.03330
#> 54 Number of features: 34 Max AUC: 0.812 AUC: 0.812 Z: 0.403 Rdelta: 0.03997
#> 55 Number of features: 34 Max AUC: 0.812 AUC: 0.788 Z: 0.451 Rdelta: 0.03198
#> 56 Number of features: 35 Max AUC: 0.815 AUC: 0.815 Z: 0.598 Rdelta: 0.03878
#> 57 Number of features: 35 Max AUC: 0.815 AUC: 0.800 Z: 0.423 Rdelta: 0.03102
#> 58 Number of features: 35 Max AUC: 0.815 AUC: 0.798 Z: 0.421 Rdelta: 0.02482
#> 59 Number of features: 35 Max AUC: 0.815 AUC: 0.788 Z: 0.460 Rdelta: 0.01986
#> 60 Number of features: 35 Max AUC: 0.815 AUC: 0.789 Z: 0.361 Rdelta: 0.01588
#> 61 Number of features: 35 Max AUC: 0.815 AUC: 0.758 Z: 0.511 Rdelta: 0.01271
#> 62 Number of features: 35 Max AUC: 0.815 AUC: 0.770 Z: 0.600 Rdelta: 0.01017
#> 63 Number of features: 36 Max AUC: 0.815 AUC: 0.809 Z: 0.345 Rdelta: 0.01915
#> 64 Number of features: 36 Max AUC: 0.815 AUC: 0.791 Z: 0.485 Rdelta: 0.01532
#> 65 Number of features: 36 Max AUC: 0.815 AUC: 0.793 Z: 0.648 Rdelta: 0.01226
#> 66 Number of features: 36 Max AUC: 0.815 AUC: 0.776 Z: 0.485 Rdelta: 0.00980
#> 67 Number of features: 36 Max AUC: 0.815 AUC: 0.746 Z: 0.344 Rdelta: 0.00784
#> 68 Number of features: 37 Max AUC: 0.815 AUC: 0.811 Z: 0.404 Rdelta: 0.01706
#> 69 Number of features: 37 Max AUC: 0.815 AUC: 0.786 Z: 0.189 Rdelta: 0.01365
#> 70 Number of features: 37 Max AUC: 0.815 AUC: 0.795 Z: 0.321 Rdelta: 0.01092
#> 71 Number of features: 37 Max AUC: 0.815 AUC: 0.792 Z: 0.377 Rdelta: 0.00873
#> 72 Number of features: 37 Max AUC: 0.815 AUC: 0.786 Z: 0.365 Rdelta: 0.00699
#> 73 Number of features: 37 Max AUC: 0.815 AUC: 0.772 Z: 0.689 Rdelta: 0.00559
#> 74 Number of features: 37 Max AUC: 0.815 AUC: 0.765 Z: 0.451 Rdelta: 0.00447
#> 75 Number of features: 37 Max AUC: 0.815 AUC: 0.785 Z: 0.525 Rdelta: 0.00358
#> 76 Number of features: 37 Max AUC: 0.815 AUC: 0.802 Z: 0.517 Rdelta: 0.00286
#> 77 Number of features: 37 Max AUC: 0.815 AUC: 0.777 Z: 0.565 Rdelta: 0.00229
#> 78 Number of features: 37 Max AUC: 0.815 AUC: 0.794 Z: 0.408 Rdelta: 0.00183
#> 79 Number of features: 37 Max AUC: 0.815 AUC: 0.796 Z: 0.481 Rdelta: 0.00147
#> 80 Number of features: 38 Max AUC: 0.815 AUC: 0.812 Z: 0.336 Rdelta: 0.01132
#> 81 Number of features: 39 Max AUC: 0.821 AUC: 0.821 Z: 0.356 Rdelta: 0.02019
#> 82 Number of features: 39 Max AUC: 0.821 AUC: 0.807 Z: 0.425 Rdelta: 0.01615
#> 83 Number of features: 39 Max AUC: 0.821 AUC: 0.800 Z: 0.242 Rdelta: 0.01292
#> 84 Number of features: 39 Max AUC: 0.821 AUC: 0.806 Z: 0.358 Rdelta: 0.01034
#> 85 Number of features: 39 Max AUC: 0.821 AUC: 0.796 Z: 0.529 Rdelta: 0.00827
#> 86 Number of features: 39 Max AUC: 0.821 AUC: 0.803 Z: 0.521 Rdelta: 0.00661
#> 87 Number of features: 39 Max AUC: 0.821 AUC: 0.800 Z: 0.317 Rdelta: 0.00529
#> 88 Number of features: 39 Max AUC: 0.821 AUC: 0.786 Z: 0.397 Rdelta: 0.00423
#> 89 Number of features: 39 Max AUC: 0.821 AUC: 0.788 Z: 0.533 Rdelta: 0.00339
#> 90 Number of features: 39 Max AUC: 0.821 AUC: 0.795 Z: 0.480 Rdelta: 0.00271
#> 91 Number of features: 39 Max AUC: 0.821 AUC: 0.793 Z: 0.520 Rdelta: 0.00217
#> 92 Number of features: 39 Max AUC: 0.821 AUC: 0.776 Z: 0.354 Rdelta: 0.00173
#> 93 Number of features: 39 Max AUC: 0.821 AUC: 0.803 Z: 0.264 Rdelta: 0.00139
#> 94 Number of features: 40 Max AUC: 0.821 AUC: 0.811 Z: 0.489 Rdelta: 0.01125
#> 95 Number of features: 41 Max AUC: 0.828 AUC: 0.828 Z: 0.406 Rdelta: 0.02012
#> 96 Number of features: 41 Max AUC: 0.828 AUC: 0.800 Z: 0.429 Rdelta: 0.01610
#> 97 Number of features: 41 Max AUC: 0.828 AUC: 0.809 Z: 0.371 Rdelta: 0.01288
#> 98 Number of features: 42 Max AUC: 0.834 AUC: 0.834 Z: 0.358 Rdelta: 0.02159
#> 99 Number of features: 42 Max AUC: 0.834 AUC: 0.782 Z: 0.402 Rdelta: 0.01727
#> 100 Number of features: 42 Max AUC: 0.834 AUC: 0.801 Z: 0.244 Rdelta: 0.01382
#> 101 Number of features: 43 Max AUC: 0.834 AUC: 0.825 Z: 0.497 Rdelta: 0.02244
#> 102 Number of features: 44 Max AUC: 0.837 AUC: 0.837 Z: 0.389 Rdelta: 0.03019
#> 103 Number of features: 45 Max AUC: 0.837 AUC: 0.830 Z: 0.492 Rdelta: 0.03717
#> 104 Number of features: 45 Max AUC: 0.837 AUC: 0.821 Z: 0.464 Rdelta: 0.02974
#> 105 Number of features: 45 Max AUC: 0.837 AUC: 0.819 Z: 0.461 Rdelta: 0.02379
#> 106 Number of features: 45 Max AUC: 0.837 AUC: 0.814 Z: 0.445 Rdelta: 0.01903
#> 107 Number of features: 45 Max AUC: 0.837 AUC: 0.826 Z: 0.381 Rdelta: 0.01523
#> 108 Number of features: 46 Max AUC: 0.837 AUC: 0.828 Z: 0.511 Rdelta: 0.02370
#> 109 Number of features: 47 Max AUC: 0.840 AUC: 0.840 Z: 0.458 Rdelta: 0.03133
#> 110 Number of features: 48 Max AUC: 0.840 AUC: 0.840 Z: 0.386 Rdelta: 0.03820
#> 111 Number of features: 49 Max AUC: 0.840 AUC: 0.832 Z: 0.580 Rdelta: 0.04438
#> 112 Number of features: 49 Max AUC: 0.840 AUC: 0.830 Z: 0.406 Rdelta: 0.03550
#> 113 Number of features: 49 Max AUC: 0.840 AUC: 0.805 Z: 0.425 Rdelta: 0.02840
#> 114 Number of features: 49 Max AUC: 0.840 AUC: 0.824 Z: 0.369 Rdelta: 0.02272
#> 115 Number of features: 50 Max AUC: 0.844 AUC: 0.844 Z: 0.218 Rdelta: 0.03045
#> 116 Number of features: 51 Max AUC: 0.844 AUC: 0.836 Z: 0.509 Rdelta: 0.03741
#> 117 Number of features: 51 Max AUC: 0.844 AUC: 0.809 Z: 0.477 Rdelta: 0.02992
#> 118 Number of features: 51 Max AUC: 0.844 AUC: 0.803 Z: 0.489 Rdelta: 0.02394
#> 119 Number of features: 51 Max AUC: 0.844 AUC: 0.819 Z: 0.395 Rdelta: 0.01915
#> 120 Number of features: 51 Max AUC: 0.844 AUC: 0.811 Z: 0.370 Rdelta: 0.01532
#> 121 Number of features: 51 Max AUC: 0.844 AUC: 0.820 Z: 0.422 Rdelta: 0.01226
#> 122 Number of features: 52 Max AUC: 0.846 AUC: 0.846 Z: 0.377 Rdelta: 0.02103
#> 123 Number of features: 53 Max AUC: 0.846 AUC: 0.836 Z: 0.498 Rdelta: 0.02893
#> 124 Number of features: 53 Max AUC: 0.846 AUC: 0.835 Z: 0.415 Rdelta: 0.02314
#> 125 Number of features: 53 Max AUC: 0.846 AUC: 0.824 Z: 0.498 Rdelta: 0.01851
#> 126 Number of features: 53 Max AUC: 0.846 AUC: 0.831 Z: 0.514 Rdelta: 0.01481
#> 127 Number of features: 53 Max AUC: 0.846 AUC: 0.748 Z: 0.311 Rdelta: 0.01185
#> 128 Number of features: 53 Max AUC: 0.846 AUC: 0.825 Z: 0.394 Rdelta: 0.00948
#> 129 Number of features: 53 Max AUC: 0.846 AUC: 0.821 Z: 0.526 Rdelta: 0.00758
#> 130 Number of features: 53 Max AUC: 0.846 AUC: 0.754 Z: 0.414 Rdelta: 0.00607
#> 131 Number of features: 54 Max AUC: 0.852 AUC: 0.852 Z: 0.547 Rdelta: 0.01546
#> 132 Number of features: 54 Max AUC: 0.852 AUC: 0.822 Z: 0.282 Rdelta: 0.01237
#> 133 Number of features: 54 Max AUC: 0.852 AUC: 0.817 Z: 0.600 Rdelta: 0.00989
#> 134 Number of features: 54 Max AUC: 0.852 AUC: 0.809 Z: 0.450 Rdelta: 0.00792
#> 135 Number of features: 54 Max AUC: 0.852 AUC: 0.841 Z: 0.446 Rdelta: 0.00633
#> 136 Number of features: 54 Max AUC: 0.852 AUC: 0.773 Z: 0.390 Rdelta: 0.00507
#> 137 Number of features: 55 Max AUC: 0.852 AUC: 0.846 Z: 0.392 Rdelta: 0.01456
#> 138 Number of features: 55 Max AUC: 0.852 AUC: 0.784 Z: 0.055 Rdelta: 0.01165
#> 139 Number of features: 55 Max AUC: 0.852 AUC: 0.807 Z: 0.251 Rdelta: 0.00932
#> 140 Number of features: 55 Max AUC: 0.852 AUC: 0.806 Z: 0.279 Rdelta: 0.00745
#> 141 Number of features: 55 Max AUC: 0.852 AUC: 0.824 Z: 0.240 Rdelta: 0.00596
#> 142 Number of features: 55 Max AUC: 0.852 AUC: 0.810 Z: 0.471 Rdelta: 0.00477
#> 143 Number of features: 55 Max AUC: 0.852 AUC: 0.827 Z: 0.377 Rdelta: 0.00382
#> 144 Number of features: 55 Max AUC: 0.852 AUC: 0.821 Z: 0.138 Rdelta: 0.00305
#> 145 Number of features: 55 Max AUC: 0.852 AUC: 0.836 Z: 0.214 Rdelta: 0.00244
#> 146 Number of features: 55 Max AUC: 0.852 AUC: 0.826 Z: 0.525 Rdelta: 0.00195
#> 147 Number of features: 55 Max AUC: 0.852 AUC: 0.830 Z: 0.183 Rdelta: 0.00156
#> 148 Number of features: 55 Max AUC: 0.852 AUC: 0.791 Z: 0.351 Rdelta: 0.00125
#> 149 Number of features: 55 Max AUC: 0.852 AUC: 0.840 Z: 0.422 Rdelta: 0.00100
#> 150 Number of features: 55 Max AUC: 0.852 AUC: 0.805 Z: 0.348 Rdelta: 0.00080
#> 151 Number of features: 55 Max AUC: 0.852 AUC: 0.825 Z: 0.486 Rdelta: 0.00064
#> 152 Number of features: 55 Max AUC: 0.852 AUC: 0.829 Z: 0.483 Rdelta: 0.00051
#> 153 Number of features: 55 Max AUC: 0.852 AUC: 0.822 Z: 0.430 Rdelta: 0.00041
#> 154 Number of features: 55 Max AUC: 0.852 AUC: 0.813 Z: 0.423 Rdelta: 0.00033
#> 155 Number of features: 55 Max AUC: 0.852 AUC: 0.841 Z: 0.420 Rdelta: 0.00026
#> 156 Number of features: 55 Max AUC: 0.852 AUC: 0.831 Z: 0.460 Rdelta: 0.00021
#> 157 Number of features: 55 Max AUC: 0.852 AUC: 0.818 Z: 0.224 Rdelta: 0.00017
#> 158 Number of features: 55 Max AUC: 0.852 AUC: 0.801 Z: 0.376 Rdelta: 0.00013
#> 159 Number of features: 55 Max AUC: 0.852 AUC: 0.812 Z: 0.423 Rdelta: 0.00011
#> 160 Number of features: 55 Max AUC: 0.852 AUC: 0.831 Z: 0.475 Rdelta: 0.00009
#> user system elapsed
#> 80.68 0.00 80.75
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
testDistance_cotrol <- signatureDistance(signature$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_cotrol-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Case"))
#> 7 Number of features: 7 Max AUC: 0.859 AUC: 0.859 Z: 1.076 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.892 AUC: 0.892 Z: 0.542 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.910 AUC: 0.910 Z: 0.651 Rdelta: 0.10000
#> 10 Number of features: 10 Max AUC: 0.914 AUC: 0.914 Z: 0.710 Rdelta: 0.10000
#> 11 Number of features: 11 Max AUC: 0.914 AUC: 0.908 Z: 0.711 Rdelta: 0.10000
#> 12 Number of features: 12 Max AUC: 0.914 AUC: 0.905 Z: 0.699 Rdelta: 0.10000
#> 13 Number of features: 13 Max AUC: 0.914 AUC: 0.909 Z: 0.675 Rdelta: 0.10000
#> 14 Number of features: 14 Max AUC: 0.914 AUC: 0.906 Z: 0.610 Rdelta: 0.10000
#> 15 Number of features: 15 Max AUC: 0.914 AUC: 0.905 Z: 0.543 Rdelta: 0.10000
#> 16 Number of features: 16 Max AUC: 0.914 AUC: 0.906 Z: 0.525 Rdelta: 0.10000
#> 17 Number of features: 17 Max AUC: 0.914 AUC: 0.906 Z: 0.579 Rdelta: 0.10000
#> 18 Number of features: 18 Max AUC: 0.917 AUC: 0.917 Z: 0.648 Rdelta: 0.10000
#> 19 Number of features: 19 Max AUC: 0.932 AUC: 0.932 Z: 0.576 Rdelta: 0.10000
#> 20 Number of features: 20 Max AUC: 0.932 AUC: 0.926 Z: 0.516 Rdelta: 0.10000
#> 21 Number of features: 21 Max AUC: 0.942 AUC: 0.942 Z: 0.383 Rdelta: 0.10000
#> 22 Number of features: 22 Max AUC: 0.942 AUC: 0.933 Z: 0.531 Rdelta: 0.10000
#> 23 Number of features: 23 Max AUC: 0.942 AUC: 0.933 Z: 0.422 Rdelta: 0.10000
#> 24 Number of features: 24 Max AUC: 0.942 AUC: 0.934 Z: 0.414 Rdelta: 0.10000
#> 25 Number of features: 25 Max AUC: 0.942 AUC: 0.933 Z: 0.484 Rdelta: 0.10000
#> 26 Number of features: 26 Max AUC: 0.942 AUC: 0.932 Z: 0.377 Rdelta: 0.10000
#> 27 Number of features: 27 Max AUC: 0.942 AUC: 0.940 Z: 0.441 Rdelta: 0.10000
#> 28 Number of features: 28 Max AUC: 0.942 AUC: 0.940 Z: 0.536 Rdelta: 0.10000
#> 29 Number of features: 29 Max AUC: 0.942 AUC: 0.934 Z: 0.346 Rdelta: 0.10000
#> 30 Number of features: 30 Max AUC: 0.942 AUC: 0.940 Z: 0.368 Rdelta: 0.10000
#> 31 Number of features: 31 Max AUC: 0.942 AUC: 0.940 Z: 0.343 Rdelta: 0.10000
#> 32 Number of features: 32 Max AUC: 0.951 AUC: 0.951 Z: 0.371 Rdelta: 0.10000
#> 33 Number of features: 33 Max AUC: 0.951 AUC: 0.947 Z: 0.486 Rdelta: 0.10000
#> 34 Number of features: 33 Max AUC: 0.951 AUC: 0.932 Z: 0.414 Rdelta: 0.08000
#> 35 Number of features: 34 Max AUC: 0.951 AUC: 0.944 Z: 0.532 Rdelta: 0.08200
#> 36 Number of features: 35 Max AUC: 0.951 AUC: 0.945 Z: 0.230 Rdelta: 0.08380
#> 37 Number of features: 36 Max AUC: 0.951 AUC: 0.943 Z: 0.381 Rdelta: 0.08542
#> 38 Number of features: 36 Max AUC: 0.951 AUC: 0.937 Z: 0.357 Rdelta: 0.06834
#> 39 Number of features: 37 Max AUC: 0.951 AUC: 0.944 Z: 0.395 Rdelta: 0.07150
#> 40 Number of features: 38 Max AUC: 0.951 AUC: 0.948 Z: 0.461 Rdelta: 0.07435
#> 41 Number of features: 38 Max AUC: 0.951 AUC: 0.934 Z: 0.246 Rdelta: 0.05948
#> 42 Number of features: 39 Max AUC: 0.951 AUC: 0.946 Z: 0.434 Rdelta: 0.06353
#> 43 Number of features: 40 Max AUC: 0.951 AUC: 0.947 Z: 0.293 Rdelta: 0.06718
#> 44 Number of features: 41 Max AUC: 0.951 AUC: 0.949 Z: 0.489 Rdelta: 0.07046
#> 45 Number of features: 42 Max AUC: 0.951 AUC: 0.948 Z: 0.362 Rdelta: 0.07342
#> 46 Number of features: 43 Max AUC: 0.951 AUC: 0.945 Z: 0.432 Rdelta: 0.07607
#> 47 Number of features: 44 Max AUC: 0.951 AUC: 0.946 Z: 0.587 Rdelta: 0.07847
#> 48 Number of features: 45 Max AUC: 0.951 AUC: 0.940 Z: 0.436 Rdelta: 0.08062
#> 49 Number of features: 46 Max AUC: 0.951 AUC: 0.945 Z: 0.494 Rdelta: 0.08256
#> 50 Number of features: 47 Max AUC: 0.951 AUC: 0.945 Z: 0.534 Rdelta: 0.08430
#> 51 Number of features: 48 Max AUC: 0.951 AUC: 0.940 Z: 0.547 Rdelta: 0.08587
#> 52 Number of features: 49 Max AUC: 0.951 AUC: 0.941 Z: 0.379 Rdelta: 0.08728
#> 53 Number of features: 50 Max AUC: 0.951 AUC: 0.947 Z: 0.475 Rdelta: 0.08856
#> 54 Number of features: 51 Max AUC: 0.956 AUC: 0.956 Z: 0.546 Rdelta: 0.08970
#> 55 Number of features: 52 Max AUC: 0.956 AUC: 0.950 Z: 0.676 Rdelta: 0.09073
#> 56 Number of features: 53 Max AUC: 0.956 AUC: 0.948 Z: 0.426 Rdelta: 0.09166
#> 57 Number of features: 54 Max AUC: 0.956 AUC: 0.956 Z: 0.681 Rdelta: 0.09249
#> 58 Number of features: 54 Max AUC: 0.956 AUC: 0.925 Z: 0.357 Rdelta: 0.07399
#> 59 Number of features: 54 Max AUC: 0.956 AUC: 0.939 Z: 0.526 Rdelta: 0.05919
#> 60 Number of features: 54 Max AUC: 0.956 AUC: 0.939 Z: 0.441 Rdelta: 0.04736
#> 61 Number of features: 54 Max AUC: 0.956 AUC: 0.906 Z: 0.404 Rdelta: 0.03788
#> 62 Number of features: 54 Max AUC: 0.956 AUC: 0.937 Z: 0.492 Rdelta: 0.03031
#> 63 Number of features: 54 Max AUC: 0.956 AUC: 0.938 Z: 0.492 Rdelta: 0.02425
#> 64 Number of features: 54 Max AUC: 0.956 AUC: 0.936 Z: 0.569 Rdelta: 0.01940
#> 65 Number of features: 54 Max AUC: 0.956 AUC: 0.929 Z: 0.479 Rdelta: 0.01552
#> 66 Number of features: 54 Max AUC: 0.956 AUC: 0.925 Z: 0.397 Rdelta: 0.01241
#> 67 Number of features: 54 Max AUC: 0.956 AUC: 0.939 Z: 0.525 Rdelta: 0.00993
#> 68 Number of features: 54 Max AUC: 0.956 AUC: 0.940 Z: 0.509 Rdelta: 0.00794
#> 69 Number of features: 55 Max AUC: 0.956 AUC: 0.948 Z: 0.579 Rdelta: 0.01715
#> 70 Number of features: 55 Max AUC: 0.956 AUC: 0.943 Z: 0.479 Rdelta: 0.01372
#> 71 Number of features: 55 Max AUC: 0.956 AUC: 0.928 Z: 0.444 Rdelta: 0.01098
#> 72 Number of features: 55 Max AUC: 0.956 AUC: 0.925 Z: 0.396 Rdelta: 0.00878
#> 73 Number of features: 55 Max AUC: 0.956 AUC: 0.931 Z: 0.427 Rdelta: 0.00702
#> 74 Number of features: 55 Max AUC: 0.956 AUC: 0.945 Z: 0.741 Rdelta: 0.00562
#> 75 Number of features: 55 Max AUC: 0.956 AUC: 0.934 Z: 0.473 Rdelta: 0.00450
#> 76 Number of features: 55 Max AUC: 0.956 AUC: 0.941 Z: 0.536 Rdelta: 0.00360
#> 77 Number of features: 55 Max AUC: 0.956 AUC: 0.946 Z: 0.513 Rdelta: 0.00288
#> 78 Number of features: 55 Max AUC: 0.956 AUC: 0.943 Z: 0.654 Rdelta: 0.00230
#> 79 Number of features: 55 Max AUC: 0.956 AUC: 0.939 Z: 0.617 Rdelta: 0.00184
#> 80 Number of features: 55 Max AUC: 0.956 AUC: 0.933 Z: 0.427 Rdelta: 0.00147
#> 81 Number of features: 55 Max AUC: 0.956 AUC: 0.937 Z: 0.426 Rdelta: 0.00118
#> 82 Number of features: 55 Max AUC: 0.956 AUC: 0.943 Z: 0.480 Rdelta: 0.00094
#> 83 Number of features: 55 Max AUC: 0.956 AUC: 0.941 Z: 0.600 Rdelta: 0.00075
#> 84 Number of features: 55 Max AUC: 0.956 AUC: 0.933 Z: 0.456 Rdelta: 0.00060
#> 85 Number of features: 55 Max AUC: 0.956 AUC: 0.944 Z: 0.668 Rdelta: 0.00048
#> 86 Number of features: 55 Max AUC: 0.956 AUC: 0.932 Z: 0.438 Rdelta: 0.00039
#> 87 Number of features: 55 Max AUC: 0.956 AUC: 0.943 Z: 0.491 Rdelta: 0.00031
#> 88 Number of features: 55 Max AUC: 0.956 AUC: 0.945 Z: 0.559 Rdelta: 0.00025
#> 89 Number of features: 55 Max AUC: 0.956 AUC: 0.925 Z: 0.495 Rdelta: 0.00020
#> 90 Number of features: 55 Max AUC: 0.956 AUC: 0.944 Z: 0.473 Rdelta: 0.00016
#> 91 Number of features: 55 Max AUC: 0.956 AUC: 0.940 Z: 0.558 Rdelta: 0.00013
#> 92 Number of features: 55 Max AUC: 0.956 AUC: 0.939 Z: 0.331 Rdelta: 0.00010
#> 93 Number of features: 55 Max AUC: 0.956 AUC: 0.938 Z: 0.453 Rdelta: 0.00008
#> user system elapsed
#> 47.18 0.00 47.24
testDistance_case <- signatureDistance(signature$caseTamplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_case))
system.time(signatureControl <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="RMS",target="Control"))
#> 7 Number of features: 7 Max AUC: 0.384 AUC: 0.373 Z: -0.449 Rdelta: 0.10000
#> 8 Number of features: 7 Max AUC: 0.384 AUC: 0.329 Z: -0.527 Rdelta: 0.08000
#> 9 Number of features: 7 Max AUC: 0.384 AUC: 0.321 Z: -0.487 Rdelta: 0.06400
#> 10 Number of features: 8 Max AUC: 0.384 AUC: 0.377 Z: -0.405 Rdelta: 0.06760
#> 11 Number of features: 8 Max AUC: 0.384 AUC: 0.367 Z: -0.414 Rdelta: 0.05408
#> 12 Number of features: 8 Max AUC: 0.384 AUC: 0.347 Z: -0.433 Rdelta: 0.04326
#> 13 Number of features: 8 Max AUC: 0.384 AUC: 0.337 Z: -0.485 Rdelta: 0.03461
#> 14 Number of features: 9 Max AUC: 0.384 AUC: 0.368 Z: -0.382 Rdelta: 0.04115
#> 15 Number of features: 10 Max AUC: 0.384 AUC: 0.371 Z: -0.412 Rdelta: 0.04704
#> 16 Number of features: 10 Max AUC: 0.384 AUC: 0.337 Z: -0.446 Rdelta: 0.03763
#> 17 Number of features: 10 Max AUC: 0.384 AUC: 0.335 Z: -0.438 Rdelta: 0.03010
#> 18 Number of features: 11 Max AUC: 0.384 AUC: 0.380 Z: -0.370 Rdelta: 0.03709
#> 19 Number of features: 11 Max AUC: 0.384 AUC: 0.344 Z: -0.459 Rdelta: 0.02967
#> 20 Number of features: 11 Max AUC: 0.384 AUC: 0.344 Z: -0.365 Rdelta: 0.02374
#> 21 Number of features: 11 Max AUC: 0.384 AUC: 0.359 Z: -0.459 Rdelta: 0.01899
#> 22 Number of features: 12 Max AUC: 0.448 AUC: 0.448 Z: -0.273 Rdelta: 0.02709
#> 23 Number of features: 12 Max AUC: 0.448 AUC: 0.433 Z: -0.139 Rdelta: 0.02167
#> 24 Number of features: 12 Max AUC: 0.448 AUC: 0.428 Z: -0.274 Rdelta: 0.01734
#> 25 Number of features: 12 Max AUC: 0.448 AUC: 0.411 Z: -0.347 Rdelta: 0.01387
#> 26 Number of features: 12 Max AUC: 0.448 AUC: 0.440 Z: -0.287 Rdelta: 0.01110
#> 27 Number of features: 12 Max AUC: 0.448 AUC: 0.435 Z: -0.340 Rdelta: 0.00888
#> 28 Number of features: 13 Max AUC: 0.449 AUC: 0.449 Z: -0.263 Rdelta: 0.01799
#> 29 Number of features: 13 Max AUC: 0.449 AUC: 0.414 Z: -0.354 Rdelta: 0.01439
#> 30 Number of features: 13 Max AUC: 0.449 AUC: 0.420 Z: -0.284 Rdelta: 0.01151
#> 31 Number of features: 13 Max AUC: 0.449 AUC: 0.404 Z: -0.356 Rdelta: 0.00921
#> 32 Number of features: 13 Max AUC: 0.449 AUC: 0.420 Z: -0.310 Rdelta: 0.00737
#> 33 Number of features: 13 Max AUC: 0.449 AUC: 0.426 Z: -0.277 Rdelta: 0.00589
#> 34 Number of features: 13 Max AUC: 0.449 AUC: 0.433 Z: -0.300 Rdelta: 0.00472
#> 35 Number of features: 13 Max AUC: 0.449 AUC: 0.419 Z: -0.267 Rdelta: 0.00377
#> 36 Number of features: 14 Max AUC: 0.453 AUC: 0.453 Z: -0.108 Rdelta: 0.01340
#> 37 Number of features: 14 Max AUC: 0.453 AUC: 0.388 Z: -0.368 Rdelta: 0.01072
#> 38 Number of features: 14 Max AUC: 0.453 AUC: 0.416 Z: -0.345 Rdelta: 0.00857
#> 39 Number of features: 14 Max AUC: 0.453 AUC: 0.415 Z: -0.301 Rdelta: 0.00686
#> 40 Number of features: 14 Max AUC: 0.453 AUC: 0.434 Z: -0.324 Rdelta: 0.00549
#> 41 Number of features: 15 Max AUC: 0.486 AUC: 0.486 Z: -0.028 Rdelta: 0.01494
#> 42 Number of features: 15 Max AUC: 0.486 AUC: 0.459 Z: -0.039 Rdelta: 0.01195
#> 43 Number of features: 15 Max AUC: 0.486 AUC: 0.428 Z: -0.085 Rdelta: 0.00956
#> 44 Number of features: 15 Max AUC: 0.486 AUC: 0.448 Z: -0.019 Rdelta: 0.00765
#> 45 Number of features: 15 Max AUC: 0.486 AUC: 0.430 Z: -0.029 Rdelta: 0.00612
#> 46 Number of features: 15 Max AUC: 0.486 AUC: 0.425 Z: -0.119 Rdelta: 0.00489
#> 47 Number of features: 15 Max AUC: 0.486 AUC: 0.412 Z: -0.112 Rdelta: 0.00392
#> 48 Number of features: 15 Max AUC: 0.486 AUC: 0.441 Z: -0.000 Rdelta: 0.00313
#> 49 Number of features: 15 Max AUC: 0.486 AUC: 0.452 Z: -0.016 Rdelta: 0.00251
#> 50 Number of features: 15 Max AUC: 0.486 AUC: 0.413 Z: -0.154 Rdelta: 0.00200
#> 51 Number of features: 15 Max AUC: 0.486 AUC: 0.424 Z: -0.095 Rdelta: 0.00160
#> 52 Number of features: 15 Max AUC: 0.486 AUC: 0.429 Z: -0.097 Rdelta: 0.00128
#> 53 Number of features: 15 Max AUC: 0.486 AUC: 0.455 Z: -0.105 Rdelta: 0.00103
#> 54 Number of features: 15 Max AUC: 0.486 AUC: 0.444 Z: -0.171 Rdelta: 0.00082
#> 55 Number of features: 15 Max AUC: 0.486 AUC: 0.474 Z: -0.052 Rdelta: 0.00066
#> 56 Number of features: 15 Max AUC: 0.486 AUC: 0.439 Z: -0.005 Rdelta: 0.00053
#> 57 Number of features: 15 Max AUC: 0.486 AUC: 0.455 Z: 0.000 Rdelta: 0.00042
#> 58 Number of features: 15 Max AUC: 0.486 AUC: 0.432 Z: -0.049 Rdelta: 0.00034
#> 59 Number of features: 15 Max AUC: 0.486 AUC: 0.438 Z: -0.018 Rdelta: 0.00027
#> 60 Number of features: 15 Max AUC: 0.486 AUC: 0.404 Z: -0.097 Rdelta: 0.00022
#> 61 Number of features: 16 Max AUC: 0.503 AUC: 0.503 Z: 0.004 Rdelta: 0.01019
#> 62 Number of features: 17 Max AUC: 0.521 AUC: 0.521 Z: 0.058 Rdelta: 0.01917
#> 63 Number of features: 17 Max AUC: 0.521 AUC: 0.466 Z: -0.087 Rdelta: 0.01534
#> 64 Number of features: 17 Max AUC: 0.521 AUC: 0.444 Z: -0.045 Rdelta: 0.01227
#> 65 Number of features: 17 Max AUC: 0.521 AUC: 0.472 Z: -0.099 Rdelta: 0.00982
#> 66 Number of features: 17 Max AUC: 0.521 AUC: 0.476 Z: -0.012 Rdelta: 0.00785
#> 67 Number of features: 17 Max AUC: 0.521 AUC: 0.496 Z: 0.012 Rdelta: 0.00628
#> 68 Number of features: 17 Max AUC: 0.521 AUC: 0.477 Z: -0.008 Rdelta: 0.00503
#> 69 Number of features: 17 Max AUC: 0.521 AUC: 0.503 Z: -0.004 Rdelta: 0.00402
#> 70 Number of features: 17 Max AUC: 0.521 AUC: 0.486 Z: -0.022 Rdelta: 0.00322
#> 71 Number of features: 17 Max AUC: 0.521 AUC: 0.481 Z: -0.093 Rdelta: 0.00257
#> 72 Number of features: 17 Max AUC: 0.521 AUC: 0.469 Z: -0.021 Rdelta: 0.00206
#> 73 Number of features: 17 Max AUC: 0.521 AUC: 0.489 Z: 0.031 Rdelta: 0.00165
#> 74 Number of features: 17 Max AUC: 0.521 AUC: 0.438 Z: -0.121 Rdelta: 0.00132
#> 75 Number of features: 17 Max AUC: 0.521 AUC: 0.481 Z: 0.001 Rdelta: 0.00105
#> 76 Number of features: 17 Max AUC: 0.521 AUC: 0.476 Z: -0.016 Rdelta: 0.00084
#> 77 Number of features: 17 Max AUC: 0.521 AUC: 0.453 Z: -0.080 Rdelta: 0.00067
#> 78 Number of features: 17 Max AUC: 0.521 AUC: 0.448 Z: -0.051 Rdelta: 0.00054
#> 79 Number of features: 17 Max AUC: 0.521 AUC: 0.471 Z: -0.025 Rdelta: 0.00043
#> 80 Number of features: 17 Max AUC: 0.521 AUC: 0.508 Z: 0.034 Rdelta: 0.00035
#> 81 Number of features: 17 Max AUC: 0.521 AUC: 0.485 Z: 0.014 Rdelta: 0.00028
#> 82 Number of features: 17 Max AUC: 0.521 AUC: 0.512 Z: 0.012 Rdelta: 0.00022
#> 83 Number of features: 17 Max AUC: 0.521 AUC: 0.481 Z: -0.015 Rdelta: 0.00018
#> 84 Number of features: 17 Max AUC: 0.521 AUC: 0.481 Z: -0.019 Rdelta: 0.00014
#> 85 Number of features: 17 Max AUC: 0.521 AUC: 0.456 Z: -0.036 Rdelta: 0.00011
#> 86 Number of features: 17 Max AUC: 0.521 AUC: 0.466 Z: -0.029 Rdelta: 0.00009
#> user system elapsed
#> 21.68 0.00 21.73
testDistance_control <- signatureDistance(signatureControl$controlTemplate,validLabeled,"RMS")
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control))
pm <-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance_control-testDistance_case))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
system.time(signature <- getSignature(data=trainLabeled,varlist=varlist,Outcome="Labels",method="MAN"))
#> 7 Number of features: 7 Max AUC: 0.751 AUC: 0.751 Z: 1.276 Rdelta: 0.10000
#> 8 Number of features: 8 Max AUC: 0.768 AUC: 0.768 Z: 0.850 Rdelta: 0.10000
#> 9 Number of features: 9 Max AUC: 0.792 AUC: 0.792 Z: 1.086 Rdelta: 0.10000
#> 10 Number of features: 9 Max AUC: 0.792 AUC: 0.761 Z: 0.947 Rdelta: 0.08000
#> 11 Number of features: 10 Max AUC: 0.792 AUC: 0.790 Z: 0.984 Rdelta: 0.08200
#> 12 Number of features: 11 Max AUC: 0.792 AUC: 0.781 Z: 1.022 Rdelta: 0.08380
#> 13 Number of features: 12 Max AUC: 0.792 AUC: 0.786 Z: 0.546 Rdelta: 0.08542
#> 14 Number of features: 13 Max AUC: 0.792 AUC: 0.774 Z: 0.580 Rdelta: 0.08688
#> 15 Number of features: 14 Max AUC: 0.792 AUC: 0.776 Z: 0.657 Rdelta: 0.08819
#> 16 Number of features: 14 Max AUC: 0.792 AUC: 0.767 Z: 0.180 Rdelta: 0.07055
#> 17 Number of features: 15 Max AUC: 0.792 AUC: 0.776 Z: 0.581 Rdelta: 0.07350
#> 18 Number of features: 16 Max AUC: 0.796 AUC: 0.796 Z: 0.446 Rdelta: 0.07615
#> 19 Number of features: 17 Max AUC: 0.805 AUC: 0.805 Z: 0.449 Rdelta: 0.07853
#> 20 Number of features: 17 Max AUC: 0.805 AUC: 0.784 Z: 0.520 Rdelta: 0.06283
#> 21 Number of features: 18 Max AUC: 0.824 AUC: 0.824 Z: 0.594 Rdelta: 0.06654
#> 22 Number of features: 18 Max AUC: 0.824 AUC: 0.808 Z: 0.517 Rdelta: 0.05323
#> 23 Number of features: 19 Max AUC: 0.824 AUC: 0.821 Z: 0.485 Rdelta: 0.05791
#> 24 Number of features: 20 Max AUC: 0.824 AUC: 0.822 Z: 0.632 Rdelta: 0.06212
#> 25 Number of features: 21 Max AUC: 0.824 AUC: 0.824 Z: 0.491 Rdelta: 0.06591
#> 26 Number of features: 22 Max AUC: 0.825 AUC: 0.825 Z: 0.487 Rdelta: 0.06932
#> 27 Number of features: 23 Max AUC: 0.840 AUC: 0.840 Z: 0.641 Rdelta: 0.07239
#> 28 Number of features: 24 Max AUC: 0.840 AUC: 0.834 Z: 0.495 Rdelta: 0.07515
#> 29 Number of features: 24 Max AUC: 0.840 AUC: 0.826 Z: 0.470 Rdelta: 0.06012
#> 30 Number of features: 25 Max AUC: 0.840 AUC: 0.837 Z: 0.488 Rdelta: 0.06411
#> 31 Number of features: 26 Max AUC: 0.840 AUC: 0.834 Z: 0.630 Rdelta: 0.06770
#> 32 Number of features: 27 Max AUC: 0.843 AUC: 0.843 Z: 0.507 Rdelta: 0.07093
#> 33 Number of features: 27 Max AUC: 0.843 AUC: 0.828 Z: 0.420 Rdelta: 0.05674
#> 34 Number of features: 27 Max AUC: 0.843 AUC: 0.808 Z: 0.576 Rdelta: 0.04539
#> 35 Number of features: 28 Max AUC: 0.848 AUC: 0.848 Z: 0.542 Rdelta: 0.05085
#> 36 Number of features: 28 Max AUC: 0.848 AUC: 0.836 Z: 0.496 Rdelta: 0.04068
#> 37 Number of features: 29 Max AUC: 0.848 AUC: 0.845 Z: 0.689 Rdelta: 0.04661
#> 38 Number of features: 30 Max AUC: 0.848 AUC: 0.844 Z: 0.516 Rdelta: 0.05195
#> 39 Number of features: 31 Max AUC: 0.848 AUC: 0.841 Z: 0.508 Rdelta: 0.05676
#> 40 Number of features: 31 Max AUC: 0.848 AUC: 0.798 Z: 0.425 Rdelta: 0.04541
#> 41 Number of features: 31 Max AUC: 0.848 AUC: 0.790 Z: 0.034 Rdelta: 0.03632
#> 42 Number of features: 32 Max AUC: 0.848 AUC: 0.843 Z: 0.421 Rdelta: 0.04269
#> 43 Number of features: 33 Max AUC: 0.848 AUC: 0.836 Z: 0.510 Rdelta: 0.04842
#> 44 Number of features: 34 Max AUC: 0.848 AUC: 0.845 Z: 0.388 Rdelta: 0.05358
#> 45 Number of features: 34 Max AUC: 0.848 AUC: 0.832 Z: 0.499 Rdelta: 0.04286
#> 46 Number of features: 34 Max AUC: 0.848 AUC: 0.800 Z: 0.526 Rdelta: 0.03429
#> 47 Number of features: 35 Max AUC: 0.850 AUC: 0.850 Z: 0.543 Rdelta: 0.04086
#> 48 Number of features: 35 Max AUC: 0.850 AUC: 0.835 Z: 0.394 Rdelta: 0.03269
#> 49 Number of features: 36 Max AUC: 0.850 AUC: 0.843 Z: 0.412 Rdelta: 0.03942
#> 50 Number of features: 36 Max AUC: 0.850 AUC: 0.834 Z: 0.412 Rdelta: 0.03154
#> 51 Number of features: 36 Max AUC: 0.850 AUC: 0.834 Z: 0.533 Rdelta: 0.02523
#> 52 Number of features: 36 Max AUC: 0.850 AUC: 0.837 Z: 0.447 Rdelta: 0.02018
#> 53 Number of features: 37 Max AUC: 0.852 AUC: 0.852 Z: 0.421 Rdelta: 0.02817
#> 54 Number of features: 38 Max AUC: 0.852 AUC: 0.849 Z: 0.317 Rdelta: 0.03535
#> 55 Number of features: 38 Max AUC: 0.852 AUC: 0.840 Z: 0.446 Rdelta: 0.02828
#> 56 Number of features: 39 Max AUC: 0.852 AUC: 0.844 Z: 0.504 Rdelta: 0.03545
#> 57 Number of features: 39 Max AUC: 0.852 AUC: 0.835 Z: 0.616 Rdelta: 0.02836
#> 58 Number of features: 39 Max AUC: 0.852 AUC: 0.830 Z: 0.532 Rdelta: 0.02269
#> 59 Number of features: 39 Max AUC: 0.852 AUC: 0.840 Z: 0.347 Rdelta: 0.01815
#> 60 Number of features: 39 Max AUC: 0.852 AUC: 0.841 Z: 0.393 Rdelta: 0.01452
#> 61 Number of features: 39 Max AUC: 0.852 AUC: 0.791 Z: 0.575 Rdelta: 0.01162
#> 62 Number of features: 39 Max AUC: 0.852 AUC: 0.827 Z: 0.419 Rdelta: 0.00929
#> 63 Number of features: 39 Max AUC: 0.852 AUC: 0.838 Z: 0.393 Rdelta: 0.00743
#> 64 Number of features: 39 Max AUC: 0.852 AUC: 0.821 Z: 0.356 Rdelta: 0.00595
#> 65 Number of features: 39 Max AUC: 0.852 AUC: 0.835 Z: 0.498 Rdelta: 0.00476
#> 66 Number of features: 40 Max AUC: 0.852 AUC: 0.841 Z: 0.588 Rdelta: 0.01428
#> 67 Number of features: 40 Max AUC: 0.852 AUC: 0.799 Z: 0.385 Rdelta: 0.01143
#> 68 Number of features: 40 Max AUC: 0.852 AUC: 0.827 Z: 0.530 Rdelta: 0.00914
#> 69 Number of features: 41 Max AUC: 0.852 AUC: 0.849 Z: 0.592 Rdelta: 0.01823
#> 70 Number of features: 42 Max AUC: 0.852 AUC: 0.849 Z: 0.528 Rdelta: 0.02640
#> 71 Number of features: 42 Max AUC: 0.852 AUC: 0.836 Z: 0.392 Rdelta: 0.02112
#> 72 Number of features: 42 Max AUC: 0.852 AUC: 0.840 Z: 0.548 Rdelta: 0.01690
#> 73 Number of features: 42 Max AUC: 0.852 AUC: 0.832 Z: 0.492 Rdelta: 0.01352
#> 74 Number of features: 42 Max AUC: 0.852 AUC: 0.830 Z: 0.554 Rdelta: 0.01082
#> 75 Number of features: 43 Max AUC: 0.852 AUC: 0.842 Z: 0.534 Rdelta: 0.01973
#> 76 Number of features: 44 Max AUC: 0.856 AUC: 0.856 Z: 0.381 Rdelta: 0.02776
#> 77 Number of features: 44 Max AUC: 0.856 AUC: 0.837 Z: 0.486 Rdelta: 0.02221
#> 78 Number of features: 44 Max AUC: 0.856 AUC: 0.829 Z: 0.585 Rdelta: 0.01777
#> 79 Number of features: 44 Max AUC: 0.856 AUC: 0.819 Z: 0.478 Rdelta: 0.01421
#> 80 Number of features: 44 Max AUC: 0.856 AUC: 0.843 Z: 0.621 Rdelta: 0.01137
#> 81 Number of features: 44 Max AUC: 0.856 AUC: 0.830 Z: 0.432 Rdelta: 0.00910
#> 82 Number of features: 45 Max AUC: 0.856 AUC: 0.847 Z: 0.596 Rdelta: 0.01819
#> 83 Number of features: 45 Max AUC: 0.856 AUC: 0.833 Z: 0.626 Rdelta: 0.01455
#> 84 Number of features: 45 Max AUC: 0.856 AUC: 0.839 Z: 0.432 Rdelta: 0.01164
#> 85 Number of features: 45 Max AUC: 0.856 AUC: 0.843 Z: 0.432 Rdelta: 0.00931
#> 86 Number of features: 45 Max AUC: 0.856 AUC: 0.829 Z: 0.515 Rdelta: 0.00745
#> 87 Number of features: 45 Max AUC: 0.856 AUC: 0.826 Z: 0.449 Rdelta: 0.00596
#> 88 Number of features: 45 Max AUC: 0.856 AUC: 0.822 Z: 0.414 Rdelta: 0.00477
#> 89 Number of features: 45 Max AUC: 0.856 AUC: 0.813 Z: 0.518 Rdelta: 0.00381
#> 90 Number of features: 45 Max AUC: 0.856 AUC: 0.826 Z: 0.539 Rdelta: 0.00305
#> 91 Number of features: 45 Max AUC: 0.856 AUC: 0.831 Z: 0.432 Rdelta: 0.00244
#> 92 Number of features: 45 Max AUC: 0.856 AUC: 0.834 Z: 0.451 Rdelta: 0.00195
#> 93 Number of features: 45 Max AUC: 0.856 AUC: 0.835 Z: 0.588 Rdelta: 0.00156
#> 94 Number of features: 46 Max AUC: 0.856 AUC: 0.855 Z: 0.313 Rdelta: 0.01141
#> 95 Number of features: 46 Max AUC: 0.856 AUC: 0.844 Z: 0.434 Rdelta: 0.00912
#> 96 Number of features: 46 Max AUC: 0.856 AUC: 0.838 Z: 0.509 Rdelta: 0.00730
#> 97 Number of features: 46 Max AUC: 0.856 AUC: 0.829 Z: 0.491 Rdelta: 0.00584
#> 98 Number of features: 47 Max AUC: 0.856 AUC: 0.845 Z: 0.486 Rdelta: 0.01526
#> 99 Number of features: 48 Max AUC: 0.856 AUC: 0.846 Z: 0.419 Rdelta: 0.02373
#> 100 Number of features: 48 Max AUC: 0.856 AUC: 0.825 Z: 0.478 Rdelta: 0.01898
#> 101 Number of features: 48 Max AUC: 0.856 AUC: 0.832 Z: 0.369 Rdelta: 0.01519
#> 102 Number of features: 48 Max AUC: 0.856 AUC: 0.844 Z: 0.363 Rdelta: 0.01215
#> 103 Number of features: 48 Max AUC: 0.856 AUC: 0.828 Z: 0.503 Rdelta: 0.00972
#> 104 Number of features: 48 Max AUC: 0.856 AUC: 0.824 Z: 0.364 Rdelta: 0.00778
#> 105 Number of features: 48 Max AUC: 0.856 AUC: 0.799 Z: 0.394 Rdelta: 0.00622
#> 106 Number of features: 48 Max AUC: 0.856 AUC: 0.835 Z: 0.427 Rdelta: 0.00498
#> 107 Number of features: 48 Max AUC: 0.856 AUC: 0.830 Z: 0.489 Rdelta: 0.00398
#> 108 Number of features: 48 Max AUC: 0.856 AUC: 0.835 Z: 0.396 Rdelta: 0.00319
#> 109 Number of features: 48 Max AUC: 0.856 AUC: 0.818 Z: 0.426 Rdelta: 0.00255
#> 110 Number of features: 48 Max AUC: 0.856 AUC: 0.835 Z: 0.452 Rdelta: 0.00204
#> 111 Number of features: 48 Max AUC: 0.856 AUC: 0.822 Z: 0.461 Rdelta: 0.00163
#> 112 Number of features: 48 Max AUC: 0.856 AUC: 0.828 Z: 0.466 Rdelta: 0.00130
#> 113 Number of features: 48 Max AUC: 0.856 AUC: 0.821 Z: 0.325 Rdelta: 0.00104
#> 114 Number of features: 48 Max AUC: 0.856 AUC: 0.806 Z: 0.255 Rdelta: 0.00083
#> 115 Number of features: 48 Max AUC: 0.856 AUC: 0.824 Z: 0.393 Rdelta: 0.00067
#> 116 Number of features: 49 Max AUC: 0.856 AUC: 0.846 Z: 0.489 Rdelta: 0.01060
#> 117 Number of features: 49 Max AUC: 0.856 AUC: 0.836 Z: 0.370 Rdelta: 0.00848
#> 118 Number of features: 49 Max AUC: 0.856 AUC: 0.817 Z: 0.451 Rdelta: 0.00678
#> 119 Number of features: 50 Max AUC: 0.856 AUC: 0.847 Z: 0.319 Rdelta: 0.01611
#> 120 Number of features: 50 Max AUC: 0.856 AUC: 0.826 Z: 0.423 Rdelta: 0.01289
#> 121 Number of features: 50 Max AUC: 0.856 AUC: 0.831 Z: 0.527 Rdelta: 0.01031
#> 122 Number of features: 50 Max AUC: 0.856 AUC: 0.823 Z: 0.392 Rdelta: 0.00825
#> 123 Number of features: 50 Max AUC: 0.856 AUC: 0.829 Z: 0.559 Rdelta: 0.00660
#> 124 Number of features: 51 Max AUC: 0.862 AUC: 0.862 Z: 0.485 Rdelta: 0.01594
#> 125 Number of features: 51 Max AUC: 0.862 AUC: 0.836 Z: 0.481 Rdelta: 0.01275
#> 126 Number of features: 51 Max AUC: 0.862 AUC: 0.839 Z: 0.493 Rdelta: 0.01020
#> 127 Number of features: 51 Max AUC: 0.862 AUC: 0.808 Z: 0.501 Rdelta: 0.00816
#> 128 Number of features: 51 Max AUC: 0.862 AUC: 0.831 Z: 0.483 Rdelta: 0.00653
#> 129 Number of features: 52 Max AUC: 0.862 AUC: 0.857 Z: 0.461 Rdelta: 0.01588
#> 130 Number of features: 52 Max AUC: 0.862 AUC: 0.798 Z: 0.371 Rdelta: 0.01270
#> 131 Number of features: 52 Max AUC: 0.862 AUC: 0.820 Z: 0.544 Rdelta: 0.01016
#> 132 Number of features: 52 Max AUC: 0.862 AUC: 0.840 Z: 0.404 Rdelta: 0.00813
#> 133 Number of features: 52 Max AUC: 0.862 AUC: 0.809 Z: 0.393 Rdelta: 0.00650
#> 134 Number of features: 52 Max AUC: 0.862 AUC: 0.836 Z: 0.332 Rdelta: 0.00520
#> 135 Number of features: 52 Max AUC: 0.862 AUC: 0.837 Z: 0.458 Rdelta: 0.00416
#> 136 Number of features: 52 Max AUC: 0.862 AUC: 0.804 Z: 0.428 Rdelta: 0.00333
#> 137 Number of features: 52 Max AUC: 0.862 AUC: 0.831 Z: 0.437 Rdelta: 0.00266
#> 138 Number of features: 52 Max AUC: 0.862 AUC: 0.834 Z: 0.414 Rdelta: 0.00213
#> 139 Number of features: 52 Max AUC: 0.862 AUC: 0.833 Z: 0.347 Rdelta: 0.00170
#> 140 Number of features: 52 Max AUC: 0.862 AUC: 0.843 Z: 0.451 Rdelta: 0.00136
#> 141 Number of features: 52 Max AUC: 0.862 AUC: 0.833 Z: 0.270 Rdelta: 0.00109
#> 142 Number of features: 53 Max AUC: 0.862 AUC: 0.853 Z: 0.466 Rdelta: 0.01098
#> 143 Number of features: 53 Max AUC: 0.862 AUC: 0.847 Z: 0.407 Rdelta: 0.00879
#> 144 Number of features: 53 Max AUC: 0.862 AUC: 0.842 Z: 0.492 Rdelta: 0.00703
#> 145 Number of features: 53 Max AUC: 0.862 AUC: 0.830 Z: 0.460 Rdelta: 0.00562
#> 146 Number of features: 53 Max AUC: 0.862 AUC: 0.846 Z: 0.416 Rdelta: 0.00450
#> 147 Number of features: 53 Max AUC: 0.862 AUC: 0.833 Z: 0.502 Rdelta: 0.00360
#> 148 Number of features: 53 Max AUC: 0.862 AUC: 0.828 Z: 0.565 Rdelta: 0.00288
#> 149 Number of features: 53 Max AUC: 0.862 AUC: 0.842 Z: 0.439 Rdelta: 0.00230
#> 150 Number of features: 53 Max AUC: 0.862 AUC: 0.826 Z: 0.499 Rdelta: 0.00184
#> 151 Number of features: 53 Max AUC: 0.862 AUC: 0.821 Z: 0.473 Rdelta: 0.00147
#> 152 Number of features: 53 Max AUC: 0.862 AUC: 0.837 Z: 0.451 Rdelta: 0.00118
#> 153 Number of features: 54 Max AUC: 0.862 AUC: 0.859 Z: 0.480 Rdelta: 0.01106
#> 154 Number of features: 54 Max AUC: 0.862 AUC: 0.817 Z: 0.474 Rdelta: 0.00885
#> 155 Number of features: 54 Max AUC: 0.862 AUC: 0.846 Z: 0.519 Rdelta: 0.00708
#> 156 Number of features: 54 Max AUC: 0.862 AUC: 0.823 Z: 0.479 Rdelta: 0.00566
#> 157 Number of features: 54 Max AUC: 0.862 AUC: 0.829 Z: 0.391 Rdelta: 0.00453
#> 158 Number of features: 54 Max AUC: 0.862 AUC: 0.844 Z: 0.523 Rdelta: 0.00362
#> 159 Number of features: 54 Max AUC: 0.862 AUC: 0.842 Z: 0.438 Rdelta: 0.00290
#> 160 Number of features: 54 Max AUC: 0.862 AUC: 0.828 Z: 0.451 Rdelta: 0.00232
#> 161 Number of features: 54 Max AUC: 0.862 AUC: 0.828 Z: 0.412 Rdelta: 0.00186
#> 162 Number of features: 54 Max AUC: 0.862 AUC: 0.824 Z: 0.442 Rdelta: 0.00148
#> 163 Number of features: 55 Max AUC: 0.862 AUC: 0.854 Z: 0.402 Rdelta: 0.01134
#> 164 Number of features: 56 Max AUC: 0.862 AUC: 0.854 Z: 0.374 Rdelta: 0.02020
#> 165 Number of features: 56 Max AUC: 0.862 AUC: 0.846 Z: 0.451 Rdelta: 0.01616
#> 166 Number of features: 56 Max AUC: 0.862 AUC: 0.848 Z: 0.509 Rdelta: 0.01293
#> 167 Number of features: 56 Max AUC: 0.862 AUC: 0.844 Z: 0.465 Rdelta: 0.01034
#> 168 Number of features: 56 Max AUC: 0.862 AUC: 0.835 Z: 0.413 Rdelta: 0.00827
#> 169 Number of features: 57 Max AUC: 0.862 AUC: 0.859 Z: 0.384 Rdelta: 0.01745
#> 170 Number of features: 57 Max AUC: 0.862 AUC: 0.827 Z: 0.522 Rdelta: 0.01396
#> 171 Number of features: 57 Max AUC: 0.862 AUC: 0.849 Z: 0.486 Rdelta: 0.01117
#> 172 Number of features: 57 Max AUC: 0.862 AUC: 0.836 Z: 0.431 Rdelta: 0.00893
#> 173 Number of features: 57 Max AUC: 0.862 AUC: 0.839 Z: 0.446 Rdelta: 0.00715
#> 174 Number of features: 57 Max AUC: 0.862 AUC: 0.814 Z: 0.467 Rdelta: 0.00572
#> 175 Number of features: 57 Max AUC: 0.862 AUC: 0.834 Z: 0.381 Rdelta: 0.00457
#> 176 Number of features: 57 Max AUC: 0.862 AUC: 0.840 Z: 0.388 Rdelta: 0.00366
#> 177 Number of features: 57 Max AUC: 0.862 AUC: 0.849 Z: 0.394 Rdelta: 0.00293
#> 178 Number of features: 57 Max AUC: 0.862 AUC: 0.834 Z: 0.402 Rdelta: 0.00234
#> 179 Number of features: 57 Max AUC: 0.862 AUC: 0.844 Z: 0.465 Rdelta: 0.00187
#> 180 Number of features: 58 Max AUC: 0.862 AUC: 0.860 Z: 0.365 Rdelta: 0.01169
#> 181 Number of features: 58 Max AUC: 0.862 AUC: 0.830 Z: 0.421 Rdelta: 0.00935
#> 182 Number of features: 58 Max AUC: 0.862 AUC: 0.826 Z: 0.506 Rdelta: 0.00748
#> 183 Number of features: 58 Max AUC: 0.862 AUC: 0.824 Z: 0.460 Rdelta: 0.00598
#> 184 Number of features: 59 Max AUC: 0.862 AUC: 0.858 Z: 0.509 Rdelta: 0.01538
#> 185 Number of features: 59 Max AUC: 0.862 AUC: 0.850 Z: 0.485 Rdelta: 0.01231
#> 186 Number of features: 59 Max AUC: 0.862 AUC: 0.825 Z: 0.405 Rdelta: 0.00985
#> 187 Number of features: 59 Max AUC: 0.862 AUC: 0.836 Z: 0.436 Rdelta: 0.00788
#> 188 Number of features: 59 Max AUC: 0.862 AUC: 0.823 Z: 0.441 Rdelta: 0.00630
#> 189 Number of features: 59 Max AUC: 0.862 AUC: 0.838 Z: 0.423 Rdelta: 0.00504
#> 190 Number of features: 60 Max AUC: 0.862 AUC: 0.855 Z: 0.282 Rdelta: 0.01454
#> 191 Number of features: 60 Max AUC: 0.862 AUC: 0.843 Z: 0.286 Rdelta: 0.01163
#> 192 Number of features: 60 Max AUC: 0.862 AUC: 0.834 Z: 0.339 Rdelta: 0.00930
#> 193 Number of features: 61 Max AUC: 0.862 AUC: 0.855 Z: 0.292 Rdelta: 0.01837
#> 194 Number of features: 61 Max AUC: 0.862 AUC: 0.817 Z: 0.332 Rdelta: 0.01470
#> 195 Number of features: 61 Max AUC: 0.862 AUC: 0.847 Z: 0.335 Rdelta: 0.01176
#> 196 Number of features: 61 Max AUC: 0.862 AUC: 0.810 Z: 0.345 Rdelta: 0.00941
#> 197 Number of features: 61 Max AUC: 0.862 AUC: 0.838 Z: 0.314 Rdelta: 0.00753
#> 198 Number of features: 61 Max AUC: 0.862 AUC: 0.829 Z: 0.373 Rdelta: 0.00602
#> 199 Number of features: 61 Max AUC: 0.862 AUC: 0.836 Z: 0.298 Rdelta: 0.00482
#> 200 Number of features: 61 Max AUC: 0.862 AUC: 0.848 Z: 0.291 Rdelta: 0.00385
#> 201 Number of features: 61 Max AUC: 0.862 AUC: 0.829 Z: 0.307 Rdelta: 0.00308
#> 202 Number of features: 61 Max AUC: 0.862 AUC: 0.845 Z: 0.272 Rdelta: 0.00247
#> 203 Number of features: 61 Max AUC: 0.862 AUC: 0.823 Z: 0.300 Rdelta: 0.00197
#> 204 Number of features: 61 Max AUC: 0.862 AUC: 0.843 Z: 0.316 Rdelta: 0.00158
#> 205 Number of features: 61 Max AUC: 0.862 AUC: 0.823 Z: 0.387 Rdelta: 0.00126
#> 206 Number of features: 61 Max AUC: 0.862 AUC: 0.835 Z: 0.345 Rdelta: 0.00101
#> 207 Number of features: 61 Max AUC: 0.862 AUC: 0.841 Z: 0.380 Rdelta: 0.00081
#> 208 Number of features: 61 Max AUC: 0.862 AUC: 0.842 Z: 0.436 Rdelta: 0.00065
#> 209 Number of features: 61 Max AUC: 0.862 AUC: 0.821 Z: 0.335 Rdelta: 0.00052
#> 210 Number of features: 61 Max AUC: 0.862 AUC: 0.847 Z: 0.411 Rdelta: 0.00041
#> 211 Number of features: 62 Max AUC: 0.862 AUC: 0.858 Z: 0.336 Rdelta: 0.01037
#> 212 Number of features: 62 Max AUC: 0.862 AUC: 0.845 Z: 0.385 Rdelta: 0.00830
#> 213 Number of features: 62 Max AUC: 0.862 AUC: 0.849 Z: 0.318 Rdelta: 0.00664
#> 214 Number of features: 62 Max AUC: 0.862 AUC: 0.826 Z: 0.375 Rdelta: 0.00531
#> 215 Number of features: 62 Max AUC: 0.862 AUC: 0.835 Z: 0.312 Rdelta: 0.00425
#> 216 Number of features: 62 Max AUC: 0.862 AUC: 0.841 Z: 0.318 Rdelta: 0.00340
#> 217 Number of features: 62 Max AUC: 0.862 AUC: 0.841 Z: 0.319 Rdelta: 0.00272
#> 218 Number of features: 62 Max AUC: 0.862 AUC: 0.838 Z: 0.263 Rdelta: 0.00218
#> 219 Number of features: 62 Max AUC: 0.862 AUC: 0.822 Z: 0.316 Rdelta: 0.00174
#> 220 Number of features: 62 Max AUC: 0.862 AUC: 0.837 Z: 0.447 Rdelta: 0.00139
#> 221 Number of features: 62 Max AUC: 0.862 AUC: 0.825 Z: 0.323 Rdelta: 0.00111
#> 222 Number of features: 62 Max AUC: 0.862 AUC: 0.842 Z: 0.318 Rdelta: 0.00089
#> 223 Number of features: 62 Max AUC: 0.862 AUC: 0.829 Z: 0.253 Rdelta: 0.00071
#> 224 Number of features: 62 Max AUC: 0.862 AUC: 0.827 Z: 0.369 Rdelta: 0.00057
#> 225 Number of features: 62 Max AUC: 0.862 AUC: 0.835 Z: 0.314 Rdelta: 0.00046
#> 226 Number of features: 62 Max AUC: 0.862 AUC: 0.828 Z: 0.410 Rdelta: 0.00036
#> 227 Number of features: 62 Max AUC: 0.862 AUC: 0.850 Z: 0.331 Rdelta: 0.00029
#> 228 Number of features: 62 Max AUC: 0.862 AUC: 0.842 Z: 0.310 Rdelta: 0.00023
#> 229 Number of features: 62 Max AUC: 0.862 AUC: 0.846 Z: 0.374 Rdelta: 0.00019
#> 230 Number of features: 62 Max AUC: 0.862 AUC: 0.819 Z: 0.398 Rdelta: 0.00015
#> 231 Number of features: 62 Max AUC: 0.862 AUC: 0.833 Z: 0.397 Rdelta: 0.00012
#> 232 Number of features: 62 Max AUC: 0.862 AUC: 0.825 Z: 0.285 Rdelta: 0.00010
#> user system elapsed
#> 136.02 0.00 136.12
testDistance <- -signatureDistance(signature$caseTamplate,validLabeled,"MAN")+signatureDistance(signature$controlTemplate,validLabeled,"MAN")
pm<-plotModels.ROC(cbind(as.vector(validLabeled$Labels),testDistance))
ci <- epi.tests(pm$predictionTable)
sig_ACCtable <- rbind(sig_ACCtable,ci$elements$diag.acc)
sig_errorcitable <- rbind(sig_errorcitable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
sizesig <- append(sizesig,ncol(signature$caseTamplate))
#############################################################################################
sig_thesets <- c("Pearson","RMS","RMS_2","Manhatan")
bp <- barPlotCiError(as.matrix(sig_ACCtable),metricname="Accuracy",thesets=sig_thesets,themethod=c("Z>3","V5","V10","V10b"),main="Accuracy",args.legend = list(x = "bottomright"))
bp <- barPlotCiError(as.matrix(sig_errorcitable),metricname="Balanced Error",thesets=sig_thesets,themethod=c("Z>3","V5","V10","V10b"),main="Balanced Error",args.legend = list(x = "topright"))
arceneCV <- FRESA.Model(formula = Labels ~ 1,data = arcene.norm,filter.p.value = 0.01,CVfolds = 3,repeats = 5,bswimsCycles=10,usrFitFun=svm)
#> Unadjusted size: 3373 Adjusted Size: 3535
#> ..
#> Vars: 10000 Size: 100 , Fraction= 0.168, Average random size = 20.00, Size:400.00
#>
#> Z: 2.575829 , Var Max: 3373 , s1: 10001 , s2: 4118 , Independent Size: 800
#> [1] "V3365 + V7748 + V2556 + V1936 + V7513 + V4200 + V7212 + V2804 + V2256 + V52 + V271 + V9818 + V2264 + V4198 + V4352 + V1046 + V4295 + V6584 + V6567 + V2973 + V9402 + V2358 + V3592 + V729 + V6164 + V8026 + V6440 + V5936 + V762 + V22 + V4055 + V5321 + V3161 + V6692 + V7189 + V2533 + V8586 + V754 + V1184 + V6520"
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8899272 : Labels ~ 1 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408
#> 1 : 3364 : 0.86582 : Labels ~ 1 + V5005 + V1476 + V9275 + V3708 + V9158 + V4584 + V6685 + V9213 + V5321
#> 2 : 3355 : 0.8439689 : Labels ~ 1 + V4290 + V3365 + V9215 + V9395 + V4011 + V7891 + V3675
#> 3 : 3348 : 0.8424779 : Labels ~ 1 + V7748 + V8368 + V5680 + V4406 + V1344 + V4352 + V8969 + V584
#> 4 : 3340 : 0.8463496 : Labels ~ 1 + V2556 + V9818 + V312 + V3161 + V729 + V762
#> 5 : 3334 : 0.8192451 : Labels ~ 1 + V8502 + V7272 + V5761 + V1248 + V7195 + V6472
#> 6 : 3328 : 0.8345967 : Labels ~ 1 + V6584 + V414 + V4973 + V4301 + V5454 + V723 + V5194
#> 7 : 3321 : 0.8124393 : Labels ~ 1 + V2309 + V436 + V8156 + V4326 + V9965 + V9919 + V711
#> 8 : 3314 : 0.7881142 : Labels ~ 1 + V1975 + V9617 + V1184 + V6688 + V1831
#> 9 : 3309 : 0.8124757 : Labels ~ 1 + V9027 + V8055 + V86 + V2515 + V3170
#>
#> Num. Models: 10 To Test: 69 TopFreq: 1 Thrf: 0 Removed: 0
#> .*CV pvalue : 0.05
#> Update : Labels ~ 1 + V5005 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408
#> At Accuray: Labels ~ 1 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408
#> B:SWiMS : Labels ~ 1 + V698 + V6163 + V4960 + V256 + V4185 + V8247 + V9287 + V8245 + V6408
#> Loop : 1 Input Cases = 88 Input Control = 112
#> Loop : 1 Train Cases = 58 Train Control = 74
#> Loop : 1 Blind Cases = 30 Blind Control = 38
#> K : 11 KNN T Cases = 58 KNN T Control = 58
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8745541 : Labels ~ 1 + V3628 + V9818 + V3161 + V1664 + V2597 + V7928
#> 1 : 3367 : 0.8216551 : Labels ~ 1 + V3365 + V8156 + V6198 + V3592
#> 2 : 3363 : 0.7936555 : Labels ~ 1 + V312 + V6584 + V729
#> 3 : 3360 : 0.8451632 : Labels ~ 1 + V5005 + V455 + V4584 + V52 + V9275
#> 4 : 3355 : 0.7735905 : Labels ~ 1 + V8368 + V1097
#> 5 : 3353 : 0.7857353 : Labels ~ 1 + V4960 + V9215 + V1128
#> 6 : 3350 : 0.8322935 : Labels ~ 1 + V414 + V9965 + V8981 + V723
#> 7 : 3346 : 0.7671598 : Labels ~ 1 + V376 + V256 + V7849
#> 8 : 3343 : 0.794387 : Labels ~ 1 + V1936 + V9027 + V6164
#> 9 : 3340 : 0.8561705 : Labels ~ 1 + V2309 + V1831 + V9395 + V9932 + V1476
#>
#> Num. Models: 10 To Test: 38 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V3628 + V5005 + V9818 + V3161 + V1664 + V2597 + V7928
#> At Accuracy: Labels ~ 1 + V3628 + V9818 + V3161 + V1664 + V2597 + V7928
#> B:SWiMS : Labels ~ 1 + V3628 + V9818 + V3161 + V1664 + V2597 + V7928
#>
#> Num. Models: 320 To Test: 1115 TopFreq: 11.97959 Thrf: 0 Removed: 0
#> ................................*Loop : 1 Blind Cases = 30 Blind Control = 38 Total = 68 Size Cases = 30 Size Control = 38
#> Accumulated Models CV Accuracy = 0.75 Sensitivity = 0.7333333 Specificity = 0.7631579 Forw. Ensemble Accuracy= 0.75
#> Initial Model Accumulated CV Accuracy = 0.8529412 Sensitivity = 0.8 Specificity = 0.8947368
#> Initial Model Bootstrapped Accuracy = 0.8708198 Sensitivity = 0.8635691 Specificity = 0.8780704
#> Current Model Bootstrapped Accuracy = 0.8745541 Sensitivity = 0.8998216 Specificity = 0.8492866
#> Current KNN Accuracy = 0.7941176 Sensitivity = 0.9333333 Specificity = 0.6842105
#> Initial KNN Accuracy = 0.8088235 Sensitivity = 0.9 Specificity = 0.7368421
#> Train Correlation: 0.7704895 Blind Correlation : 0.6820247
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 26 2
#> TRUE 11 29
#> Loop : 2 Input Cases = 88 Input Control = 112
#> Loop : 2 Train Cases = 59 Train Control = 75
#> Loop : 2 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8468732 : Labels ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629
#> 1 : 3368 : 0.8424216 : Labels ~ 1 + V7891 + V1975 + V4352 + V4301 + V9215 + V7062 + V5321
#> 2 : 3361 : 0.8264052 : Labels ~ 1 + V9213 + V9818 + V5982
#> 3 : 3358 : 0.8649282 : Labels ~ 1 + V8623 + V5 + V9275 + V1602 + V629
#> 4 : 3353 : 0.8542654 : Labels ~ 1 + V4290 + V469 + V3170 + V8055 + V5487 + V9276 + V2408
#> 5 : 3346 : 0.8124814 : Labels ~ 1 + V872 + V1046 + V5680 + V6685
#> 6 : 3342 : 0.875781 : Labels ~ 1 + V782 + V5417 + V4018 + V8245 + V6114 + V4564
#> 7 : 3336 : 0.7950089 : Labels ~ 1 + V4557 + V5761 + V9525
#> 8 : 3333 : 0.8331371 : Labels ~ 1 + V698 + V898 + V4685 + V9346 + V9805
#> 9 : 3328 : 0.8004709 : Labels ~ 1 + V1831 + V4200 + V3947
#>
#> Num. Models: 10 To Test: 48 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629
#> At Accuracy: Labels ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629
#> B:SWiMS : Labels ~ 1 + V2556 + V6584 + V4183 + V1184 + V7629
#>
#> Num. Models: 320 To Test: 1038 TopFreq: 9.342105 Thrf: 0 Removed: 0
#> ................................*Loop : 2 Blind Cases = 29 Blind Control = 37 Total = 134 Size Cases = 59 Size Control = 75
#> Accumulated Models CV Accuracy = 0.7462687 Sensitivity = 0.7627119 Specificity = 0.7333333 Forw. Ensemble Accuracy= 0.7686567
#> Initial Model Accumulated CV Accuracy = 0.8731343 Sensitivity = 0.8135593 Specificity = 0.92
#> Initial Model Bootstrapped Accuracy = 0.8780165 Sensitivity = 0.8893467 Specificity = 0.8666863
#> Current Model Bootstrapped Accuracy = 0.8468732 Sensitivity = 0.8822326 Specificity = 0.8115137
#> Current KNN Accuracy = 0.761194 Sensitivity = 0.9152542 Specificity = 0.64
#> Initial KNN Accuracy = 0.8134328 Sensitivity = 0.9322034 Specificity = 0.72
#> Train Correlation: 0.7267996 Blind Correlation : 0.7669972
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 49 4
#> TRUE 20 61
#> Loop : 3 Input Cases = 88 Input Control = 112
#> Loop : 3 Train Cases = 59 Train Control = 75
#> Loop : 3 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8440828 : Labels ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597
#> 1 : 3366 : 0.8376258 : Labels ~ 1 + V6163 + V312 + V662 + V1046 + V4352
#> 2 : 3361 : 0.7667949 : Labels ~ 1 + V4215 + V3365 + V4069
#> 3 : 3358 : 0.8481179 : Labels ~ 1 + V2556 + V9833 + V6083 + V4564 + V4960 + V2818 + V2549
#> 4 : 3351 : 0.7803738 : Labels ~ 1 + V2052 + V8368 + V7212 + V9818
#> 5 : 3347 : 0.792561 : Labels ~ 1 + V2309 + V34 + V1865
#> 6 : 3344 : 0.7642288 : Labels ~ 1 + V7891 + V1762 + V9275
#> 7 : 3341 : 0.8048128 : Labels ~ 1 + V9617 + V4584 + V4290 + V867
#> 8 : 3337 : 0.8217262 : Labels ~ 1 + V414 + V5680 + V4295 + V3675
#> 9 : 3333 : 0.7527023 : Labels ~ 1 + V376 + V4326
#>
#> Num. Models: 10 To Test: 42 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597
#> At Accuracy: Labels ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597
#> B:SWiMS : Labels ~ 1 + V478 + V5005 + V7513 + V2256 + V2638 + V1617 + V6597
#>
#> Num. Models: 320 To Test: 1184 TopFreq: 12.82353 Thrf: 0 Removed: 0
#> ................................*Loop : 3 Blind Cases = 29 Blind Control = 37 Total = 200 Size Cases = 88 Size Control = 112
#> Accumulated Models CV Accuracy = 0.775 Sensitivity = 0.7613636 Specificity = 0.7857143 Forw. Ensemble Accuracy= 0.785
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8522727 Specificity = 0.8928571
#> Initial Model Bootstrapped Accuracy = 0.8813858 Sensitivity = 0.8857898 Specificity = 0.8769818
#> Current Model Bootstrapped Accuracy = 0.8440828 Sensitivity = 0.8508876 Specificity = 0.8372781
#> Current KNN Accuracy = 0.755 Sensitivity = 0.9204545 Specificity = 0.625
#> Initial KNN Accuracy = 0.795 Sensitivity = 0.8863636 Specificity = 0.7232143
#> Train Correlation: 0.7619706 Blind Correlation : 0.8150089
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 73 4
#> TRUE 36 87
#> Loop : 4 Input Cases = 88 Input Control = 112
#> Loop : 4 Train Cases = 58 Train Control = 74
#> Loop : 4 Blind Cases = 30 Blind Control = 38
#> K : 11 KNN T Cases = 58 KNN T Control = 58
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8010386 : Labels ~ 1 + V533 + V9275 + V3629 + V2529
#> 1 : 3369 : 0.7609202 : Labels ~ 1 + V5457 + V7378 + V9215
#> 2 : 3366 : 0.7684854 : Labels ~ 1 + V8089 + V1400 + V1831
#> 3 : 3363 : 0.769265 : Labels ~ 1 + V5796 + V872 + V9818
#> 4 : 3360 : 0.8074304 : Labels ~ 1 + V1516 + V4733 + V6584 + V2556
#> 5 : 3356 : 0.7646269 : Labels ~ 1 + V1510
#> 6 : 3355 : 0.7598366 : Labels ~ 1 + V7124
#> 7 : 3354 : 0.8157042 : Labels ~ 1 + V3952 + V9735 + V9965 + V4352
#> 8 : 3350 : 0.779628 : Labels ~ 1 + V256 + V4973 + V5801
#> 9 : 3347 : 0.8365639 : Labels ~ 1 + V6473 + V5005 + V1072 + V8156 + V7716 + V4522
#>
#> Num. Models: 10 To Test: 32 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V533 + V9275 + V3629 + V2529
#> At Accuracy: Labels ~ 1 + V533 + V9275 + V3629 + V2529
#> B:SWiMS : Labels ~ 1 + V533 + V9275 + V3629 + V2529
#>
#> Num. Models: 320 To Test: 1115 TopFreq: 15.97826 Thrf: 0 Removed: 0
#> ................................*Loop : 4 Blind Cases = 30 Blind Control = 38 Total = 268 Size Cases = 118 Size Control = 150
#> Accumulated Models CV Accuracy = 0.7649254 Sensitivity = 0.7457627 Specificity = 0.78 Forw. Ensemble Accuracy= 0.7835821
#> Initial Model Accumulated CV Accuracy = 0.880597 Sensitivity = 0.8728814 Specificity = 0.8866667
#> Initial Model Bootstrapped Accuracy = 0.8573534 Sensitivity = 0.8603006 Specificity = 0.8544061
#> Current Model Bootstrapped Accuracy = 0.8010386 Sensitivity = 0.8181009 Specificity = 0.7839763
#> Current KNN Accuracy = 0.7350746 Sensitivity = 0.8389831 Specificity = 0.6533333
#> Initial KNN Accuracy = 0.7910448 Sensitivity = 0.8728814 Specificity = 0.7266667
#> Train Correlation: 0.7686809 Blind Correlation : 0.6777112
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 102 15
#> TRUE 45 106
#> Loop : 5 Input Cases = 88 Input Control = 112
#> Loop : 5 Train Cases = 59 Train Control = 75
#> Loop : 5 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7629046 : Labels ~ 1 + V5005 + V6440 + V5400 + V9818
#> 1 : 3369 : 0.8326397 : Labels ~ 1 + V7513 + V7891 + V1831 + V2868 + V3161 + V2665 + V5321
#> 2 : 3362 : 0.7637555 : Labels ~ 1 + V723 + V2556 + V6408 + V9275
#> 3 : 3358 : 0.8220191 : Labels ~ 1 + V1936 + V4290 + V9215 + V8038 + V4564 + V7641
#> 4 : 3352 : 0.7593355 : Labels ~ 1 + V5473 + V8378 + V867
#> 5 : 3349 : 0.7896674 : Labels ~ 1 + V8502 + V7745 + V8156 + V1512 + V2358
#> 6 : 3344 : 0.7560976 : Labels ~ 1 + V819 + V764 + V9970
#> 7 : 3341 : 0.7678046 : Labels ~ 1 + V698 + V9395 + V6584
#> 8 : 3338 : 0.7589418 : Labels ~ 1 + V9485 + V2462 + V6163
#> 9 : 3335 : 0.7833679 : Labels ~ 1 + V7748 + V5761 + V3857
#>
#> Num. Models: 10 To Test: 41 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V6440 + V5400 + V9818
#> At Accuracy: Labels ~ 1 + V5005 + V6440 + V5400 + V9818
#> B:SWiMS : Labels ~ 1 + V5005 + V6440 + V5400 + V9818
#>
#> Num. Models: 320 To Test: 1113 TopFreq: 11.97059 Thrf: 0 Removed: 0
#> ................................*Loop : 5 Blind Cases = 29 Blind Control = 37 Total = 334 Size Cases = 147 Size Control = 187
#> Accumulated Models CV Accuracy = 0.7814371 Sensitivity = 0.7823129 Specificity = 0.7807487 Forw. Ensemble Accuracy= 0.8053892
#> Initial Model Accumulated CV Accuracy = 0.8772455 Sensitivity = 0.8571429 Specificity = 0.8930481
#> Initial Model Bootstrapped Accuracy = 0.8823874 Sensitivity = 0.8750731 Specificity = 0.8897016
#> Current Model Bootstrapped Accuracy = 0.7629046 Sensitivity = 0.7970254 Specificity = 0.7287839
#> Current KNN Accuracy = 0.7335329 Sensitivity = 0.8367347 Specificity = 0.6524064
#> Initial KNN Accuracy = 0.8053892 Sensitivity = 0.8911565 Specificity = 0.7379679
#> Train Correlation: 0.6782263 Blind Correlation : 0.7907108
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 127 19
#> TRUE 51 137
#> Loop : 6 Input Cases = 88 Input Control = 112
#> Loop : 6 Train Cases = 59 Train Control = 75
#> Loop : 6 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8891947 : Labels ~ 1 + V7857 + V1831 + V6163 + V3987 + V8222 + V312 + V4564
#> 1 : 3366 : 0.8425382 : Labels ~ 1 + V8806 + V9884 + V7319 + V5107 + V2556
#> 2 : 3361 : 0.8743799 : Labels ~ 1 + V8368 + V7220 + V4584 + V9213 + V1184
#> 3 : 3356 : 0.8182351 : Labels ~ 1 + V86 + V1529 + V729
#> 4 : 3353 : 0.8553922 : Labels ~ 1 + V6428 + V6959 + V3365 + V376 + V3170
#> 5 : 3348 : 0.8150805 : Labels ~ 1 + V436 + V3014 + V4666
#> 6 : 3345 : 0.8098653 : Labels ~ 1 + V1476 + V4326 + V62 + V5346
#> 7 : 3341 : 0.8319093 : Labels ~ 1 + V7748 + V3272 + V5683 + V9276 + V6572
#> 8 : 3336 : 0.8614406 : Labels ~ 1 + V698 + V2309 + V1097 + V4301 + V4352 + V1397 + V6573
#> 9 : 3329 : 0.8144764 : Labels ~ 1 + V8048 + V4960 + V5761 + V1344
#>
#> Num. Models: 10 To Test: 48 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V7857 + V9884 + V1831 + V6163 + V3987 + V8222 + V312 + V6440 + V4564 + V630
#> At Accuracy: Labels ~ 1 + V7857 + V1831 + V6163 + V3987 + V8222 + V312 + V4564
#> B:SWiMS : Labels ~ 1 + V7857 + V1831 + V6163 + V3987 + V8222 + V312 + V4564
#>
#> Num. Models: 320 To Test: 1030 TopFreq: 13.69388 Thrf: 0 Removed: 0
#> ................................*Loop : 6 Blind Cases = 29 Blind Control = 37 Total = 400 Size Cases = 176 Size Control = 224
#> Accumulated Models CV Accuracy = 0.7675 Sensitivity = 0.7670455 Specificity = 0.7678571 Forw. Ensemble Accuracy= 0.7975
#> Initial Model Accumulated CV Accuracy = 0.88 Sensitivity = 0.8636364 Specificity = 0.8928571
#> Initial Model Bootstrapped Accuracy = 0.887456 Sensitivity = 0.8889215 Specificity = 0.8859906
#> Current Model Bootstrapped Accuracy = 0.8891947 Sensitivity = 0.8878911 Specificity = 0.8904983
#> Current KNN Accuracy = 0.7325 Sensitivity = 0.8465909 Specificity = 0.6428571
#> Initial KNN Accuracy = 0.805 Sensitivity = 0.8920455 Specificity = 0.7366071
#> Train Correlation: 0.8266013 Blind Correlation : 0.780691
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 152 19
#> TRUE 61 168
#> Loop : 7 Input Cases = 88 Input Control = 112
#> Loop : 7 Train Cases = 58 Train Control = 74
#> Loop : 7 Blind Cases = 30 Blind Control = 38
#> K : 11 KNN T Cases = 58 KNN T Control = 58
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7811671 : Labels ~ 1 + V1762 + V5005 + V2256
#> 1 : 3370 : 0.8465171 : Labels ~ 1 + V6403 + V3629 + V698 + V1831 + V729 + V6520 + V4738
#> 2 : 3363 : 0.8510289 : Labels ~ 1 + V4290 + V5796 + V8156 + V9070 + V5982 + V5147 + V1289
#> 3 : 3356 : 0.8292358 : Labels ~ 1 + V1400 + V7857 + V3014 + V3545 + V2438
#> 4 : 3351 : 0.8390839 : Labels ~ 1 + V1516 + V7748 + V9965 + V4908 + V3547 + V4708
#> 5 : 3345 : 0.8704196 : Labels ~ 1 + V1476 + V9275 + V723 + V1072 + V8720 + V2597 + V6567 + V9672
#> 6 : 3337 : 0.8848098 : Labels ~ 1 + V436 + V5400 + V9818 + V1584 + V2309 + V6594 + V716
#> 7 : 3330 : 0.7756278 : Labels ~ 1 + V7513 + V8806 + V9215
#> 8 : 3327 : 0.8186054 : Labels ~ 1 + V86 + V5761 + V6597 + V6688
#> 9 : 3323 : 0.8217496 : Labels ~ 1 + V7220 + V3952 + V3170 + V5680 + V3866
#>
#> Num. Models: 10 To Test: 55 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V1762 + V5005 + V2256
#> At Accuracy: Labels ~ 1 + V1762 + V5005 + V2256
#> B:SWiMS : Labels ~ 1 + V1762 + V5005 + V2256
#>
#> Num. Models: 320 To Test: 1060 TopFreq: 16.5 Thrf: 0 Removed: 0
#> ................................*Loop : 7 Blind Cases = 30 Blind Control = 38 Total = 468 Size Cases = 206 Size Control = 262
#> Accumulated Models CV Accuracy = 0.7692308 Sensitivity = 0.7524272 Specificity = 0.7824427 Forw. Ensemble Accuracy= 0.7970085
#> Initial Model Accumulated CV Accuracy = 0.8824786 Sensitivity = 0.8543689 Specificity = 0.9045802
#> Initial Model Bootstrapped Accuracy = 0.873252 Sensitivity = 0.8809878 Specificity = 0.8655162
#> Current Model Bootstrapped Accuracy = 0.7811671 Sensitivity = 0.8414383 Specificity = 0.720896
#> Current KNN Accuracy = 0.7350427 Sensitivity = 0.8349515 Specificity = 0.6564885
#> Initial KNN Accuracy = 0.8119658 Sensitivity = 0.9029126 Specificity = 0.740458
#> Train Correlation: 0.6099607 Blind Correlation : 0.7212658
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 183 23
#> TRUE 73 189
#> Loop : 8 Input Cases = 88 Input Control = 112
#> Loop : 8 Train Cases = 59 Train Control = 75
#> Loop : 8 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8556473 : Labels ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352
#> 1 : 3367 : 0.7690033 : Labels ~ 1 + V7891 + V4326 + V6083
#> 2 : 3364 : 0.8061373 : Labels ~ 1 + V6594 + V3014 + V3218 + V4301 + V2358
#> 3 : 3359 : 0.7749488 : Labels ~ 1 + V5808 + V9215 + V4900
#> 4 : 3356 : 0.8195544 : Labels ~ 1 + V3365 + V7319 + V8402 + V762 + V1046
#> 5 : 3351 : 0.8335308 : Labels ~ 1 + V8368 + V898 + V8117 + V3170 + V5774 + V5881 + V8640
#> 6 : 3344 : 0.7900875 : Labels ~ 1 + V4960 + V5761 + V5995
#> 7 : 3341 : 0.7248244 : Labels ~ 1 + V414 + V8055
#> 8 : 3339 : 0.7323041 : Labels ~ 1 + V2309 + V5680
#> 9 : 3337 : 0.7914844 : Labels ~ 1 + V5005 + V1831 + V754 + V2804 + V3778
#>
#> Num. Models: 10 To Test: 41 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352
#> At Accuracy: Labels ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352
#> B:SWiMS : Labels ~ 1 + V2556 + V22 + V312 + V9275 + V4406 + V4352
#>
#> Num. Models: 320 To Test: 1115 TopFreq: 10.31579 Thrf: 0 Removed: 0
#> ................................*Loop : 8 Blind Cases = 29 Blind Control = 37 Total = 534 Size Cases = 235 Size Control = 299
#> Accumulated Models CV Accuracy = 0.7771536 Sensitivity = 0.7659574 Specificity = 0.7859532 Forw. Ensemble Accuracy= 0.8089888
#> Initial Model Accumulated CV Accuracy = 0.8895131 Sensitivity = 0.8723404 Specificity = 0.90301
#> Initial Model Bootstrapped Accuracy = 0.8608901 Sensitivity = 0.867374 Specificity = 0.8544061
#> Current Model Bootstrapped Accuracy = 0.8556473 Sensitivity = 0.846358 Specificity = 0.8649366
#> Current KNN Accuracy = 0.7453184 Sensitivity = 0.8382979 Specificity = 0.6722408
#> Initial KNN Accuracy = 0.8146067 Sensitivity = 0.8978723 Specificity = 0.7491639
#> Train Correlation: 0.8315291 Blind Correlation : 0.8026093
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 211 28
#> TRUE 79 216
#> Loop : 9 Input Cases = 88 Input Control = 112
#> Loop : 9 Train Cases = 59 Train Control = 75
#> Loop : 9 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8306878 : Labels ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193
#> 1 : 3368 : 0.8420124 : Labels ~ 1 + V3628 + V8156 + V1476 + V3987
#> 2 : 3364 : 0.8930771 : Labels ~ 1 + V1055 + V3170 + V9659 + V6163 + V2880 + V7161
#> 3 : 3358 : 0.8169487 : Labels ~ 1 + V5457 + V3339 + V9818
#> 4 : 3355 : 0.8121909 : Labels ~ 1 + V7748 + V533 + V4414 + V9275
#> 5 : 3351 : 0.8064469 : Labels ~ 1 + V436 + V3206 + V723 + V9215
#> 6 : 3347 : 0.798153 : Labels ~ 1 + V6986 + V4733 + V1831
#> 7 : 3344 : 0.7861305 : Labels ~ 1 + V2085 + V872 + V9965
#> 8 : 3341 : 0.8612001 : Labels ~ 1 + V4040 + V2637 + V8849 + V4301 + V2597
#> 9 : 3336 : 0.8018785 : Labels ~ 1 + V6523 + V893 + V819
#>
#> Num. Models: 10 To Test: 40 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193
#> At Accuracy: Labels ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193
#> B:SWiMS : Labels ~ 1 + V2358 + V4194 + V5680 + V4973 + V8193
#>
#> Num. Models: 320 To Test: 1148 TopFreq: 11.40625 Thrf: 0 Removed: 0
#> ................................*Loop : 9 Blind Cases = 29 Blind Control = 37 Total = 600 Size Cases = 264 Size Control = 336
#> Accumulated Models CV Accuracy = 0.77 Sensitivity = 0.7689394 Specificity = 0.7708333 Forw. Ensemble Accuracy= 0.7966667
#> Initial Model Accumulated CV Accuracy = 0.885 Sensitivity = 0.8712121 Specificity = 0.8958333
#> Initial Model Bootstrapped Accuracy = 0.8694371 Sensitivity = 0.8614795 Specificity = 0.8773946
#> Current Model Bootstrapped Accuracy = 0.8306878 Sensitivity = 0.8677249 Specificity = 0.7936508
#> Current KNN Accuracy = 0.735 Sensitivity = 0.844697 Specificity = 0.6488095
#> Initial KNN Accuracy = 0.7933333 Sensitivity = 0.8901515 Specificity = 0.7172619
#> Train Correlation: 0.7336195 Blind Correlation : 0.6606617
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 231 28
#> TRUE 89 252
#> Loop : 10 Input Cases = 88 Input Control = 112
#> Loop : 10 Train Cases = 58 Train Control = 74
#> Loop : 10 Blind Cases = 30 Blind Control = 38
#> K : 11 KNN T Cases = 58 KNN T Control = 58
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8320962 : Labels ~ 1 + V5005 + V9215 + V5 + V1184
#> 1 : 3369 : 0.8314793 : Labels ~ 1 + V9818 + V312 + V7849 + V4301 + V1289
#> 2 : 3364 : 0.784416 : Labels ~ 1 + V8156 + V8368 + V1936
#> 3 : 3361 : 0.8240444 : Labels ~ 1 + V5761 + V8806 + V9213 + V6688
#> 4 : 3357 : 0.8162722 : Labels ~ 1 + V1046 + V3365 + V5417 + V311
#> 5 : 3353 : 0.8167777 : Labels ~ 1 + V4960 + V9275 + V1248 + V7857
#> 6 : 3349 : 0.8350118 : Labels ~ 1 + V1831 + V2309 + V6111 + V698 + V666
#> 7 : 3344 : 0.8424855 : Labels ~ 1 + V7062 + V9617 + V4580 + V2515 + V7748
#> 8 : 3339 : 0.7733076 : Labels ~ 1 + V819 + V414 + V2785
#> 9 : 3336 : 0.8511799 : Labels ~ 1 + V4070 + V7584 + V86 + V9965 + V2973 + V241
#>
#> Num. Models: 10 To Test: 43 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V9215 + V5 + V1184
#> At Accuracy: Labels ~ 1 + V5005 + V9215 + V5 + V1184
#> B:SWiMS : Labels ~ 1 + V5005 + V9215 + V5 + V1184
#>
#> Num. Models: 320 To Test: 1037 TopFreq: 17.53333 Thrf: 0 Removed: 0
#> ................................*Loop : 10 Blind Cases = 30 Blind Control = 38 Total = 668 Size Cases = 294 Size Control = 374
#> Accumulated Models CV Accuracy = 0.7724551 Sensitivity = 0.7619048 Specificity = 0.7807487 Forw. Ensemble Accuracy= 0.7964072
#> Initial Model Accumulated CV Accuracy = 0.8907186 Sensitivity = 0.877551 Specificity = 0.9010695
#> Initial Model Bootstrapped Accuracy = 0.8719821 Sensitivity = 0.8769001 Specificity = 0.8670641
#> Current Model Bootstrapped Accuracy = 0.8320962 Sensitivity = 0.8660926 Specificity = 0.7980998
#> Current KNN Accuracy = 0.741018 Sensitivity = 0.8435374 Specificity = 0.6604278
#> Initial KNN Accuracy = 0.7904192 Sensitivity = 0.8741497 Specificity = 0.7245989
#> Train Correlation: 0.77465 Blind Correlation : 0.8332634
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 262 31
#> TRUE 100 275
#> Loop : 11 Input Cases = 88 Input Control = 112
#> Loop : 11 Train Cases = 59 Train Control = 75
#> Loop : 11 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8369016 : Labels ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064
#> 1 : 3367 : 0.7863938 : Labels ~ 1 + V469 + V4584 + V9027
#> 2 : 3364 : 0.8506647 : Labels ~ 1 + V7928 + V4352 + V9884 + V8055 + V9234 + V4549 + V5466
#> 3 : 3357 : 0.8146413 : Labels ~ 1 + V723 + V4960 + V9275 + V6163 + V1865
#> 4 : 3352 : 0.8071915 : Labels ~ 1 + V698 + V8720 + V1097 + V6999 + V3257
#> 5 : 3347 : 0.7612269 : Labels ~ 1 + V1975 + V2168 + V414 + V22
#> 6 : 3343 : 0.7723318 : Labels ~ 1 + V4183 + V5680 + V5077
#> 7 : 3340 : 0.7936716 : Labels ~ 1 + V872 + V5378 + V9213 + V6009
#> 8 : 3336 : 0.8002603 : Labels ~ 1 + V5 + V9818 + V7402 + V3152
#> 9 : 3332 : 0.771849 : Labels ~ 1 + V782 + V4326 + V5487 + V2145
#>
#> Num. Models: 10 To Test: 45 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064
#> At Accuracy: Labels ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064
#> B:SWiMS : Labels ~ 1 + V6115 + V5761 + V312 + V4564 + V630 + V2064
#>
#> Num. Models: 320 To Test: 1164 TopFreq: 9.418605 Thrf: 0 Removed: 0
#> ................................*Loop : 11 Blind Cases = 29 Blind Control = 37 Total = 734 Size Cases = 323 Size Control = 411
#> Accumulated Models CV Accuracy = 0.7752044 Sensitivity = 0.7616099 Specificity = 0.7858881 Forw. Ensemble Accuracy= 0.7997275
#> Initial Model Accumulated CV Accuracy = 0.886921 Sensitivity = 0.8854489 Specificity = 0.8880779
#> Initial Model Bootstrapped Accuracy = 0.8783824 Sensitivity = 0.8786798 Specificity = 0.878085
#> Current Model Bootstrapped Accuracy = 0.8369016 Sensitivity = 0.8614332 Specificity = 0.8123699
#> Current KNN Accuracy = 0.739782 Sensitivity = 0.8544892 Specificity = 0.649635
#> Initial KNN Accuracy = 0.7901907 Sensitivity = 0.879257 Specificity = 0.7201946
#> Train Correlation: 0.7429644 Blind Correlation : 0.7657865
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 283 31
#> TRUE 117 303
#> Loop : 12 Input Cases = 88 Input Control = 112
#> Loop : 12 Train Cases = 59 Train Control = 75
#> Loop : 12 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8321534 : Labels ~ 1 + V2556 + V256 + V1055 + V6198
#> 1 : 3369 : 0.8557185 : Labels ~ 1 + V7891 + V9275 + V4158 + V9338 + V1198 + V2700
#> 2 : 3363 : 0.8465332 : Labels ~ 1 + V4290 + V9818 + V7272 + V4900 + V2294 + V8026
#> 3 : 3357 : 0.8461425 : Labels ~ 1 + V7748 + V729 + V4194 + V6511 + V6440
#> 4 : 3352 : 0.8076923 : Labels ~ 1 + V698 + V4069 + V7976 + V9215
#> 5 : 3348 : 0.8350607 : Labels ~ 1 + V8502 + V2256 + V4654 + V6584 + V7598
#> 6 : 3343 : 0.8011995 : Labels ~ 1 + V1476 + V3952 + V1831 + V2747
#> 7 : 3339 : 0.852194 : Labels ~ 1 + V3206 + V9965 + V6181 + V8156 + V7195 + V6180
#> 8 : 3333 : 0.7685564 : Labels ~ 1 + V5473 + V5761 + V4056
#> 9 : 3330 : 0.7673253 : Labels ~ 1 + V436 + V5680 + V3365
#>
#> Num. Models: 10 To Test: 46 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V256 + V1055 + V6198
#> At Accuracy: Labels ~ 1 + V2556 + V256 + V1055 + V6198
#> B:SWiMS : Labels ~ 1 + V2556 + V256 + V1055 + V6198
#>
#> Num. Models: 320 To Test: 1184 TopFreq: 12.39286 Thrf: 0 Removed: 0
#> ................................*Loop : 12 Blind Cases = 29 Blind Control = 37 Total = 800 Size Cases = 352 Size Control = 448
#> Accumulated Models CV Accuracy = 0.7775 Sensitivity = 0.7727273 Specificity = 0.78125 Forw. Ensemble Accuracy= 0.805
#> Initial Model Accumulated CV Accuracy = 0.88625 Sensitivity = 0.8863636 Specificity = 0.8861607
#> Initial Model Bootstrapped Accuracy = 0.8730417 Sensitivity = 0.8785102 Specificity = 0.8675732
#> Current Model Bootstrapped Accuracy = 0.8321534 Sensitivity = 0.8427729 Specificity = 0.8215339
#> Current KNN Accuracy = 0.73625 Sensitivity = 0.8551136 Specificity = 0.6428571
#> Initial KNN Accuracy = 0.78625 Sensitivity = 0.8863636 Specificity = 0.7075893
#> Train Correlation: 0.7915136 Blind Correlation : 0.7823192
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 304 35
#> TRUE 126 335
#> Loop : 13 Input Cases = 88 Input Control = 112
#> Loop : 13 Train Cases = 58 Train Control = 74
#> Loop : 13 Blind Cases = 30 Blind Control = 38
#> K : 11 KNN T Cases = 58 KNN T Control = 58
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8643585 : Labels ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128
#> 1 : 3367 : 0.8523031 : Labels ~ 1 + V1529 + V4352 + V7857 + V9395 + V1046 + V629 + V7003
#> 2 : 3360 : 0.8735955 : Labels ~ 1 + V5825 + V5761 + V1476 + V2515 + V9213
#> 3 : 3355 : 0.8834027 : Labels ~ 1 + V3628 + V8806 + V4326 + V1248 + V3170 + V7220
#> 4 : 3349 : 0.8729642 : Labels ~ 1 + V436 + V3152 + V5417 + V7446 + V5139 + V6688
#> 5 : 3343 : 0.8757476 : Labels ~ 1 + V7748 + V5680 + V9104 + V6111 + V4301
#> 6 : 3338 : 0.8751486 : Labels ~ 1 + V698 + V9050 + V9818 + V6780 + V1289 + V3592
#> 7 : 3332 : 0.845735 : Labels ~ 1 + V4290 + V312 + V9063 + V7062 + V1667
#> 8 : 3327 : 0.8229322 : Labels ~ 1 + V8502 + V7899 + V9215 + V662
#> 9 : 3323 : 0.8577778 : Labels ~ 1 + V6428 + V3365 + V7849 + V8156 + V4580
#>
#> Num. Models: 10 To Test: 55 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128
#> At Accuracy: Labels ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128
#> B:SWiMS : Labels ~ 1 + V5005 + V9884 + V1184 + V1831 + V86 + V1128
#>
#> Num. Models: 320 To Test: 1098 TopFreq: 14.8125 Thrf: 0 Removed: 0
#> ................................*Loop : 13 Blind Cases = 30 Blind Control = 38 Total = 868 Size Cases = 382 Size Control = 486
#> Accumulated Models CV Accuracy = 0.7753456 Sensitivity = 0.7670157 Specificity = 0.781893 Forw. Ensemble Accuracy= 0.8029954
#> Initial Model Accumulated CV Accuracy = 0.8894009 Sensitivity = 0.8874346 Specificity = 0.8909465
#> Initial Model Bootstrapped Accuracy = 0.8701356 Sensitivity = 0.8711675 Specificity = 0.8691038
#> Current Model Bootstrapped Accuracy = 0.8643585 Sensitivity = 0.8755995 Specificity = 0.8531175
#> Current KNN Accuracy = 0.7327189 Sensitivity = 0.8507853 Specificity = 0.6399177
#> Initial KNN Accuracy = 0.7834101 Sensitivity = 0.8874346 Specificity = 0.7016461
#> Train Correlation: 0.8638164 Blind Correlation : 0.6517158
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 331 37
#> TRUE 138 362
#> Loop : 14 Input Cases = 88 Input Control = 112
#> Loop : 14 Train Cases = 59 Train Control = 75
#> Loop : 14 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7909224 : Labels ~ 1 + V9215 + V7513 + V3365
#> 1 : 3370 : 0.8374964 : Labels ~ 1 + V1831 + V5400 + V8368 + V7831
#> 2 : 3366 : 0.8321189 : Labels ~ 1 + V8156 + V7212 + V414 + V5321 + V7883
#> 3 : 3361 : 0.8468732 : Labels ~ 1 + V723 + V2556 + V9818 + V7928 + V7402
#> 4 : 3356 : 0.7827748 : Labels ~ 1 + V7891 + V9965 + V1975
#> 5 : 3353 : 0.8193018 : Labels ~ 1 + V9275 + V469 + V312 + V9567
#> 6 : 3349 : 0.8390351 : Labels ~ 1 + V4960 + V6584 + V9585 + V6163 + V5698
#> 7 : 3344 : 0.8036078 : Labels ~ 1 + V9027 + V1097 + V7032 + V2638
#> 8 : 3340 : 0.8199467 : Labels ~ 1 + V7994 + V898 + V8411 + V711 + V5914
#> 9 : 3335 : 0.8182624 : Labels ~ 1 + V7272 + V4973 + V4326 + V2438 + V5995
#>
#> Num. Models: 10 To Test: 43 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V9215 + V7513 + V3365
#> At Accuracy: Labels ~ 1 + V9215 + V7513 + V3365
#> B:SWiMS : Labels ~ 1 + V9215 + V7513 + V3365
#>
#> Num. Models: 320 To Test: 1115 TopFreq: 24.81081 Thrf: 1 Removed: 608
#> ................................*Loop : 14 Blind Cases = 29 Blind Control = 37 Total = 934 Size Cases = 411 Size Control = 523
#> Accumulated Models CV Accuracy = 0.7719486 Sensitivity = 0.7639903 Specificity = 0.7782027 Forw. Ensemble Accuracy= 0.7987152
#> Initial Model Accumulated CV Accuracy = 0.8897216 Sensitivity = 0.892944 Specificity = 0.8871893
#> Initial Model Bootstrapped Accuracy = 0.8686602 Sensitivity = 0.8765758 Specificity = 0.8607446
#> Current Model Bootstrapped Accuracy = 0.7909224 Sensitivity = 0.8333821 Specificity = 0.7484627
#> Current KNN Accuracy = 0.7291221 Sensitivity = 0.8515815 Specificity = 0.6328872
#> Initial KNN Accuracy = 0.7815846 Sensitivity = 0.8905109 Specificity = 0.6959847
#> Train Correlation: 0.8035627 Blind Correlation : 0.7980587
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 354 38
#> TRUE 150 392
#> Loop : 15 Input Cases = 88 Input Control = 112
#> Loop : 15 Train Cases = 59 Train Control = 75
#> Loop : 15 Blind Cases = 29 Blind Control = 37
#> K : 11 KNN T Cases = 59 KNN T Control = 59
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7390607 : Labels ~ 1 + V1936 + V9215 + V7272
#> 1 : 3370 : 0.7126723 : Labels ~ 1 + V5005
#> 2 : 3369 : 0.7598665 : Labels ~ 1 + V5457 + V9818 + V4666
#> 3 : 3366 : 0.794356 : Labels ~ 1 + V533 + V6584 + V3206 + V4301
#> 4 : 3362 : 0.7783909 : Labels ~ 1 + V7891 + V9275 + V5400 + V3170
#> 5 : 3358 : 0.7655565 : Labels ~ 1 + V4290 + V6239 + V1097 + V2747
#> 6 : 3354 : 0.8349572 : Labels ~ 1 + V3352 + V4158 + V4738 + V218 + V1477 + V3983 + V9965
#> 7 : 3347 : 0.8501742 : Labels ~ 1 + V3365 + V4584 + V256 + V4564 + V3675 + V4198
#> 8 : 3341 : 0.7691398 : Labels ~ 1 + V1831 + V2242 + V2256
#> 9 : 3338 : 0.7835447 : Labels ~ 1 + V698 + V8744 + V5774 + V729
#>
#> Num. Models: 10 To Test: 39 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V1936 + V9215 + V7272
#> At Accuracy: Labels ~ 1 + V1936 + V9215 + V7272
#> B:SWiMS : Labels ~ 1 + V1936 + V9215 + V7272
#>
#> Num. Models: 320 To Test: 1120 TopFreq: 9.909091 Thrf: 0 Removed: 0
#> ................................*Loop : 15 Blind Cases = 29 Blind Control = 37 Total = 1000 Size Cases = 440 Size Control = 560
#> Accumulated Models CV Accuracy = 0.779 Sensitivity = 0.7659091 Specificity = 0.7892857 Forw. Ensemble Accuracy= 0.806
#> Initial Model Accumulated CV Accuracy = 0.887 Sensitivity = 0.8818182 Specificity = 0.8910714
#> Initial Model Bootstrapped Accuracy = 0.876545 Sensitivity = 0.8878752 Specificity = 0.8652148
#> Current Model Bootstrapped Accuracy = 0.7390607 Sensitivity = 0.7922987 Specificity = 0.6858226
#> Current KNN Accuracy = 0.737 Sensitivity = 0.8613636 Specificity = 0.6392857
#> Initial KNN Accuracy = 0.784 Sensitivity = 0.8886364 Specificity = 0.7017857
#> Train Correlation: 0.6784956 Blind Correlation : 0.7718401
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 381 38
#> TRUE 164 417
#>
#> Num. Models: 320 To Test: 1334 TopFreq: 13.58621 Thrf: 0 Removed: 0
#> ................................*:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#:.....#.....#
#> Num. Models: 101 To Test: 109 TopFreq: 99 Thrf: 0 Removed: 0
#> ..........*
save(arceneCV,file="ArceneV_001_3_5_wsvn.RDATA")
CVACCTable <- NULL
CVBETable <- NULL
arceneCV$cvObject$Models.testPrediction$usrFitFunction_Sel <- arceneCV$cvObject$Models.testPrediction$usrFitFunction_Sel -0.5
arceneCV$cvObject$Models.testPrediction$usrFitFunction <- arceneCV$cvObject$Models.testPrediction$usrFitFunction -0.5
pm <- plotModels.ROC(arceneCV$cvObject$LASSO.testPredictions,theCVfolds=3,main="CV LASSO",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="Prediction",main="BB:SWiMS",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="Ensemble.Forward",main="Forward Median",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="Forward.Selection.Bagged",main="Forward Bagged",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="usrFitFunction",main="SVM",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV$cvObject$Models.testPrediction,theCVfolds=3,predictor="usrFitFunction_Sel",main="SVM",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
CVthesets <- c("LASSO","BSWIMS","Ensemble","Forward Bagging","SVM:Filterd","SVM:BSWIMS")
bp <- barPlotCiError(as.matrix(CVACCTable),metricname="Accuracy",thesets=CVthesets,themethod=c("CV"),main="Accuracy",args.legend = list(x = "bottomright"))
bp <- barPlotCiError(as.matrix(CVBETable),metricname="Balanced Error",thesets=CVthesets,themethod=c("CV"),main="Balanced Error",args.legend = list(x = "topright"))
arceneCV10 <- FRESA.Model(formula = Labels ~ 1,data = arcene.norm,filter.p.value = 0.01,CVfolds = 10,repeats = 5,bswimsCycles=10,usrFitFun=svm)
#> Unadjusted size: 3373 Adjusted Size: 3535
#> ..
#> Vars: 10000 Size: 100 , Fraction= 0.136, Average random size = 15.60, Size:312.00
#>
#> Z: 2.575829 , Var Max: 3373 , s1: 10001 , s2: 4118 , Independent Size: 624
#> [1] "V3365 + V7748 + V2556 + V1936 + V7513 + V4200 + V7212 + V2804 + V2256 + V52 + V271 + V9818 + V2264 + V4198 + V4352 + V9275 + V1046 + V4295 + V6584 + V6567 + V9402 + V2358 + V3592 + V729 + V6164 + V8026 + V6440 + V5936 + V762 + V22 + V4055 + V5321 + V3161 + V6692 + V7189 + V2533 + V8586 + V754 + V1184 + V6520"
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8570153 : Labels ~ 1 + V5005 + V5680 + V130 + V2145 + V4290 + V1943 + V8245
#> 1 : 3366 : 0.8208178 : Labels ~ 1 + V698 + V3365 + V6163 + V6688 + V6584 + V1344
#> 2 : 3360 : 0.9036778 : Labels ~ 1 + V312 + V9275 + V4584 + V3161 + V9287 + V5321 + V2700 + V4198 + V3725
#> 3 : 3351 : 0.8088065 : Labels ~ 1 + V7891 + V9818 + V1975 + V6780 + V4352
#> 4 : 3346 : 0.8592629 : Labels ~ 1 + V8368 + V7748 + V9215 + V5400 + V729 + V8726 + V6948 + V5140
#> 5 : 3338 : 0.8155512 : Labels ~ 1 + V1476 + V2309 + V1831 + V9395 + V9268
#> 6 : 3333 : 0.8557692 : Labels ~ 1 + V436 + V4960 + V256 + V2515 + V3778 + V3592 + V1173 + V8835
#> 7 : 3325 : 0.8320328 : Labels ~ 1 + V2556 + V3014 + V414 + V5995 + V6083 + V4301
#> 8 : 3319 : 0.8103516 : Labels ~ 1 + V9617 + V5378 + V4973 + V22 + V3170 + V4900
#> 9 : 3313 : 0.8310624 : Labels ~ 1 + V8502 + V4326 + V8411 + V9027 + V1248 + V1046 + V6746
#>
#> Num. Models: 10 To Test: 67 TopFreq: 1 Thrf: 0 Removed: 0
#> .*CV pvalue : 0.05
#> Update : Labels ~ 1 + V5005 + V1975 + V5680 + V130 + V2145 + V4290 + V1943 + V8245
#> At Accuray: Labels ~ 1 + V5005 + V5680 + V130 + V2145 + V4290 + V1943 + V8245
#> B:SWiMS : Labels ~ 1 + V5005 + V5680 + V130 + V2145 + V4290 + V1943 + V8245
#> Loop : 1 Input Cases = 88 Input Control = 112
#> Loop : 1 Train Cases = 79 Train Control = 100
#> Loop : 1 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8535801 : Labels ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778
#> 1 : 3366 : 0.8450751 : Labels ~ 1 + V2556 + V9275 + V6111 + V5321 + V6163 + V3206 + V3170
#> 2 : 3359 : 0.8385073 : Labels ~ 1 + V7891 + V4584 + V698 + V7272 + V6584 + V880 + V1248
#> 3 : 3352 : 0.8434631 : Labels ~ 1 + V4290 + V3365 + V4326 + V9395 + V1344 + V22
#> 4 : 3346 : 0.8225099 : Labels ~ 1 + V7748 + V312 + V9215 + V1943 + V819 + V9086
#> 5 : 3340 : 0.8453722 : Labels ~ 1 + V2309 + V1831 + V5774 + V4406 + V2294 + V9965 + V6487
#> 6 : 3333 : 0.7953992 : Labels ~ 1 + V4960 + V729 + V436
#> 7 : 3330 : 0.8057769 : Labels ~ 1 + V6594 + V9213 + V5761 + V3015 + V9743 + V2358
#> 8 : 3324 : 0.788609 : Labels ~ 1 + V9617 + V4069 + V1320 + V4301 + V2064
#> 9 : 3319 : 0.7946881 : Labels ~ 1 + V1476 + V414 + V3708 + V5680
#>
#> Num. Models: 10 To Test: 58 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778
#> At Accuracy: Labels ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778
#> B:SWiMS : Labels ~ 1 + V5005 + V4352 + V8368 + V762 + V9818 + V7584 + V3778
#>
#> Num. Models: 320 To Test: 1299 TopFreq: 13.97561 Thrf: 0 Removed: 0
#> ................................*Loop : 1 Blind Cases = 9 Blind Control = 12 Total = 21 Size Cases = 9 Size Control = 12
#> Accumulated Models CV Accuracy = 0.8571429 Sensitivity = 0.8888889 Specificity = 0.8333333 Forw. Ensemble Accuracy= 0.8095238
#> Initial Model Accumulated CV Accuracy = 0.8095238 Sensitivity = 0.8888889 Specificity = 0.75
#> Initial Model Bootstrapped Accuracy = 0.8636564 Sensitivity = 0.8797357 Specificity = 0.8475771
#> Current Model Bootstrapped Accuracy = 0.8535801 Sensitivity = 0.859898 Specificity = 0.8472622
#> Current KNN Accuracy = 0.6666667 Sensitivity = 1 Specificity = 0.4166667
#> Initial KNN Accuracy = 0.7142857 Sensitivity = 0.7777778 Specificity = 0.6666667
#> Train Correlation: 0.7407675 Blind Correlation : 0.9012987
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 5 0
#> TRUE 6 10
#> Loop : 2 Input Cases = 88 Input Control = 112
#> Loop : 2 Train Cases = 79 Train Control = 100
#> Loop : 2 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8870609 : Labels ~ 1 + V4194 + V9818 + V7857 + V4584 + V3161 + V4564 + V5489 + V6196
#> 1 : 3365 : 0.8524156 : Labels ~ 1 + V5400 + V5005 + V819 + V1184 + V7272 + V629 + V8193
#> 2 : 3358 : 0.8203279 : Labels ~ 1 + V7513 + V3170 + V5683 + V7748
#> 3 : 3354 : 0.8306398 : Labels ~ 1 + V1975 + V1936 + V9275 + V4301 + V6570
#> 4 : 3349 : 0.8461624 : Labels ~ 1 + V7212 + V436 + V9215 + V2358 + V9082 + V7284
#> 5 : 3343 : 0.8821255 : Labels ~ 1 + V86 + V723 + V898 + V8368 + V1584 + V5808 + V1198
#> 6 : 3336 : 0.8437638 : Labels ~ 1 + V8806 + V4326 + V3365 + V4406 + V762
#> 7 : 3331 : 0.8449074 : Labels ~ 1 + V1476 + V1097 + V5801 + V1055 + V7584 + V1046
#> 8 : 3325 : 0.8340684 : Labels ~ 1 + V4183 + V256 + V2309 + V4580 + V729 + V6882
#> 9 : 3319 : 0.8049288 : Labels ~ 1 + V698 + V7928 + V8055 + V3206
#>
#> Num. Models: 10 To Test: 58 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V4194 + V9818 + V7857 + V7513 + V4584 + V3161 + V4564 + V5489 + V6196
#> At Accuracy: Labels ~ 1 + V4194 + V9818 + V7857 + V4584 + V3161 + V4564 + V5489 + V6196
#> B:SWiMS : Labels ~ 1 + V4194 + V9818 + V7857 + V4584 + V3161 + V4564 + V5489 + V6196
#>
#> Num. Models: 320 To Test: 1210 TopFreq: 11.86047 Thrf: 0 Removed: 0
#> ................................*Loop : 2 Blind Cases = 9 Blind Control = 12 Total = 42 Size Cases = 18 Size Control = 24
#> Accumulated Models CV Accuracy = 0.6904762 Sensitivity = 0.6111111 Specificity = 0.75 Forw. Ensemble Accuracy= 0.7619048
#> Initial Model Accumulated CV Accuracy = 0.7857143 Sensitivity = 0.7777778 Specificity = 0.7916667
#> Initial Model Bootstrapped Accuracy = 0.8649546 Sensitivity = 0.8817799 Specificity = 0.8481293
#> Current Model Bootstrapped Accuracy = 0.8870609 Sensitivity = 0.8955091 Specificity = 0.8786127
#> Current KNN Accuracy = 0.6904762 Sensitivity = 0.9444444 Specificity = 0.5
#> Initial KNN Accuracy = 0.7380952 Sensitivity = 0.8333333 Specificity = 0.6666667
#> Train Correlation: 0.8028791 Blind Correlation : 0.4597403
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 13 0
#> TRUE 12 17
#> Loop : 3 Input Cases = 88 Input Control = 112
#> Loop : 3 Train Cases = 79 Train Control = 101
#> Loop : 3 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8251189 : Labels ~ 1 + V4685 + V9215 + V4158 + V8604 + V1344
#> 1 : 3368 : 0.8607204 : Labels ~ 1 + V2556 + V698 + V1831 + V5796 + V729 + V3206 + V3161 + V1184
#> 2 : 3360 : 0.8077251 : Labels ~ 1 + V7891 + V1400 + V4301 + V9818 + V6163 + V2747
#> 3 : 3354 : 0.8536985 : Labels ~ 1 + V4352 + V8411 + V3170 + V5761 + V6505 + V5321 + V4077 + V8245 + V3839
#> 4 : 3345 : 0.8194962 : Labels ~ 1 + V7748 + V8055 + V312 + V6688 + V7137
#> 5 : 3340 : 0.8147988 : Labels ~ 1 + V436 + V9275 + V9485 + V7272 + V7435 + V5139
#> 6 : 3334 : 0.8508715 : Labels ~ 1 + V7857 + V1055 + V8156 + V6959 + V3785 + V3347 + V1256 + V258
#> 7 : 3326 : 0.7978723 : Labels ~ 1 + V4290 + V6239 + V256 + V5982 + V4584 + V9525
#> 8 : 3320 : 0.8155244 : Labels ~ 1 + V4194 + V1476 + V1516 + V3014 + V2145
#> 9 : 3315 : 0.8210821 : Labels ~ 1 + V86 + V5680 + V3365 + V1248 + V3592
#>
#> Num. Models: 10 To Test: 63 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V698 + V4685 + V9215 + V4158 + V8604 + V1344
#> At Accuracy: Labels ~ 1 + V4685 + V9215 + V4158 + V8604 + V1344
#> B:SWiMS : Labels ~ 1 + V4685 + V9215 + V4158 + V8604 + V1344
#>
#> Num. Models: 320 To Test: 1320 TopFreq: 10.73913 Thrf: 0 Removed: 0
#> ................................*Loop : 3 Blind Cases = 9 Blind Control = 11 Total = 62 Size Cases = 27 Size Control = 35
#> Accumulated Models CV Accuracy = 0.7419355 Sensitivity = 0.6666667 Specificity = 0.8 Forw. Ensemble Accuracy= 0.8064516
#> Initial Model Accumulated CV Accuracy = 0.8064516 Sensitivity = 0.8518519 Specificity = 0.7714286
#> Initial Model Bootstrapped Accuracy = 0.8515001 Sensitivity = 0.8776171 Specificity = 0.8253831
#> Current Model Bootstrapped Accuracy = 0.8251189 Sensitivity = 0.8785128 Specificity = 0.771725
#> Current KNN Accuracy = 0.7419355 Sensitivity = 0.962963 Specificity = 0.5714286
#> Initial KNN Accuracy = 0.7903226 Sensitivity = 0.8888889 Specificity = 0.7142857
#> Train Correlation: 0.798572 Blind Correlation : 0.8781955
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 21 0
#> TRUE 16 25
#> Loop : 4 Input Cases = 88 Input Control = 112
#> Loop : 4 Train Cases = 79 Train Control = 101
#> Loop : 4 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7993993 : Labels ~ 1 + V5005 + V723 + V1831 + V1184
#> 1 : 3369 : 0.8481834 : Labels ~ 1 + V4070 + V9215 + V241 + V8368 + V698 + V2052
#> 2 : 3363 : 0.8252618 : Labels ~ 1 + V1936 + V3365 + V6163 + V1046 + V8245 + V1943
#> 3 : 3357 : 0.8021622 : Labels ~ 1 + V5400 + V312 + V5761 + V4301
#> 4 : 3353 : 0.805453 : Labels ~ 1 + V2309 + V9275 + V7513 + V3170 + V9276
#> 5 : 3348 : 0.807254 : Labels ~ 1 + V9617 + V4326 + V8806 + V1289
#> 6 : 3344 : 0.8339806 : Labels ~ 1 + V7748 + V4960 + V6584 + V7212 + V729 + V1344 + V3226
#> 7 : 3337 : 0.804264 : Labels ~ 1 + V7928 + V376 + V8156 + V9965 + V4352 + V4295
#> 8 : 3331 : 0.8177468 : Labels ~ 1 + V414 + V4584 + V436 + V9213 + V4198
#> 9 : 3326 : 0.7970607 : Labels ~ 1 + V2866 + V86 + V5680 + V3708
#>
#> Num. Models: 10 To Test: 51 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V723 + V1831 + V1184
#> At Accuracy: Labels ~ 1 + V5005 + V723 + V1831 + V1184
#> B:SWiMS : Labels ~ 1 + V5005 + V723 + V1831 + V1184
#>
#> Num. Models: 320 To Test: 1325 TopFreq: 14.35135 Thrf: 0 Removed: 0
#> ................................*Loop : 4 Blind Cases = 9 Blind Control = 11 Total = 82 Size Cases = 36 Size Control = 46
#> Accumulated Models CV Accuracy = 0.7682927 Sensitivity = 0.6944444 Specificity = 0.826087 Forw. Ensemble Accuracy= 0.8170732
#> Initial Model Accumulated CV Accuracy = 0.8170732 Sensitivity = 0.8333333 Specificity = 0.8043478
#> Initial Model Bootstrapped Accuracy = 0.8394375 Sensitivity = 0.8609113 Specificity = 0.8179638
#> Current Model Bootstrapped Accuracy = 0.7993993 Sensitivity = 0.8395194 Specificity = 0.7592791
#> Current KNN Accuracy = 0.7317073 Sensitivity = 0.9166667 Specificity = 0.5869565
#> Initial KNN Accuracy = 0.7682927 Sensitivity = 0.8611111 Specificity = 0.6956522
#> Train Correlation: 0.7425085 Blind Correlation : 0.9593985
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 30 0
#> TRUE 19 33
#> Loop : 5 Input Cases = 88 Input Control = 112
#> Loop : 5 Train Cases = 79 Train Control = 101
#> Loop : 5 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8138402 : Labels ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585
#> 1 : 3367 : 0.8247038 : Labels ~ 1 + V5321 + V782 + V9215 + V4584 + V8368 + V3161 + V8193
#> 2 : 3360 : 0.863806 : Labels ~ 1 + V3365 + V6163 + V4352 + V3082 + V4564 + V3592 + V9275 + V6068
#> 3 : 3352 : 0.8369987 : Labels ~ 1 + V698 + V6584 + V9027 + V729 + V2438 + V311
#> 4 : 3346 : 0.7518462 : Labels ~ 1 + V9617 + V9818 + V6083
#> 5 : 3343 : 0.8128138 : Labels ~ 1 + V7748 + V4301 + V9395 + V5683 + V2556
#> 6 : 3338 : 0.7816117 : Labels ~ 1 + V1476 + V7272 + V5761 + V1762
#> 7 : 3334 : 0.8122555 : Labels ~ 1 + V4290 + V312 + V8156 + V6181 + V9965 + V5378
#> 8 : 3328 : 0.8071413 : Labels ~ 1 + V436 + V3014 + V414 + V8981 + V3170
#> 9 : 3323 : 0.7515575 : Labels ~ 1 + V8055 + V4960 + V1975
#>
#> Num. Models: 10 To Test: 53 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585
#> At Accuracy: Labels ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585
#> B:SWiMS : Labels ~ 1 + V5005 + V2358 + V1831 + V9070 + V6999 + V9585
#>
#> Num. Models: 320 To Test: 1334 TopFreq: 12.37931 Thrf: 0 Removed: 0
#> ................................*Loop : 5 Blind Cases = 9 Blind Control = 11 Total = 102 Size Cases = 45 Size Control = 57
#> Accumulated Models CV Accuracy = 0.7843137 Sensitivity = 0.6888889 Specificity = 0.8596491 Forw. Ensemble Accuracy= 0.8431373
#> Initial Model Accumulated CV Accuracy = 0.8431373 Sensitivity = 0.8666667 Specificity = 0.8245614
#> Initial Model Bootstrapped Accuracy = 0.8385852 Sensitivity = 0.8628081 Specificity = 0.8143623
#> Current Model Bootstrapped Accuracy = 0.8138402 Sensitivity = 0.8507689 Specificity = 0.7769114
#> Current KNN Accuracy = 0.754902 Sensitivity = 0.9111111 Specificity = 0.6315789
#> Initial KNN Accuracy = 0.7745098 Sensitivity = 0.8444444 Specificity = 0.7192982
#> Train Correlation: 0.7841209 Blind Correlation : 0.7203008
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 40 0
#> TRUE 23 39
#> Loop : 6 Input Cases = 88 Input Control = 112
#> Loop : 6 Train Cases = 79 Train Control = 101
#> Loop : 6 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8574523 : Labels ~ 1 + V7272 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726
#> 1 : 3366 : 0.7991741 : Labels ~ 1 + V7891 + V9818 + V1975 + V686
#> 2 : 3362 : 0.8200173 : Labels ~ 1 + V6594 + V1831 + V1248 + V8502 + V8835
#> 3 : 3357 : 0.8251778 : Labels ~ 1 + V4183 + V9215 + V130 + V5808 + V1184 + V6163
#> 4 : 3351 : 0.8480243 : Labels ~ 1 + V3206 + V4290 + V9275 + V1946 + V7195 + V9833 + V1664
#> 5 : 3344 : 0.8278153 : Labels ~ 1 + V698 + V8156 + V4185 + V5827 + V9525
#> 6 : 3339 : 0.8335496 : Labels ~ 1 + V7748 + V5761 + V1943 + V2294 + V2358
#> 7 : 3334 : 0.8530878 : Labels ~ 1 + V1476 + V4158 + V5680 + V5107 + V4751 + V3170 + V4198
#> 8 : 3327 : 0.7774554 : Labels ~ 1 + V5 + V4301 + V5005 + V4326
#> 9 : 3323 : 0.8812298 : Labels ~ 1 + V5473 + V729 + V7584 + V6511 + V6685 + V1681 + V5943 + V1198
#>
#> Num. Models: 10 To Test: 58 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V7272 + V4183 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726
#> At Accuracy: Labels ~ 1 + V7272 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726
#> B:SWiMS : Labels ~ 1 + V7272 + V6584 + V2556 + V4352 + V4584 + V8623 + V8726
#>
#> Num. Models: 320 To Test: 1335 TopFreq: 13.32075 Thrf: 0 Removed: 0
#> ................................*Loop : 6 Blind Cases = 9 Blind Control = 11 Total = 122 Size Cases = 54 Size Control = 68
#> Accumulated Models CV Accuracy = 0.795082 Sensitivity = 0.7037037 Specificity = 0.8676471 Forw. Ensemble Accuracy= 0.8442623
#> Initial Model Accumulated CV Accuracy = 0.8360656 Sensitivity = 0.8518519 Specificity = 0.8235294
#> Initial Model Bootstrapped Accuracy = 0.8704146 Sensitivity = 0.8899501 Specificity = 0.8508791
#> Current Model Bootstrapped Accuracy = 0.8574523 Sensitivity = 0.8602686 Specificity = 0.854636
#> Current KNN Accuracy = 0.7377049 Sensitivity = 0.9074074 Specificity = 0.6029412
#> Initial KNN Accuracy = 0.7868852 Sensitivity = 0.8518519 Specificity = 0.7352941
#> Train Correlation: 0.8374024 Blind Correlation : 0.9007519
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 46 0
#> TRUE 29 47
#> Loop : 7 Input Cases = 88 Input Control = 112
#> Loop : 7 Train Cases = 79 Train Control = 101
#> Loop : 7 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.868489 : Labels ~ 1 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402
#> 1 : 3365 : 0.824046 : Labels ~ 1 + V1476 + V5005 + V9215 + V1248 + V1529
#> 2 : 3360 : 0.8349967 : Labels ~ 1 + V698 + V9818 + V2309 + V22 + V3082 + V4352
#> 3 : 3354 : 0.8425265 : Labels ~ 1 + V6584 + V4290 + V7272 + V9276 + V1173 + V6958 + V5995
#> 4 : 3347 : 0.804282 : Labels ~ 1 + V436 + V3365 + V4326 + V9395 + V5321
#> 5 : 3342 : 0.8088299 : Labels ~ 1 + V7891 + V86 + V256 + V7536 + V9213
#> 6 : 3337 : 0.8810711 : Labels ~ 1 + V8806 + V8368 + V6163 + V4900 + V8156 + V9965 + V3161 + V8027
#> 7 : 3329 : 0.8142172 : Labels ~ 1 + V7857 + V1831 + V312 + V762 + V2515
#> 8 : 3324 : 0.806613 : Labels ~ 1 + V8502 + V4960 + V8055 + V686
#> 9 : 3320 : 0.7965718 : Labels ~ 1 + V414 + V5774 + V729 + V6597
#>
#> Num. Models: 10 To Test: 57 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402
#> At Accuracy: Labels ~ 1 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402
#> B:SWiMS : Labels ~ 1 + V7748 + V5680 + V1055 + V6688 + V2145 + V2556 + V9275 + V7402
#>
#> Num. Models: 320 To Test: 1305 TopFreq: 15.97368 Thrf: 0 Removed: 0
#> ................................*Loop : 7 Blind Cases = 9 Blind Control = 11 Total = 142 Size Cases = 63 Size Control = 79
#> Accumulated Models CV Accuracy = 0.8028169 Sensitivity = 0.7142857 Specificity = 0.8734177 Forw. Ensemble Accuracy= 0.8521127
#> Initial Model Accumulated CV Accuracy = 0.8450704 Sensitivity = 0.8571429 Specificity = 0.835443
#> Initial Model Bootstrapped Accuracy = 0.8570805 Sensitivity = 0.9026838 Specificity = 0.8114772
#> Current Model Bootstrapped Accuracy = 0.868489 Sensitivity = 0.8852777 Specificity = 0.8517004
#> Current KNN Accuracy = 0.7394366 Sensitivity = 0.8730159 Specificity = 0.6329114
#> Initial KNN Accuracy = 0.7887324 Sensitivity = 0.8412698 Specificity = 0.7468354
#> Train Correlation: 0.8552486 Blind Correlation : 0.6421053
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 56 2
#> TRUE 31 53
#> Loop : 8 Input Cases = 88 Input Control = 112
#> Loop : 8 Train Cases = 79 Train Control = 101
#> Loop : 8 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7923226 : Labels ~ 1 + V723 + V9818 + V312 + V6970
#> 1 : 3369 : 0.8100238 : Labels ~ 1 + V5005 + V6584 + V5 + V4301 + V1248
#> 2 : 3364 : 0.825065 : Labels ~ 1 + V1936 + V4960 + V9275 + V1975 + V4584 + V3170
#> 3 : 3358 : 0.7941049 : Labels ~ 1 + V4183 + V3365 + V1831 + V8726
#> 4 : 3354 : 0.8009229 : Labels ~ 1 + V5400 + V4070 + V5680 + V8193 + V5107
#> 5 : 3349 : 0.8044705 : Labels ~ 1 + V469 + V8368 + V9215 + V1874
#> 6 : 3345 : 0.866849 : Labels ~ 1 + V6408 + V6163 + V7513 + V3986 + V2675 + V782 + V3074 + V6487
#> 7 : 3337 : 0.8253484 : Labels ~ 1 + V414 + V872 + V819 + V8156 + V4352 + V729
#> 8 : 3331 : 0.8139009 : Labels ~ 1 + V2309 + V4326 + V533 + V1046 + V3876
#> 9 : 3326 : 0.8593648 : Labels ~ 1 + V9617 + V5457 + V1198 + V4900 + V9213 + V5378 + V7263 + V138
#>
#> Num. Models: 10 To Test: 55 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V723 + V9818 + V312 + V6970
#> At Accuracy: Labels ~ 1 + V723 + V9818 + V312 + V6970
#> B:SWiMS : Labels ~ 1 + V723 + V9818 + V312 + V6970
#>
#> Num. Models: 320 To Test: 1264 TopFreq: 13.73529 Thrf: 0 Removed: 0
#> ................................*Loop : 8 Blind Cases = 9 Blind Control = 11 Total = 162 Size Cases = 72 Size Control = 90
#> Accumulated Models CV Accuracy = 0.7901235 Sensitivity = 0.7222222 Specificity = 0.8444444 Forw. Ensemble Accuracy= 0.8395062
#> Initial Model Accumulated CV Accuracy = 0.8518519 Sensitivity = 0.8611111 Specificity = 0.8444444
#> Initial Model Bootstrapped Accuracy = 0.8602639 Sensitivity = 0.8860048 Specificity = 0.834523
#> Current Model Bootstrapped Accuracy = 0.7923226 Sensitivity = 0.8125943 Specificity = 0.7720509
#> Current KNN Accuracy = 0.7160494 Sensitivity = 0.8611111 Specificity = 0.6
#> Initial KNN Accuracy = 0.7654321 Sensitivity = 0.8333333 Specificity = 0.7111111
#> Train Correlation: 0.7734325 Blind Correlation : 0.8406015
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 62 2
#> TRUE 34 64
#> Loop : 9 Input Cases = 88 Input Control = 112
#> Loop : 9 Train Cases = 80 Train Control = 101
#> Loop : 9 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8482925 : Labels ~ 1 + V4352 + V6584 + V1975 + V7272 + V3170 + V7849
#> 1 : 3367 : 0.7804554 : Labels ~ 1 + V4183 + V9215 + V4158
#> 2 : 3364 : 0.8429798 : Labels ~ 1 + V698 + V1831 + V6239 + V3591 + V3675 + V6214 + V9070
#> 3 : 3357 : 0.8092264 : Labels ~ 1 + V3206 + V5 + V9818 + V1344 + V4406
#> 4 : 3352 : 0.7967105 : Labels ~ 1 + V1055 + V8156 + V469 + V2515 + V9965
#> 5 : 3347 : 0.8369565 : Labels ~ 1 + V4194 + V4290 + V256 + V5936 + V6688 + V2294 + V4584
#> 6 : 3340 : 0.8280771 : Labels ~ 1 + V4666 + V9275 + V7748 + V729 + V1590 + V2556
#> 7 : 3334 : 0.8422671 : Labels ~ 1 + V1476 + V3365 + V4326 + V9395 + V7141 + V1087
#> 8 : 3328 : 0.8050792 : Labels ~ 1 + V5378 + V9213 + V4414 + V4973 + V3612
#> 9 : 3323 : 0.8220153 : Labels ~ 1 + V436 + V2309 + V5417 + V615 + V5400 + V3592
#>
#> Num. Models: 10 To Test: 56 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V4352 + V7748 + V6584 + V1975 + V7272 + V3170 + V7849
#> At Accuracy: Labels ~ 1 + V4352 + V6584 + V1975 + V7272 + V3170 + V7849
#> B:SWiMS : Labels ~ 1 + V4352 + V6584 + V1975 + V7272 + V3170 + V7849
#>
#> Num. Models: 320 To Test: 1317 TopFreq: 9.875 Thrf: 0 Removed: 0
#> ................................*Loop : 9 Blind Cases = 8 Blind Control = 11 Total = 181 Size Cases = 80 Size Control = 101
#> Accumulated Models CV Accuracy = 0.7955801 Sensitivity = 0.7375 Specificity = 0.8415842 Forw. Ensemble Accuracy= 0.8453039
#> Initial Model Accumulated CV Accuracy = 0.8618785 Sensitivity = 0.875 Specificity = 0.8514851
#> Initial Model Bootstrapped Accuracy = 0.8349398 Sensitivity = 0.8663746 Specificity = 0.8035049
#> Current Model Bootstrapped Accuracy = 0.8482925 Sensitivity = 0.8690893 Specificity = 0.8274956
#> Current KNN Accuracy = 0.7237569 Sensitivity = 0.875 Specificity = 0.6039604
#> Initial KNN Accuracy = 0.7734807 Sensitivity = 0.85 Specificity = 0.7128713
#> Train Correlation: 0.7958313 Blind Correlation : 0.7684211
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 69 2
#> TRUE 37 73
#> Loop : 10 Input Cases = 88 Input Control = 112
#> Loop : 10 Train Cases = 80 Train Control = 101
#> Loop : 10 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8443179 : Labels ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141
#> 1 : 3367 : 0.8320652 : Labels ~ 1 + V312 + V9275 + V723 + V630 + V3778 + V8726
#> 2 : 3361 : 0.8398506 : Labels ~ 1 + V4352 + V8368 + V256 + V4584 + V6068 + V1344 + V9234 + V629
#> 3 : 3353 : 0.8108634 : Labels ~ 1 + V4960 + V5680 + V1476 + V9395 + V5107
#> 4 : 3348 : 0.8010741 : Labels ~ 1 + V2309 + V698 + V8156 + V5761 + V1184 + V4185
#> 5 : 3342 : 0.7951623 : Labels ~ 1 + V9617 + V436 + V6163 + V6584 + V8247
#> 6 : 3337 : 0.8272926 : Labels ~ 1 + V5005 + V1831 + V4973 + V6780 + V1338 + V4290 + V5321
#> 7 : 3330 : 0.7995376 : Labels ~ 1 + V8502 + V414 + V8055 + V1248
#> 8 : 3326 : 0.8124864 : Labels ~ 1 + V86 + V4194 + V2530 + V2356 + V3395 + V2515
#> 9 : 3320 : 0.8118855 : Labels ~ 1 + V9027 + V1046 + V4326 + V2597 + V762
#>
#> Num. Models: 10 To Test: 58 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141
#> At Accuracy: Labels ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141
#> B:SWiMS : Labels ~ 1 + V7748 + V9818 + V3365 + V729 + V3161 + V7141
#>
#> Num. Models: 320 To Test: 1254 TopFreq: 11.97143 Thrf: 0 Removed: 0
#> ................................*Loop : 10 Blind Cases = 8 Blind Control = 11 Total = 200 Size Cases = 88 Size Control = 112
#> Accumulated Models CV Accuracy = 0.79 Sensitivity = 0.7272727 Specificity = 0.8392857 Forw. Ensemble Accuracy= 0.85
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8863636 Specificity = 0.8660714
#> Initial Model Bootstrapped Accuracy = 0.8462886 Sensitivity = 0.8710313 Specificity = 0.8215459
#> Current Model Bootstrapped Accuracy = 0.8443179 Sensitivity = 0.8570177 Specificity = 0.8316181
#> Current KNN Accuracy = 0.73 Sensitivity = 0.875 Specificity = 0.6160714
#> Initial KNN Accuracy = 0.78 Sensitivity = 0.8636364 Specificity = 0.7142857
#> Train Correlation: 0.7855281 Blind Correlation : 0.8614035
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 77 3
#> TRUE 41 79
#> Loop : 11 Input Cases = 88 Input Control = 112
#> Loop : 11 Train Cases = 79 Train Control = 100
#> Loop : 11 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8005278 : Labels ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129
#> 1 : 3368 : 0.8172055 : Labels ~ 1 + V8368 + V9659 + V3170 + V9215 + V6688 + V711
#> 2 : 3362 : 0.8571115 : Labels ~ 1 + V9585 + V4352 + V6584 + V3365 + V9213 + V2646 + V5378
#> 3 : 3355 : 0.835913 : Labels ~ 1 + V9818 + V8411 + V312 + V7849 + V1046 + V6163
#> 4 : 3349 : 0.8550836 : Labels ~ 1 + V4960 + V9275 + V7032 + V9395 + V1087 + V3675 + V4584
#> 5 : 3342 : 0.8033459 : Labels ~ 1 + V819 + V1787 + V414 + V5489 + V130
#> 6 : 3337 : 0.8196044 : Labels ~ 1 + V2309 + V4557 + V2256 + V8156 + V7381 + V4301
#> 7 : 3331 : 0.7930166 : Labels ~ 1 + V9617 + V1975 + V9965 + V6111
#> 8 : 3327 : 0.8016845 : Labels ~ 1 + V6045 + V5680 + V9027 + V1344
#> 9 : 3323 : 0.8137083 : Labels ~ 1 + V2783 + V4879 + V7748 + V9338 + V8586 + V2973
#>
#> Num. Models: 10 To Test: 56 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129
#> At Accuracy: Labels ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129
#> B:SWiMS : Labels ~ 1 + V5005 + V4973 + V1831 + V7828 + V1129
#>
#> Num. Models: 320 To Test: 1299 TopFreq: 8.526316 Thrf: 0 Removed: 0
#> ................................*Loop : 11 Blind Cases = 9 Blind Control = 12 Total = 221 Size Cases = 97 Size Control = 124
#> Accumulated Models CV Accuracy = 0.7782805 Sensitivity = 0.7216495 Specificity = 0.8225806 Forw. Ensemble Accuracy= 0.841629
#> Initial Model Accumulated CV Accuracy = 0.8687783 Sensitivity = 0.8969072 Specificity = 0.8467742
#> Initial Model Bootstrapped Accuracy = 0.8586764 Sensitivity = 0.8882249 Specificity = 0.8291279
#> Current Model Bootstrapped Accuracy = 0.8005278 Sensitivity = 0.8607873 Specificity = 0.7402683
#> Current KNN Accuracy = 0.7330317 Sensitivity = 0.8865979 Specificity = 0.6129032
#> Initial KNN Accuracy = 0.7782805 Sensitivity = 0.8556701 Specificity = 0.7177419
#> Train Correlation: 0.7661492 Blind Correlation : 0.5818182
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 84 3
#> TRUE 45 89
#> Loop : 12 Input Cases = 88 Input Control = 112
#> Loop : 12 Train Cases = 79 Train Control = 100
#> Loop : 12 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7965001 : Labels ~ 1 + V723 + V698 + V9818 + V2242
#> 1 : 3369 : 0.817 : Labels ~ 1 + V4290 + V9215 + V9395 + V3444
#> 2 : 3365 : 0.8801552 : Labels ~ 1 + V7748 + V7272 + V1831 + V729 + V6214 + V3403 + V3161
#> 3 : 3358 : 0.8394404 : Labels ~ 1 + V2294 + V1476 + V4326 + V4185 + V4564
#> 4 : 3353 : 0.8578464 : Labels ~ 1 + V2556 + V8502 + V256 + V4584 + V4198 + V4158 + V5321 + V3675
#> 5 : 3345 : 0.8165824 : Labels ~ 1 + V7891 + V5473 + V3014 + V6198 + V1184
#> 6 : 3340 : 0.8440053 : Labels ~ 1 + V6594 + V436 + V2256 + V5680 + V2515 + V2907 + V8126
#> 7 : 3333 : 0.8192959 : Labels ~ 1 + V7197 + V7928 + V9213 + V9275 + V5283
#> 8 : 3328 : 0.8303393 : Labels ~ 1 + V6928 + V5005 + V6584 + V533 + V3170 + V6570 + V7641 + V3778
#> 9 : 3320 : 0.8774849 : Labels ~ 1 + V1055 + V8156 + V6163 + V9965 + V662 + V630 + V4352 + V5808
#>
#> Num. Models: 10 To Test: 61 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V723 + V698 + V9818 + V2242
#> At Accuracy: Labels ~ 1 + V723 + V698 + V9818 + V2242
#> B:SWiMS : Labels ~ 1 + V723 + V698 + V9818 + V2242
#>
#> Num. Models: 320 To Test: 1263 TopFreq: 14.97222 Thrf: 0 Removed: 0
#> ................................*Loop : 12 Blind Cases = 9 Blind Control = 12 Total = 242 Size Cases = 106 Size Control = 136
#> Accumulated Models CV Accuracy = 0.7892562 Sensitivity = 0.7358491 Specificity = 0.8308824 Forw. Ensemble Accuracy= 0.8429752
#> Initial Model Accumulated CV Accuracy = 0.8760331 Sensitivity = 0.9056604 Specificity = 0.8529412
#> Initial Model Bootstrapped Accuracy = 0.8502843 Sensitivity = 0.8727034 Specificity = 0.8278653
#> Current Model Bootstrapped Accuracy = 0.7965001 Sensitivity = 0.8393132 Specificity = 0.753687
#> Current KNN Accuracy = 0.731405 Sensitivity = 0.8962264 Specificity = 0.6029412
#> Initial KNN Accuracy = 0.7892562 Sensitivity = 0.8679245 Specificity = 0.7279412
#> Train Correlation: 0.7606209 Blind Correlation : 0.9493506
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 90 3
#> TRUE 51 98
#> Loop : 13 Input Cases = 88 Input Control = 112
#> Loop : 13 Train Cases = 79 Train Control = 101
#> Loop : 13 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.9001311 : Labels ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245
#> 1 : 3364 : 0.8645474 : Labels ~ 1 + V1476 + V8055 + V7272 + V1344 + V3857 + V4137
#> 2 : 3358 : 0.8546169 : Labels ~ 1 + V698 + V5005 + V1831 + V9965 + V8135 + V8147 + V4352
#> 3 : 3351 : 0.8719697 : Labels ~ 1 + V4290 + V898 + V5400 + V2397 + V5445 + V9158
#> 4 : 3345 : 0.8537217 : Labels ~ 1 + V7857 + V723 + V9275 + V3206 + V3861 + V2556
#> 5 : 3339 : 0.8609185 : Labels ~ 1 + V9818 + V86 + V7513 + V2747 + V2111 + V9082
#> 6 : 3333 : 0.836857 : Labels ~ 1 + V436 + V4158 + V256 + V5283 + V1173 + V4584
#> 7 : 3327 : 0.8231285 : Labels ~ 1 + V8806 + V5683 + V1055 + V7848
#> 8 : 3323 : 0.8695462 : Labels ~ 1 + V8502 + V6163 + V3365 + V9395 + V6584 + V6380 + V4738 + V3170
#> 9 : 3315 : 0.8243156 : Labels ~ 1 + V5473 + V6239 + V4326 + V2298 + V9346
#>
#> Num. Models: 10 To Test: 63 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245
#> At Accuracy: Labels ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245
#> B:SWiMS : Labels ~ 1 + V7748 + V1936 + V9215 + V6111 + V3675 + V729 + V2680 + V4564 + V8245
#>
#> Num. Models: 320 To Test: 1267 TopFreq: 16.98077 Thrf: 0 Removed: 0
#> ................................*Loop : 13 Blind Cases = 9 Blind Control = 11 Total = 262 Size Cases = 115 Size Control = 147
#> Accumulated Models CV Accuracy = 0.7748092 Sensitivity = 0.7130435 Specificity = 0.8231293 Forw. Ensemble Accuracy= 0.8358779
#> Initial Model Accumulated CV Accuracy = 0.8740458 Sensitivity = 0.9043478 Specificity = 0.8503401
#> Initial Model Bootstrapped Accuracy = 0.8705484 Sensitivity = 0.8940354 Specificity = 0.8470614
#> Current Model Bootstrapped Accuracy = 0.9001311 Sensitivity = 0.9121503 Specificity = 0.8881119
#> Current KNN Accuracy = 0.7290076 Sensitivity = 0.8956522 Specificity = 0.5986395
#> Initial KNN Accuracy = 0.7900763 Sensitivity = 0.8695652 Specificity = 0.7278912
#> Train Correlation: 0.8646069 Blind Correlation : 0.6360902
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 97 3
#> TRUE 57 105
#> Loop : 14 Input Cases = 88 Input Control = 112
#> Loop : 14 Train Cases = 79 Train Control = 101
#> Loop : 14 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8462039 : Labels ~ 1 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788
#> 1 : 3367 : 0.8534427 : Labels ~ 1 + V9275 + V312 + V22 + V3592 + V3778 + V3876 + V5359
#> 2 : 3360 : 0.7870714 : Labels ~ 1 + V2556 + V5005 + V9818 + V1943
#> 3 : 3356 : 0.80899 : Labels ~ 1 + V1936 + V3365 + V8156 + V1865 + V1184
#> 4 : 3351 : 0.7808649 : Labels ~ 1 + V7891 + V1831 + V662 + V1289
#> 5 : 3347 : 0.8084458 : Labels ~ 1 + V9617 + V9215 + V4198 + V6163 + V4580
#> 6 : 3342 : 0.8179059 : Labels ~ 1 + V5801 + V4352 + V3170 + V9965 + V723 + V686
#> 7 : 3336 : 0.8156297 : Labels ~ 1 + V2309 + V4326 + V436 + V8981 + V9213
#> 8 : 3331 : 0.8104342 : Labels ~ 1 + V4960 + V1046 + V3014 + V2204 + V4082
#> 9 : 3326 : 0.8314292 : Labels ~ 1 + V414 + V6164 + V4301 + V762 + V4406 + V6180
#>
#> Num. Models: 10 To Test: 53 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788
#> At Accuracy: Labels ~ 1 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788
#> B:SWiMS : Labels ~ 1 + V6584 + V8368 + V4584 + V1344 + V3161 + V2788
#>
#> Num. Models: 320 To Test: 1279 TopFreq: 12.625 Thrf: 0 Removed: 0
#> ................................*Loop : 14 Blind Cases = 9 Blind Control = 11 Total = 282 Size Cases = 124 Size Control = 158
#> Accumulated Models CV Accuracy = 0.7730496 Sensitivity = 0.7177419 Specificity = 0.8164557 Forw. Ensemble Accuracy= 0.8404255
#> Initial Model Accumulated CV Accuracy = 0.8687943 Sensitivity = 0.9032258 Specificity = 0.8417722
#> Initial Model Bootstrapped Accuracy = 0.8485764 Sensitivity = 0.8729508 Specificity = 0.8242019
#> Current Model Bootstrapped Accuracy = 0.8462039 Sensitivity = 0.8767896 Specificity = 0.8156182
#> Current KNN Accuracy = 0.7234043 Sensitivity = 0.8790323 Specificity = 0.6012658
#> Initial KNN Accuracy = 0.7801418 Sensitivity = 0.8548387 Specificity = 0.721519
#> Train Correlation: 0.772174 Blind Correlation : 0.8827068
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 106 4
#> TRUE 58 114
#> Loop : 15 Input Cases = 88 Input Control = 112
#> Loop : 15 Train Cases = 79 Train Control = 101
#> Loop : 15 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8588325 : Labels ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911
#> 1 : 3366 : 0.8780595 : Labels ~ 1 + V1936 + V5 + V3170 + V8156 + V6163 + V2804 + V4352 + V7760
#> 2 : 3358 : 0.8223383 : Labels ~ 1 + V7212 + V1975 + V9818 + V9213 + V2747 + V6999
#> 3 : 3352 : 0.8278582 : Labels ~ 1 + V723 + V698 + V6959 + V312 + V7562 + V7371
#> 4 : 3346 : 0.8411012 : Labels ~ 1 + V7748 + V7260 + V898 + V1344 + V306 + V7090
#> 5 : 3340 : 0.8347836 : Labels ~ 1 + V469 + V4584 + V5801 + V4301 + V9275 + V4185
#> 6 : 3334 : 0.8725405 : Labels ~ 1 + V5683 + V9585 + V1184 + V2266 + V6487 + V5400 + V6703
#> 7 : 3327 : 0.8750271 : Labels ~ 1 + V4070 + V7513 + V9215 + V5140 + V2675 + V8411 + V8618
#> 8 : 3320 : 0.845 : Labels ~ 1 + V4973 + V9395 + V9965 + V1046 + V3987 + V2256 + V8126
#> 9 : 3313 : 0.8847669 : Labels ~ 1 + V7891 + V729 + V6584 + V4960 + V4580 + V4406 + V1584 + V3161 + V2788
#>
#> Num. Models: 10 To Test: 69 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911
#> At Accuracy: Labels ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911
#> B:SWiMS : Labels ~ 1 + V5005 + V4183 + V1831 + V2358 + V720 + V4723 + V9911
#>
#> Num. Models: 320 To Test: 1320 TopFreq: 14.30233 Thrf: 0 Removed: 0
#> ................................*Loop : 15 Blind Cases = 9 Blind Control = 11 Total = 302 Size Cases = 133 Size Control = 169
#> Accumulated Models CV Accuracy = 0.7715232 Sensitivity = 0.6992481 Specificity = 0.8284024 Forw. Ensemble Accuracy= 0.8344371
#> Initial Model Accumulated CV Accuracy = 0.8609272 Sensitivity = 0.887218 Specificity = 0.8402367
#> Initial Model Bootstrapped Accuracy = 0.8539861 Sensitivity = 0.8778163 Specificity = 0.830156
#> Current Model Bootstrapped Accuracy = 0.8588325 Sensitivity = 0.8856337 Specificity = 0.8320312
#> Current KNN Accuracy = 0.7251656 Sensitivity = 0.8721805 Specificity = 0.6094675
#> Initial KNN Accuracy = 0.781457 Sensitivity = 0.8571429 Specificity = 0.7218935
#> Train Correlation: 0.7887713 Blind Correlation : 0.7548872
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 116 4
#> TRUE 64 118
#> Loop : 16 Input Cases = 88 Input Control = 112
#> Loop : 16 Train Cases = 79 Train Control = 101
#> Loop : 16 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.847055 : Labels ~ 1 + V2556 + V729 + V312 + V9275 + V4352 + V3161
#> 1 : 3367 : 0.8317828 : Labels ~ 1 + V4584 + V8368 + V2309 + V7891 + V3170 + V1248
#> 2 : 3361 : 0.806525 : Labels ~ 1 + V3365 + V6163 + V6584 + V8117 + V130
#> 3 : 3356 : 0.7877287 : Labels ~ 1 + V723 + V5005 + V8055 + V9213 + V4290
#> 4 : 3351 : 0.7802506 : Labels ~ 1 + V4960 + V1936 + V9215 + V7426
#> 5 : 3347 : 0.8269231 : Labels ~ 1 + V9617 + V1046 + V5683 + V8411 + V6688 + V5321 + V898
#> 6 : 3340 : 0.8865564 : Labels ~ 1 + V414 + V256 + V5400 + V6959 + V7526 + V52 + V1667 + V4564 + V5108 + V8061
#> 7 : 3330 : 0.8255231 : Labels ~ 1 + V4070 + V9818 + V9027 + V9395 + V5672 + V698 + V2862
#> 8 : 3323 : 0.7737708 : Labels ~ 1 + V376 + V8156 + V7513 + V9965 + V6970
#> 9 : 3318 : 0.7895419 : Labels ~ 1 + V7748 + V2866 + V5378 + V2515
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V723 + V2556 + V729 + V312 + V9275 + V4352 + V3161
#> At Accuracy: Labels ~ 1 + V2556 + V729 + V312 + V9275 + V4352 + V3161
#> B:SWiMS : Labels ~ 1 + V2556 + V729 + V312 + V9275 + V4352 + V3161
#>
#> Num. Models: 320 To Test: 1351 TopFreq: 11.94737 Thrf: 0 Removed: 0
#> ................................*Loop : 16 Blind Cases = 9 Blind Control = 11 Total = 322 Size Cases = 142 Size Control = 180
#> Accumulated Models CV Accuracy = 0.7763975 Sensitivity = 0.7183099 Specificity = 0.8222222 Forw. Ensemble Accuracy= 0.8416149
#> Initial Model Accumulated CV Accuracy = 0.8664596 Sensitivity = 0.8943662 Specificity = 0.8444444
#> Initial Model Bootstrapped Accuracy = 0.8334767 Sensitivity = 0.8522898 Specificity = 0.8146635
#> Current Model Bootstrapped Accuracy = 0.847055 Sensitivity = 0.8589884 Specificity = 0.8351215
#> Current KNN Accuracy = 0.7298137 Sensitivity = 0.8802817 Specificity = 0.6111111
#> Initial KNN Accuracy = 0.7888199 Sensitivity = 0.8661972 Specificity = 0.7277778
#> Train Correlation: 0.7808677 Blind Correlation : 0.6496241
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 122 5
#> TRUE 66 129
#> Loop : 17 Input Cases = 88 Input Control = 112
#> Loop : 17 Train Cases = 79 Train Control = 101
#> Loop : 17 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8702183 : Labels ~ 1 + V2556 + V1936 + V9818 + V1584 + V1476 + V723 + V9487
#> 1 : 3366 : 0.8274002 : Labels ~ 1 + V5005 + V130 + V5 + V4584 + V9275 + V4352 + V5943
#> 2 : 3359 : 0.8687514 : Labels ~ 1 + V7891 + V8156 + V7513 + V9965 + V2636 + V436 + V4069
#> 3 : 3352 : 0.8237193 : Labels ~ 1 + V2294 + V9215 + V4200 + V5489 + V2358
#> 4 : 3347 : 0.8450549 : Labels ~ 1 + V6594 + V9213 + V5417 + V6688 + V6584 + V8502 + V4764
#> 5 : 3340 : 0.8317057 : Labels ~ 1 + V4290 + V5761 + V6780 + V4301 + V5321 + V8193
#> 6 : 3334 : 0.8267743 : Labels ~ 1 + V8806 + V1831 + V5801 + V9395 + V5267 + V932
#> 7 : 3328 : 0.8311015 : Labels ~ 1 + V5808 + V86 + V1046 + V4326 + V4077 + V8369
#> 8 : 3322 : 0.8042674 : Labels ~ 1 + V9735 + V3170 + V4183 + V6181 + V218
#> 9 : 3317 : 0.8531073 : Labels ~ 1 + V7748 + V8623 + V729 + V4960 + V7984 + V381
#>
#> Num. Models: 10 To Test: 62 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V1936 + V9818 + V5 + V1584 + V1476 + V723 + V9487
#> At Accuracy: Labels ~ 1 + V2556 + V1936 + V9818 + V1584 + V1476 + V723 + V9487
#> B:SWiMS : Labels ~ 1 + V2556 + V1936 + V9818 + V1584 + V1476 + V723 + V9487
#>
#> Num. Models: 320 To Test: 1246 TopFreq: 17.55102 Thrf: 0 Removed: 0
#> ................................*Loop : 17 Blind Cases = 9 Blind Control = 11 Total = 342 Size Cases = 151 Size Control = 191
#> Accumulated Models CV Accuracy = 0.7777778 Sensitivity = 0.7284768 Specificity = 0.8167539 Forw. Ensemble Accuracy= 0.8391813
#> Initial Model Accumulated CV Accuracy = 0.8654971 Sensitivity = 0.8874172 Specificity = 0.8481675
#> Initial Model Bootstrapped Accuracy = 0.8670872 Sensitivity = 0.88536 Specificity = 0.8488144
#> Current Model Bootstrapped Accuracy = 0.8702183 Sensitivity = 0.8902096 Specificity = 0.8502269
#> Current KNN Accuracy = 0.7222222 Sensitivity = 0.8741722 Specificity = 0.6020942
#> Initial KNN Accuracy = 0.7865497 Sensitivity = 0.8675497 Specificity = 0.7225131
#> Train Correlation: 0.8194759 Blind Correlation : 0.7172932
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 128 6
#> TRUE 69 139
#> Loop : 18 Input Cases = 88 Input Control = 112
#> Loop : 18 Train Cases = 79 Train Control = 101
#> Loop : 18 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8046657 : Labels ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183
#> 1 : 3368 : 0.8940844 : Labels ~ 1 + V9275 + V8368 + V3161 + V6163 + V8996 + V9255 + V5321 + V8604
#> 2 : 3360 : 0.8331162 : Labels ~ 1 + V9965 + V3365 + V8156 + V729 + V8502 + V3082
#> 3 : 3354 : 0.8627387 : Labels ~ 1 + V5683 + V312 + V1476 + V6688 + V4738 + V4352 + V7606
#> 4 : 3347 : 0.80903 : Labels ~ 1 + V7748 + V2309 + V898 + V1248
#> 5 : 3343 : 0.8485272 : Labels ~ 1 + V4960 + V4584 + V7857 + V6584 + V9395 + V8245 + V9127
#> 6 : 3336 : 0.8012179 : Labels ~ 1 + V9617 + V1831 + V5774 + V6083 + V1344
#> 7 : 3331 : 0.8085502 : Labels ~ 1 + V414 + V4326 + V86 + V9070 + V2747
#> 8 : 3326 : 0.8252947 : Labels ~ 1 + V376 + V5680 + V762 + V2438 + V2462 + V3778
#> 9 : 3320 : 0.8339802 : Labels ~ 1 + V5761 + V436 + V9027 + V5945 + V7584 + V6440
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183
#> At Accuracy: Labels ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183
#> B:SWiMS : Labels ~ 1 + V5005 + V9818 + V3524 + V1184 + V4183
#>
#> Num. Models: 320 To Test: 1319 TopFreq: 10.425 Thrf: 0 Removed: 0
#> ................................*Loop : 18 Blind Cases = 9 Blind Control = 11 Total = 362 Size Cases = 160 Size Control = 202
#> Accumulated Models CV Accuracy = 0.781768 Sensitivity = 0.725 Specificity = 0.8267327 Forw. Ensemble Accuracy= 0.8453039
#> Initial Model Accumulated CV Accuracy = 0.8674033 Sensitivity = 0.88125 Specificity = 0.8564356
#> Initial Model Bootstrapped Accuracy = 0.837041 Sensitivity = 0.8611231 Specificity = 0.812959
#> Current Model Bootstrapped Accuracy = 0.8046657 Sensitivity = 0.8497097 Specificity = 0.7596216
#> Current KNN Accuracy = 0.7265193 Sensitivity = 0.875 Specificity = 0.6089109
#> Initial KNN Accuracy = 0.7845304 Sensitivity = 0.8625 Specificity = 0.7227723
#> Train Correlation: 0.7369981 Blind Correlation : 0.8827068
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 137 6
#> TRUE 74 145
#> Loop : 19 Input Cases = 88 Input Control = 112
#> Loop : 19 Train Cases = 80 Train Control = 101
#> Loop : 19 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8634043 : Labels ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352
#> 1 : 3366 : 0.8228433 : Labels ~ 1 + V1831 + V3365 + V4973 + V4584 + V4301 + V8156
#> 2 : 3360 : 0.8539571 : Labels ~ 1 + V2309 + V9585 + V9818 + V8635 + V1289 + V3592
#> 3 : 3354 : 0.8180151 : Labels ~ 1 + V312 + V9659 + V2638 + V9215 + V713
#> 4 : 3349 : 0.7966791 : Labels ~ 1 + V9617 + V5680 + V1476 + V5107
#> 5 : 3345 : 0.7964309 : Labels ~ 1 + V4960 + V8806 + V4326
#> 6 : 3342 : 0.8218785 : Labels ~ 1 + V414 + V5761 + V436 + V1584
#> 7 : 3338 : 0.8207792 : Labels ~ 1 + V376 + V7857 + V9275 + V4289 + V7032
#> 8 : 3333 : 0.83576 : Labels ~ 1 + V7220 + V9027 + V6584 + V6163 + V7141 + V2556
#> 9 : 3327 : 0.79431 : Labels ~ 1 + V86 + V2866 + V9329 + V5514
#>
#> Num. Models: 10 To Test: 50 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352
#> At Accuracy: Labels ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352
#> B:SWiMS : Labels ~ 1 + V8368 + V8411 + V3014 + V5321 + V3170 + V9156 + V4352
#>
#> Num. Models: 320 To Test: 1285 TopFreq: 11.71875 Thrf: 0 Removed: 0
#> ................................*Loop : 19 Blind Cases = 8 Blind Control = 11 Total = 381 Size Cases = 168 Size Control = 213
#> Accumulated Models CV Accuracy = 0.7769029 Sensitivity = 0.7321429 Specificity = 0.8122066 Forw. Ensemble Accuracy= 0.839895
#> Initial Model Accumulated CV Accuracy = 0.8713911 Sensitivity = 0.8869048 Specificity = 0.8591549
#> Initial Model Bootstrapped Accuracy = 0.8472836 Sensitivity = 0.8745583 Specificity = 0.8200088
#> Current Model Bootstrapped Accuracy = 0.8634043 Sensitivity = 0.8726143 Specificity = 0.8541944
#> Current KNN Accuracy = 0.7244094 Sensitivity = 0.875 Specificity = 0.6056338
#> Initial KNN Accuracy = 0.7821522 Sensitivity = 0.8690476 Specificity = 0.713615
#> Train Correlation: 0.8389108 Blind Correlation : 0.6438596
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 143 7
#> TRUE 75 156
#> Loop : 20 Input Cases = 88 Input Control = 112
#> Loop : 20 Train Cases = 80 Train Control = 101
#> Loop : 20 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8375518 : Labels ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898
#> 1 : 3366 : 0.8350131 : Labels ~ 1 + V9215 + V1184 + V4158 + V9156 + V4352 + V7032 + V7402
#> 2 : 3359 : 0.7949946 : Labels ~ 1 + V5005 + V1975 + V9818 + V9395 + V9346 + V5672
#> 3 : 3353 : 0.7833734 : Labels ~ 1 + V1936 + V1476 + V1831 + V723 + V2358
#> 4 : 3348 : 0.8045939 : Labels ~ 1 + V3629 + V3365 + V6163 + V256 + V2597
#> 5 : 3343 : 0.7860577 : Labels ~ 1 + V7378 + V6239 + V6584 + V8414 + V2973
#> 6 : 3338 : 0.7732953 : Labels ~ 1 + V698 + V4194 + V1400 + V4326
#> 7 : 3334 : 0.8050498 : Labels ~ 1 + V4290 + V8368 + V5680 + V6688 + V6948
#> 8 : 3329 : 0.8015192 : Labels ~ 1 + V312 + V4584 + V436 + V2515
#> 9 : 3325 : 0.7824411 : Labels ~ 1 + V4960 + V8055 + V8502 + V8981
#>
#> Num. Models: 10 To Test: 52 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898
#> At Accuracy: Labels ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898
#> B:SWiMS : Labels ~ 1 + V7748 + V7272 + V9275 + V3857 + V1173 + V3161 + V898
#>
#> Num. Models: 320 To Test: 1424 TopFreq: 16.38 Thrf: 0 Removed: 0
#> ................................*Loop : 20 Blind Cases = 8 Blind Control = 11 Total = 400 Size Cases = 176 Size Control = 224
#> Accumulated Models CV Accuracy = 0.785 Sensitivity = 0.7443182 Specificity = 0.8169643 Forw. Ensemble Accuracy= 0.8425
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8920455 Specificity = 0.8616071
#> Initial Model Bootstrapped Accuracy = 0.8428167 Sensitivity = 0.8611293 Specificity = 0.824504
#> Current Model Bootstrapped Accuracy = 0.8375518 Sensitivity = 0.8605717 Specificity = 0.814532
#> Current KNN Accuracy = 0.73 Sensitivity = 0.8806818 Specificity = 0.6116071
#> Initial KNN Accuracy = 0.79 Sensitivity = 0.875 Specificity = 0.7232143
#> Train Correlation: 0.7874365 Blind Correlation : 0.6649123
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 151 7
#> TRUE 77 165
#> Loop : 21 Input Cases = 88 Input Control = 112
#> Loop : 21 Train Cases = 79 Train Control = 100
#> Loop : 21 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8583982 : Labels ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860
#> 1 : 3365 : 0.8518437 : Labels ~ 1 + V1936 + V9275 + V3365 + V5 + V3170 + V5698 + V698
#> 2 : 3358 : 0.814758 : Labels ~ 1 + V5005 + V4183 + V130 + V6584 + V7760
#> 3 : 3353 : 0.8348574 : Labels ~ 1 + V7748 + V9215 + V469 + V1055 + V6163 + V9213 + V3395 + V662
#> 4 : 3345 : 0.8829219 : Labels ~ 1 + V4290 + V1831 + V312 + V8247 + V7891 + V1248 + V9329 + V34
#> 5 : 3337 : 0.8346543 : Labels ~ 1 + V8502 + V729 + V8368 + V4301 + V6688
#> 6 : 3332 : 0.8352601 : Labels ~ 1 + V872 + V4960 + V8156 + V4584 + V1046 + V8193
#> 7 : 3326 : 0.815801 : Labels ~ 1 + V782 + V1198 + V5801 + V3974 + V9965 + V5400
#> 8 : 3320 : 0.8328584 : Labels ~ 1 + V4973 + V2309 + V5761 + V1344 + V9704
#> 9 : 3315 : 0.8014509 : Labels ~ 1 + V9617 + V4557 + V2783 + V2515 + V8623
#>
#> Num. Models: 10 To Test: 63 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860
#> At Accuracy: Labels ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860
#> B:SWiMS : Labels ~ 1 + V2556 + V1476 + V9818 + V1975 + V1791 + V9395 + V4069 + V7860
#>
#> Num. Models: 320 To Test: 1217 TopFreq: 12.66667 Thrf: 0 Removed: 0
#> ................................*Loop : 21 Blind Cases = 9 Blind Control = 12 Total = 421 Size Cases = 185 Size Control = 236
#> Accumulated Models CV Accuracy = 0.783848 Sensitivity = 0.7459459 Specificity = 0.8135593 Forw. Ensemble Accuracy= 0.8384798
#> Initial Model Accumulated CV Accuracy = 0.8741093 Sensitivity = 0.8918919 Specificity = 0.8601695
#> Initial Model Bootstrapped Accuracy = 0.8673175 Sensitivity = 0.8824051 Specificity = 0.8522299
#> Current Model Bootstrapped Accuracy = 0.8583982 Sensitivity = 0.8776418 Specificity = 0.8391546
#> Current KNN Accuracy = 0.7292162 Sensitivity = 0.8810811 Specificity = 0.6101695
#> Initial KNN Accuracy = 0.7885986 Sensitivity = 0.8756757 Specificity = 0.720339
#> Train Correlation: 0.8176637 Blind Correlation : 0.9376623
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 159 7
#> TRUE 80 175
#> Loop : 22 Input Cases = 88 Input Control = 112
#> Loop : 22 Train Cases = 79 Train Control = 100
#> Loop : 22 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8110746 : Labels ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264
#> 1 : 3367 : 0.8445842 : Labels ~ 1 + V1936 + V2556 + V9215 + V6403 + V2636 + V5400
#> 2 : 3361 : 0.8287747 : Labels ~ 1 + V7891 + V662 + V4326 + V6146 + V5107
#> 3 : 3356 : 0.8459568 : Labels ~ 1 + V5801 + V7513 + V9818 + V4352 + V4406 + V4301
#> 4 : 3350 : 0.7940915 : Labels ~ 1 + V6594 + V9970 + V8156 + V2700
#> 5 : 3346 : 0.8379364 : Labels ~ 1 + V7748 + V4194 + V5680 + V6111 + V1344 + V3592
#> 6 : 3340 : 0.8422884 : Labels ~ 1 + V6959 + V3365 + V8502 + V3708 + V2294 + V9275
#> 7 : 3334 : 0.8129386 : Labels ~ 1 + V9735 + V819 + V1184 + V7928 + V3082
#> 8 : 3329 : 0.8384598 : Labels ~ 1 + V898 + V4960 + V4580 + V4198 + V8767 + V3070
#> 9 : 3323 : 0.8496558 : Labels ~ 1 + V312 + V6584 + V6163 + V1865 + V2973 + V2788
#>
#> Num. Models: 10 To Test: 56 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264
#> At Accuracy: Labels ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264
#> B:SWiMS : Labels ~ 1 + V5005 + V723 + V5761 + V3170 + V5321 + V2264
#>
#> Num. Models: 320 To Test: 1240 TopFreq: 13.3871 Thrf: 0 Removed: 0
#> ................................*Loop : 22 Blind Cases = 9 Blind Control = 12 Total = 442 Size Cases = 194 Size Control = 248
#> Accumulated Models CV Accuracy = 0.7828054 Sensitivity = 0.7474227 Specificity = 0.8104839 Forw. Ensemble Accuracy= 0.8371041
#> Initial Model Accumulated CV Accuracy = 0.8642534 Sensitivity = 0.8762887 Specificity = 0.8548387
#> Initial Model Bootstrapped Accuracy = 0.8668775 Sensitivity = 0.8859573 Specificity = 0.8477976
#> Current Model Bootstrapped Accuracy = 0.8110746 Sensitivity = 0.8379386 Specificity = 0.7842105
#> Current KNN Accuracy = 0.7307692 Sensitivity = 0.8814433 Specificity = 0.6129032
#> Initial KNN Accuracy = 0.7918552 Sensitivity = 0.8814433 Specificity = 0.7217742
#> Train Correlation: 0.7715209 Blind Correlation : 0.7532468
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 168 7
#> TRUE 82 185
#> Loop : 23 Input Cases = 88 Input Control = 112
#> Loop : 23 Train Cases = 79 Train Control = 101
#> Loop : 23 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7987792 : Labels ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173
#> 1 : 3368 : 0.7922778 : Labels ~ 1 + V4183 + V1936 + V1831 + V3947 + V4185
#> 2 : 3363 : 0.8022217 : Labels ~ 1 + V723 + V4290 + V3014 + V7272 + V3675
#> 3 : 3358 : 0.8499131 : Labels ~ 1 + V698 + V7513 + V2256 + V3591 + V2266 + V7402 + V2556 + V8156
#> 4 : 3350 : 0.7927489 : Labels ~ 1 + V8368 + V7928 + V6584 + V1344 + V306
#> 5 : 3345 : 0.7841727 : Labels ~ 1 + V3365 + V7212 + V8055 + V7748 + V7033
#> 6 : 3340 : 0.8088427 : Labels ~ 1 + V312 + V4352 + V8720 + V9818 + V4406
#> 7 : 3335 : 0.7940541 : Labels ~ 1 + V1476 + V4069 + V3206 + V9156 + V9275
#> 8 : 3330 : 0.8317266 : Labels ~ 1 + V4960 + V1975 + V1198 + V898 + V3170 + V3554
#> 9 : 3324 : 0.8546549 : Labels ~ 1 + V2309 + V34 + V6959 + V3866 + V9617 + V4554 + V9528
#>
#> Num. Models: 10 To Test: 56 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173
#> At Accuracy: Labels ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173
#> B:SWiMS : Labels ~ 1 + V5005 + V5400 + V9215 + V2358 + V1173
#>
#> Num. Models: 320 To Test: 1274 TopFreq: 10.70968 Thrf: 0 Removed: 0
#> ................................*Loop : 23 Blind Cases = 9 Blind Control = 11 Total = 462 Size Cases = 203 Size Control = 259
#> Accumulated Models CV Accuracy = 0.7922078 Sensitivity = 0.7586207 Specificity = 0.8185328 Forw. Ensemble Accuracy= 0.8376623
#> Initial Model Accumulated CV Accuracy = 0.8658009 Sensitivity = 0.8817734 Specificity = 0.8532819
#> Initial Model Bootstrapped Accuracy = 0.8390943 Sensitivity = 0.8591118 Specificity = 0.8190768
#> Current Model Bootstrapped Accuracy = 0.7987792 Sensitivity = 0.854371 Specificity = 0.7431873
#> Current KNN Accuracy = 0.7359307 Sensitivity = 0.8866995 Specificity = 0.6177606
#> Initial KNN Accuracy = 0.7965368 Sensitivity = 0.8866995 Specificity = 0.7258687
#> Train Correlation: 0.7809336 Blind Correlation : 0.9082707
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 176 7
#> TRUE 85 194
#> Loop : 24 Input Cases = 88 Input Control = 112
#> Loop : 24 Train Cases = 79 Train Control = 101
#> Loop : 24 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8439477 : Labels ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618
#> 1 : 3367 : 0.8122673 : Labels ~ 1 + V7891 + V723 + V9215 + V9050 + V4352
#> 2 : 3362 : 0.8598842 : Labels ~ 1 + V6594 + V6584 + V4158 + V4584 + V5721 + V4900 + V3161
#> 3 : 3355 : 0.8508772 : Labels ~ 1 + V5005 + V9818 + V1184 + V3365 + V4973 + V6172
#> 4 : 3349 : 0.8203108 : Labels ~ 1 + V7748 + V256 + V8411 + V312 + V9070 + V2526
#> 5 : 3343 : 0.8458816 : Labels ~ 1 + V1476 + V8368 + V5680 + V8038 + V2145 + V8323
#> 6 : 3337 : 0.8425946 : Labels ~ 1 + V9585 + V4301 + V7319 + V1248 + V1874 + V7026
#> 7 : 3331 : 0.8254593 : Labels ~ 1 + V7032 + V4960 + V4326 + V1584 + V1046
#> 8 : 3326 : 0.7518669 : Labels ~ 1 + V1831 + V9432
#> 9 : 3324 : 0.8225528 : Labels ~ 1 + V698 + V2309 + V5761 + V6111 + V6440
#>
#> Num. Models: 10 To Test: 54 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618
#> At Accuracy: Labels ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618
#> B:SWiMS : Labels ~ 1 + V2556 + V9275 + V8775 + V1943 + V3170 + V8618
#>
#> Num. Models: 320 To Test: 1362 TopFreq: 10.26829 Thrf: 0 Removed: 0
#> ................................*Loop : 24 Blind Cases = 9 Blind Control = 11 Total = 482 Size Cases = 212 Size Control = 270
#> Accumulated Models CV Accuracy = 0.7904564 Sensitivity = 0.759434 Specificity = 0.8148148 Forw. Ensemble Accuracy= 0.8340249
#> Initial Model Accumulated CV Accuracy = 0.8692946 Sensitivity = 0.8867925 Specificity = 0.8555556
#> Initial Model Bootstrapped Accuracy = 0.8447225 Sensitivity = 0.8739935 Specificity = 0.8154516
#> Current Model Bootstrapped Accuracy = 0.8439477 Sensitivity = 0.8752454 Specificity = 0.8126499
#> Current KNN Accuracy = 0.7365145 Sensitivity = 0.8867925 Specificity = 0.6185185
#> Initial KNN Accuracy = 0.7987552 Sensitivity = 0.8915094 Specificity = 0.7259259
#> Train Correlation: 0.8355725 Blind Correlation : 0.7593985
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 183 8
#> TRUE 88 203
#> Loop : 25 Input Cases = 88 Input Control = 112
#> Loop : 25 Train Cases = 79 Train Control = 101
#> Loop : 25 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8311202 : Labels ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932
#> 1 : 3366 : 0.8274936 : Labels ~ 1 + V7748 + V4352 + V4584 + V312 + V6688
#> 2 : 3361 : 0.8339524 : Labels ~ 1 + V5005 + V4290 + V2515 + V6584 + V7473 + V2665 + V5672
#> 3 : 3354 : 0.7924773 : Labels ~ 1 + V7891 + V2256 + V256 + V436 + V220
#> 4 : 3349 : 0.8236564 : Labels ~ 1 + V1476 + V9275 + V1936 + V4295 + V2973 + V6163
#> 5 : 3343 : 0.8129763 : Labels ~ 1 + V8502 + V4301 + V4069 + V5283 + V3708
#> 6 : 3338 : 0.7827772 : Labels ~ 1 + V5473 + V34 + V4654 + V8156
#> 7 : 3334 : 0.789748 : Labels ~ 1 + V7197 + V4960 + V4185 + V898
#> 8 : 3330 : 0.7923894 : Labels ~ 1 + V86 + V1831 + V62 + V723 + V1344
#> 9 : 3325 : 0.7959206 : Labels ~ 1 + V7857 + V9215 + V8038 + V7196 + V3675
#>
#> Num. Models: 10 To Test: 53 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932
#> At Accuracy: Labels ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932
#> B:SWiMS : Labels ~ 1 + V2556 + V698 + V9818 + V9395 + V729 + V4564 + V932
#>
#> Num. Models: 320 To Test: 1337 TopFreq: 13.97059 Thrf: 0 Removed: 0
#> ................................*Loop : 25 Blind Cases = 9 Blind Control = 11 Total = 502 Size Cases = 221 Size Control = 281
#> Accumulated Models CV Accuracy = 0.7948207 Sensitivity = 0.7692308 Specificity = 0.8149466 Forw. Ensemble Accuracy= 0.8366534
#> Initial Model Accumulated CV Accuracy = 0.8705179 Sensitivity = 0.8914027 Specificity = 0.8540925
#> Initial Model Bootstrapped Accuracy = 0.8454012 Sensitivity = 0.8604044 Specificity = 0.8303979
#> Current Model Bootstrapped Accuracy = 0.8311202 Sensitivity = 0.8485757 Specificity = 0.8136646
#> Current KNN Accuracy = 0.7390438 Sensitivity = 0.8914027 Specificity = 0.6192171
#> Initial KNN Accuracy = 0.8027888 Sensitivity = 0.8959276 Specificity = 0.7295374
#> Train Correlation: 0.8386827 Blind Correlation : 0.8556391
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 190 8
#> TRUE 90 214
#> Loop : 26 Input Cases = 88 Input Control = 112
#> Loop : 26 Train Cases = 79 Train Control = 101
#> Loop : 26 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8403888 : Labels ~ 1 + V729 + V6045 + V3947 + V7446 + V6888 + V6584
#> 1 : 3367 : 0.8631055 : Labels ~ 1 + V9215 + V8368 + V4584 + V1476 + V8479 + V5321 + V2556 + V3170 + V5212
#> 2 : 3358 : 0.8218989 : Labels ~ 1 + V5005 + V6163 + V7032 + V7090 + V4301 + V2064
#> 3 : 3352 : 0.8488296 : Labels ~ 1 + V5801 + V762 + V9275 + V4406 + V4352 + V3365 + V3161 + V6520
#> 4 : 3344 : 0.8229955 : Labels ~ 1 + V8411 + V312 + V7319 + V4077 + V9213 + V3518 + V3592
#> 5 : 3337 : 0.8195407 : Labels ~ 1 + V9432 + V8055 + V698 + V6111 + V4018
#> 6 : 3332 : 0.8334046 : Labels ~ 1 + V4960 + V5680 + V9919 + V22 + V3746 + V4580
#> 7 : 3326 : 0.8789588 : Labels ~ 1 + V5378 + V9735 + V2804 + V1831 + V3866 + V9133 + V9884 + V7629 + V2597 + V9965
#> 8 : 3316 : 0.8189805 : Labels ~ 1 + V2309 + V6959 + V7857 + V7562 + V3148
#> 9 : 3311 : 0.8136551 : Labels ~ 1 + V9818 + V9617 + V5995 + V9395 + V7748
#>
#> Num. Models: 10 To Test: 67 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V9432 + V729 + V6045 + V4290 + V3947 + V7446 + V6888 + V6584
#> At Accuracy: Labels ~ 1 + V729 + V6045 + V3947 + V7446 + V6888 + V6584
#> B:SWiMS : Labels ~ 1 + V729 + V6045 + V3947 + V7446 + V6888 + V6584
#>
#> Num. Models: 320 To Test: 1358 TopFreq: 11.54054 Thrf: 0 Removed: 0
#> ................................*Loop : 26 Blind Cases = 9 Blind Control = 11 Total = 522 Size Cases = 230 Size Control = 292
#> Accumulated Models CV Accuracy = 0.7969349 Sensitivity = 0.773913 Specificity = 0.8150685 Forw. Ensemble Accuracy= 0.8371648
#> Initial Model Accumulated CV Accuracy = 0.8735632 Sensitivity = 0.8913043 Specificity = 0.859589
#> Initial Model Bootstrapped Accuracy = 0.8452073 Sensitivity = 0.8715458 Specificity = 0.8188687
#> Current Model Bootstrapped Accuracy = 0.8403888 Sensitivity = 0.8617711 Specificity = 0.8190065
#> Current KNN Accuracy = 0.7394636 Sensitivity = 0.8913043 Specificity = 0.619863
#> Initial KNN Accuracy = 0.8007663 Sensitivity = 0.8956522 Specificity = 0.7260274
#> Train Correlation: 0.8272375 Blind Correlation : 0.7007519
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 197 9
#> TRUE 93 223
#> Loop : 27 Input Cases = 88 Input Control = 112
#> Loop : 27 Train Cases = 79 Train Control = 101
#> Loop : 27 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8502151 : Labels ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245
#> 1 : 3366 : 0.8247613 : Labels ~ 1 + V9215 + V312 + V6948 + V2294 + V60
#> 2 : 3361 : 0.85013 : Labels ~ 1 + V1831 + V8368 + V4183 + V7141 + V2556 + V8996 + V867
#> 3 : 3354 : 0.7779357 : Labels ~ 1 + V5005 + V1975 + V4326 + V4301
#> 4 : 3350 : 0.7848787 : Labels ~ 1 + V3365 + V9275 + V469 + V3170 + V729
#> 5 : 3345 : 0.8087154 : Labels ~ 1 + V4960 + V3014 + V9213 + V2242
#> 6 : 3341 : 0.8377448 : Labels ~ 1 + V8156 + V3987 + V2973 + V8502 + V9395
#> 7 : 3336 : 0.8250436 : Labels ~ 1 + V4584 + V4290 + V414 + V6584 + V1344 + V7381
#> 8 : 3330 : 0.8122564 : Labels ~ 1 + V698 + V4194 + V9965 + V5680 + V8517 + V1173 + V7584
#> 9 : 3323 : 0.8280035 : Labels ~ 1 + V5473 + V872 + V5417 + V1952 + V4564 + V6688 + V7275
#>
#> Num. Models: 10 To Test: 57 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245
#> At Accuracy: Labels ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245
#> B:SWiMS : Labels ~ 1 + V1936 + V9818 + V7272 + V6597 + V6163 + V4092 + V8245
#>
#> Num. Models: 320 To Test: 1277 TopFreq: 13.54286 Thrf: 0 Removed: 0
#> ................................*Loop : 27 Blind Cases = 9 Blind Control = 11 Total = 542 Size Cases = 239 Size Control = 303
#> Accumulated Models CV Accuracy = 0.795203 Sensitivity = 0.7698745 Specificity = 0.8151815 Forw. Ensemble Accuracy= 0.8394834
#> Initial Model Accumulated CV Accuracy = 0.8726937 Sensitivity = 0.8870293 Specificity = 0.8613861
#> Initial Model Bootstrapped Accuracy = 0.8536425 Sensitivity = 0.8761759 Specificity = 0.8311092
#> Current Model Bootstrapped Accuracy = 0.8502151 Sensitivity = 0.8890323 Specificity = 0.8113978
#> Current KNN Accuracy = 0.7435424 Sensitivity = 0.8912134 Specificity = 0.6270627
#> Initial KNN Accuracy = 0.798893 Sensitivity = 0.8912134 Specificity = 0.7260726
#> Train Correlation: 0.7811064 Blind Correlation : 0.8496241
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 206 10
#> TRUE 96 230
#> Loop : 28 Input Cases = 88 Input Control = 112
#> Loop : 28 Train Cases = 79 Train Control = 101
#> Loop : 28 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8683638 : Labels ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647
#> 1 : 3365 : 0.8049045 : Labels ~ 1 + V7891 + V9818 + V4183 + V8981 + V130
#> 2 : 3360 : 0.8403509 : Labels ~ 1 + V1975 + V5005 + V8156 + V7760 + V4554 + V6163
#> 3 : 3354 : 0.826484 : Labels ~ 1 + V4564 + V8368 + V5 + V9275 + V2515 + V4978
#> 4 : 3348 : 0.8297117 : Labels ~ 1 + V469 + V256 + V312 + V1046 + V4584 + V9156
#> 5 : 3342 : 0.8315743 : Labels ~ 1 + V3725 + V7748 + V5680 + V5489 + V3778 + V6440
#> 6 : 3336 : 0.7842716 : Labels ~ 1 + V4960 + V872 + V1831 + V729 + V1344
#> 7 : 3331 : 0.8597495 : Labels ~ 1 + V2309 + V6584 + V4973 + V1184 + V1584 + V4580 + V7513 + V9833
#> 8 : 3323 : 0.7977346 : Labels ~ 1 + V9617 + V782 + V2256 + V8055 + V4301 + V1874
#> 9 : 3317 : 0.78737 : Labels ~ 1 + V414 + V9965 + V4557 + V9448 + V4406
#>
#> Num. Models: 10 To Test: 61 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647
#> At Accuracy: Labels ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647
#> B:SWiMS : Labels ~ 1 + V4352 + V3365 + V9215 + V686 + V5321 + V2556 + V3170 + V3647
#>
#> Num. Models: 320 To Test: 1281 TopFreq: 12.56667 Thrf: 0 Removed: 0
#> ................................*Loop : 28 Blind Cases = 9 Blind Control = 11 Total = 562 Size Cases = 248 Size Control = 314
#> Accumulated Models CV Accuracy = 0.797153 Sensitivity = 0.7701613 Specificity = 0.8184713 Forw. Ensemble Accuracy= 0.8434164
#> Initial Model Accumulated CV Accuracy = 0.8754448 Sensitivity = 0.891129 Specificity = 0.8630573
#> Initial Model Bootstrapped Accuracy = 0.8473274 Sensitivity = 0.8796797 Specificity = 0.8149751
#> Current Model Bootstrapped Accuracy = 0.8683638 Sensitivity = 0.8833768 Specificity = 0.8533507
#> Current KNN Accuracy = 0.7437722 Sensitivity = 0.891129 Specificity = 0.6273885
#> Initial KNN Accuracy = 0.7989324 Sensitivity = 0.8951613 Specificity = 0.7229299
#> Train Correlation: 0.8070455 Blind Correlation : 0.9052632
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 212 12
#> TRUE 102 236
#> Loop : 29 Input Cases = 88 Input Control = 112
#> Loop : 29 Train Cases = 80 Train Control = 101
#> Loop : 29 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8777216 : Labels ~ 1 + V2556 + V6584 + V4158 + V7513 + V7402 + V4352 + V6163 + V4301
#> 1 : 3365 : 0.8649382 : Labels ~ 1 + V5005 + V7857 + V4584 + V3365 + V9818 + V9070 + V3161 + V6685 + V9528
#> 2 : 3356 : 0.8464419 : Labels ~ 1 + V7748 + V8368 + V3014 + V1762 + V22 + V7834 + V7373
#> 3 : 3349 : 0.8136443 : Labels ~ 1 + V8806 + V312 + V5761 + V762 + V1344
#> 4 : 3344 : 0.8372866 : Labels ~ 1 + V2309 + V86 + V9215 + V220 + V4534 + V3170 + V7195
#> 5 : 3337 : 0.7576553 : Labels ~ 1 + V9275 + V9617 + V5400
#> 6 : 3334 : 0.8363795 : Labels ~ 1 + V4960 + V4326 + V698 + V2438 + V6913 + V7842
#> 7 : 3328 : 0.7897217 : Labels ~ 1 + V414 + V1831 + V4077 + V6692
#> 8 : 3324 : 0.8056475 : Labels ~ 1 + V1476 + V5680 + V9027 + V4900 + V9213
#> 9 : 3319 : 0.8645267 : Labels ~ 1 + V436 + V376 + V7319 + V2804 + V7960 + V2462 + V3592 + V723
#>
#> Num. Models: 10 To Test: 62 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V5005 + V6584 + V4158 + V7513 + V1118 + V7402 + V4352 + V6163 + V4301
#> At Accuracy: Labels ~ 1 + V2556 + V6584 + V4158 + V7513 + V7402 + V4352 + V6163 + V4301
#> B:SWiMS : Labels ~ 1 + V2556 + V6584 + V4158 + V7513 + V7402 + V4352 + V6163 + V4301
#>
#> Num. Models: 320 To Test: 1298 TopFreq: 13.45946 Thrf: 0 Removed: 0
#> ................................*Loop : 29 Blind Cases = 8 Blind Control = 11 Total = 581 Size Cases = 256 Size Control = 325
#> Accumulated Models CV Accuracy = 0.7934596 Sensitivity = 0.765625 Specificity = 0.8153846 Forw. Ensemble Accuracy= 0.8416523
#> Initial Model Accumulated CV Accuracy = 0.8743546 Sensitivity = 0.890625 Specificity = 0.8615385
#> Initial Model Bootstrapped Accuracy = 0.8466387 Sensitivity = 0.8635559 Specificity = 0.8297214
#> Current Model Bootstrapped Accuracy = 0.8777216 Sensitivity = 0.9027931 Specificity = 0.8526501
#> Current KNN Accuracy = 0.7401033 Sensitivity = 0.8828125 Specificity = 0.6276923
#> Initial KNN Accuracy = 0.7934596 Sensitivity = 0.8867188 Specificity = 0.72
#> Train Correlation: 0.7767733 Blind Correlation : 0.7789474
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 222 12
#> TRUE 103 244
#> Loop : 30 Input Cases = 88 Input Control = 112
#> Loop : 30 Train Cases = 80 Train Control = 101
#> Loop : 30 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8696832 : Labels ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754
#> 1 : 3364 : 0.8280563 : Labels ~ 1 + V1184 + V7857 + V3365 + V9818 + V729 + V6688
#> 2 : 3358 : 0.8538933 : Labels ~ 1 + V86 + V312 + V7513 + V1831 + V8770 + V8117 + V9965 + V3592
#> 3 : 3350 : 0.8154488 : Labels ~ 1 + V9215 + V2309 + V7928 + V4352 + V3554
#> 4 : 3345 : 0.8625192 : Labels ~ 1 + V698 + V8368 + V723 + V4326 + V307 + V6594 + V2358 + V256
#> 5 : 3337 : 0.8366812 : Labels ~ 1 + V414 + V5680 + V5400 + V4301 + V52 + V3165
#> 6 : 3331 : 0.8200574 : Labels ~ 1 + V4973 + V4584 + V9617 + V130 + V6584 + V2646
#> 7 : 3325 : 0.7931525 : Labels ~ 1 + V4290 + V3014 + V9027 + V7584
#> 8 : 3321 : 0.8174776 : Labels ~ 1 + V7994 + V6163 + V3676 + V9213
#> 9 : 3317 : 0.8090316 : Labels ~ 1 + V1476 + V7212 + V5761 + V4289 + V3986
#>
#> Num. Models: 10 To Test: 61 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754
#> At Accuracy: Labels ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754
#> B:SWiMS : Labels ~ 1 + V3170 + V7748 + V9275 + V9082 + V4960 + V1943 + V5321 + V2526 + V5754
#>
#> Num. Models: 320 To Test: 1384 TopFreq: 12.97297 Thrf: 0 Removed: 0
#> ................................*Loop : 30 Blind Cases = 8 Blind Control = 11 Total = 600 Size Cases = 264 Size Control = 336
#> Accumulated Models CV Accuracy = 0.7933333 Sensitivity = 0.7613636 Specificity = 0.8184524 Forw. Ensemble Accuracy= 0.845
#> Initial Model Accumulated CV Accuracy = 0.875 Sensitivity = 0.8939394 Specificity = 0.860119
#> Initial Model Bootstrapped Accuracy = 0.8473266 Sensitivity = 0.8745029 Specificity = 0.8201502
#> Current Model Bootstrapped Accuracy = 0.8696832 Sensitivity = 0.8886719 Specificity = 0.8506944
#> Current KNN Accuracy = 0.7416667 Sensitivity = 0.8825758 Specificity = 0.6309524
#> Initial KNN Accuracy = 0.7966667 Sensitivity = 0.8863636 Specificity = 0.7261905
#> Train Correlation: 0.8079169 Blind Correlation : 0.6614035
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 231 12
#> TRUE 107 250
#> Loop : 31 Input Cases = 88 Input Control = 112
#> Loop : 31 Train Cases = 79 Train Control = 100
#> Loop : 31 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8823852 : Labels ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720
#> 1 : 3366 : 0.8501539 : Labels ~ 1 + V7891 + V9215 + V7272 + V6163 + V3170 + V7381
#> 2 : 3360 : 0.8100919 : Labels ~ 1 + V6594 + V9818 + V2206 + V4301
#> 3 : 3356 : 0.8237039 : Labels ~ 1 + V5808 + V1831 + V1248 + V4352 + V1046 + V5378
#> 4 : 3350 : 0.8392032 : Labels ~ 1 + V729 + V7748 + V3206 + V2294 + V6584 + V3612
#> 5 : 3344 : 0.7969088 : Labels ~ 1 + V1936 + V9213 + V4183 + V9965 + V5837
#> 6 : 3339 : 0.8509488 : Labels ~ 1 + V9735 + V5761 + V1476 + V9395 + V4564 + V8323 + V3860
#> 7 : 3332 : 0.7720798 : Labels ~ 1 + V5801 + V8156 + V4406
#> 8 : 3329 : 0.8593887 : Labels ~ 1 + V9432 + V4580 + V3014 + V1087 + V8038 + V5107 + V7857
#> 9 : 3322 : 0.8414261 : Labels ~ 1 + V4070 + V5680 + V1975 + V7834 + V8484 + V8972 + V2438
#>
#> Num. Models: 10 To Test: 58 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720
#> At Accuracy: Labels ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720
#> B:SWiMS : Labels ~ 1 + V2556 + V5005 + V9275 + V1055 + V4584 + V3161 + V720
#>
#> Num. Models: 320 To Test: 1246 TopFreq: 12.23404 Thrf: 0 Removed: 0
#> ................................*Loop : 31 Blind Cases = 9 Blind Control = 12 Total = 621 Size Cases = 273 Size Control = 348
#> Accumulated Models CV Accuracy = 0.7890499 Sensitivity = 0.7582418 Specificity = 0.8132184 Forw. Ensemble Accuracy= 0.84219
#> Initial Model Accumulated CV Accuracy = 0.8760064 Sensitivity = 0.8937729 Specificity = 0.862069
#> Initial Model Bootstrapped Accuracy = 0.8538479 Sensitivity = 0.8762475 Specificity = 0.8314482
#> Current Model Bootstrapped Accuracy = 0.8823852 Sensitivity = 0.8943554 Specificity = 0.8704151
#> Current KNN Accuracy = 0.7391304 Sensitivity = 0.8791209 Specificity = 0.6293103
#> Initial KNN Accuracy = 0.7954911 Sensitivity = 0.8864469 Specificity = 0.7241379
#> Train Correlation: 0.8066286 Blind Correlation : 0.9207792
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 240 12
#> TRUE 109 260
#> Loop : 32 Input Cases = 88 Input Control = 112
#> Loop : 32 Train Cases = 79 Train Control = 100
#> Loop : 32 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8320796 : Labels ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597
#> 1 : 3367 : 0.8210549 : Labels ~ 1 + V698 + V1936 + V9818 + V4158 + V9156 + V3675 + V3119
#> 2 : 3360 : 0.8133245 : Labels ~ 1 + V7748 + V3365 + V6584 + V4584 + V8726
#> 3 : 3355 : 0.864083 : Labels ~ 1 + V1476 + V8368 + V1831 + V5400 + V2636 + V7891 + V9965 + V2462
#> 4 : 3347 : 0.8488218 : Labels ~ 1 + V4290 + V312 + V9215 + V5995 + V5514 + V4352 + V819 + V1344 + V3592
#> 5 : 3338 : 0.8018535 : Labels ~ 1 + V436 + V2309 + V256 + V729 + V9213
#> 6 : 3333 : 0.7738042 : Labels ~ 1 + V86 + V4960 + V5761
#> 7 : 3330 : 0.818996 : Labels ~ 1 + V414 + V7513 + V4326 + V3170 + V8193 + V5321
#> 8 : 3324 : 0.8212216 : Labels ~ 1 + V2358 + V9027 + V2256 + V4406 + V762 + V130 + V6408
#> 9 : 3317 : 0.8136673 : Labels ~ 1 + V9617 + V6163 + V22 + V3161 + V2644 + V8247
#>
#> Num. Models: 10 To Test: 62 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597
#> At Accuracy: Labels ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597
#> B:SWiMS : Labels ~ 1 + V5005 + V723 + V9275 + V4301 + V8650 + V2597
#>
#> Num. Models: 320 To Test: 1369 TopFreq: 13.375 Thrf: 0 Removed: 0
#> ................................*Loop : 32 Blind Cases = 9 Blind Control = 12 Total = 642 Size Cases = 282 Size Control = 360
#> Accumulated Models CV Accuracy = 0.7928349 Sensitivity = 0.7624113 Specificity = 0.8166667 Forw. Ensemble Accuracy= 0.8457944
#> Initial Model Accumulated CV Accuracy = 0.876947 Sensitivity = 0.893617 Specificity = 0.8638889
#> Initial Model Bootstrapped Accuracy = 0.8436118 Sensitivity = 0.8740053 Specificity = 0.8132184
#> Current Model Bootstrapped Accuracy = 0.8320796 Sensitivity = 0.8816372 Specificity = 0.7825221
#> Current KNN Accuracy = 0.7429907 Sensitivity = 0.8794326 Specificity = 0.6361111
#> Initial KNN Accuracy = 0.7975078 Sensitivity = 0.8865248 Specificity = 0.7277778
#> Train Correlation: 0.7620279 Blind Correlation : 0.8363636
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 251 12
#> TRUE 110 269
#> Loop : 33 Input Cases = 88 Input Control = 112
#> Loop : 33 Train Cases = 79 Train Control = 101
#> Loop : 33 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7972381 : Labels ~ 1 + V5005 + V698 + V4584 + V7272
#> 1 : 3369 : 0.8502604 : Labels ~ 1 + V1936 + V4290 + V9275 + V5400 + V9395 + V2991 + V3778
#> 2 : 3362 : 0.8804936 : Labels ~ 1 + V7748 + V9215 + V3206 + V723 + V8239 + V3545 + V3161 + V9965 + V8770
#> 3 : 3353 : 0.8461116 : Labels ~ 1 + V4158 + V7513 + V8502 + V9818 + V6959 + V3826 + V4564
#> 4 : 3346 : 0.8202307 : Labels ~ 1 + V5473 + V1055 + V5680 + V311 + V6688
#> 5 : 3341 : 0.8378144 : Labels ~ 1 + V1476 + V3014 + V6239 + V7584 + V5321 + V3592
#> 6 : 3335 : 0.8151915 : Labels ~ 1 + V436 + V4666 + V1831 + V729 + V6958
#> 7 : 3330 : 0.8253351 : Labels ~ 1 + V7197 + V4194 + V6584 + V6163 + V1512 + V2064
#> 8 : 3324 : 0.8283743 : Labels ~ 1 + V86 + V7928 + V898 + V2309 + V1458 + V4554
#> 9 : 3318 : 0.7813246 : Labels ~ 1 + V7857 + V5761 + V8744 + V7402
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V698 + V4584 + V7272
#> At Accuracy: Labels ~ 1 + V5005 + V698 + V4584 + V7272
#> B:SWiMS : Labels ~ 1 + V5005 + V698 + V4584 + V7272
#>
#> Num. Models: 320 To Test: 1276 TopFreq: 15.52273 Thrf: 0 Removed: 0
#> ................................*Loop : 33 Blind Cases = 9 Blind Control = 11 Total = 662 Size Cases = 291 Size Control = 371
#> Accumulated Models CV Accuracy = 0.7900302 Sensitivity = 0.7560137 Specificity = 0.8167116 Forw. Ensemble Accuracy= 0.8444109
#> Initial Model Accumulated CV Accuracy = 0.8746224 Sensitivity = 0.8900344 Specificity = 0.8625337
#> Initial Model Bootstrapped Accuracy = 0.8549323 Sensitivity = 0.8753492 Specificity = 0.8345154
#> Current Model Bootstrapped Accuracy = 0.7972381 Sensitivity = 0.8331872 Specificity = 0.7612889
#> Current KNN Accuracy = 0.7432024 Sensitivity = 0.8797251 Specificity = 0.6361186
#> Initial KNN Accuracy = 0.8036254 Sensitivity = 0.8900344 Specificity = 0.7358491
#> Train Correlation: 0.8246997 Blind Correlation : 0.8090226
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 258 13
#> TRUE 116 275
#> Loop : 34 Input Cases = 88 Input Control = 112
#> Loop : 34 Train Cases = 79 Train Control = 101
#> Loop : 34 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8359543 : Labels ~ 1 + V5005 + V9215 + V312 + V4352 + V22 + V6570
#> 1 : 3367 : 0.8331186 : Labels ~ 1 + V3365 + V1831 + V3161 + V723 + V9965 + V4584
#> 2 : 3361 : 0.8108138 : Labels ~ 1 + V8368 + V5761 + V86 + V1248
#> 3 : 3357 : 0.837644 : Labels ~ 1 + V4960 + V6584 + V8411 + V6163 + V3170 + V6970
#> 4 : 3351 : 0.8389035 : Labels ~ 1 + V414 + V9818 + V9156 + V7857 + V2418
#> 5 : 3346 : 0.804145 : Labels ~ 1 + V2309 + V7748 + V9275 + V4185
#> 6 : 3342 : 0.8165944 : Labels ~ 1 + V9027 + V4326 + V436 + V6688
#> 7 : 3338 : 0.7986096 : Labels ~ 1 + V9617 + V1476 + V5680 + V3708
#> 8 : 3334 : 0.8254003 : Labels ~ 1 + V8806 + V376 + V5417 + V9395 + V6146
#> 9 : 3329 : 0.8281418 : Labels ~ 1 + V698 + V8156 + V7994 + V686 + V3675
#>
#> Num. Models: 10 To Test: 49 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V9215 + V312 + V2785 + V4352 + V22 + V6570
#> At Accuracy: Labels ~ 1 + V5005 + V9215 + V312 + V4352 + V22 + V6570
#> B:SWiMS : Labels ~ 1 + V5005 + V9215 + V312 + V4352 + V22 + V6570
#>
#> Num. Models: 320 To Test: 1222 TopFreq: 14.97959 Thrf: 0 Removed: 0
#> ................................*Loop : 34 Blind Cases = 9 Blind Control = 11 Total = 682 Size Cases = 300 Size Control = 382
#> Accumulated Models CV Accuracy = 0.7844575 Sensitivity = 0.7533333 Specificity = 0.8089005 Forw. Ensemble Accuracy= 0.8416422
#> Initial Model Accumulated CV Accuracy = 0.8739003 Sensitivity = 0.8933333 Specificity = 0.8586387
#> Initial Model Bootstrapped Accuracy = 0.8517023 Sensitivity = 0.8662156 Specificity = 0.837189
#> Current Model Bootstrapped Accuracy = 0.8359543 Sensitivity = 0.8300302 Specificity = 0.8418785
#> Current KNN Accuracy = 0.7419355 Sensitivity = 0.8833333 Specificity = 0.6308901
#> Initial KNN Accuracy = 0.8020528 Sensitivity = 0.8933333 Specificity = 0.7303665
#> Train Correlation: 0.8133811 Blind Correlation : 0.6571429
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 263 13
#> TRUE 120 286
#> Loop : 35 Input Cases = 88 Input Control = 112
#> Loop : 35 Train Cases = 79 Train Control = 101
#> Loop : 35 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8333695 : Labels ~ 1 + V9215 + V312 + V4352 + V6111 + V7183
#> 1 : 3368 : 0.8019132 : Labels ~ 1 + V3365 + V9275 + V5400 + V8466 + V1184
#> 2 : 3363 : 0.8643554 : Labels ~ 1 + V8368 + V1248 + V9818 + V7748 + V9086 + V2556 + V3170 + V8247
#> 3 : 3355 : 0.8060652 : Labels ~ 1 + V4960 + V4326 + V3708 + V4290
#> 4 : 3351 : 0.8007847 : Labels ~ 1 + V5761 + V2309 + V1046 + V2515
#> 5 : 3347 : 0.8207283 : Labels ~ 1 + V414 + V6584 + V6688 + V698 + V4584
#> 6 : 3342 : 0.7675448 : Labels ~ 1 + V5005 + V1831 + V5 + V9395
#> 7 : 3338 : 0.8234277 : Labels ~ 1 + V9027 + V3189 + V4301 + V6163 + V2780
#> 8 : 3333 : 0.8122318 : Labels ~ 1 + V3014 + V9617 + V3620 + V1606 + V8038
#> 9 : 3328 : 0.8480596 : Labels ~ 1 + V6164 + V5347 + V9031 + V5572 + V9833 + V4520
#>
#> Num. Models: 10 To Test: 51 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V9215 + V312 + V4352 + V6111 + V7183
#> At Accuracy: Labels ~ 1 + V9215 + V312 + V4352 + V6111 + V7183
#> B:SWiMS : Labels ~ 1 + V9215 + V312 + V4352 + V6111 + V7183
#>
#> Num. Models: 320 To Test: 1354 TopFreq: 10.97872 Thrf: 0 Removed: 0
#> ................................*Loop : 35 Blind Cases = 9 Blind Control = 11 Total = 702 Size Cases = 309 Size Control = 393
#> Accumulated Models CV Accuracy = 0.7834758 Sensitivity = 0.7508091 Specificity = 0.8091603 Forw. Ensemble Accuracy= 0.8418803
#> Initial Model Accumulated CV Accuracy = 0.8732194 Sensitivity = 0.8932039 Specificity = 0.8575064
#> Initial Model Bootstrapped Accuracy = 0.8548282 Sensitivity = 0.8690735 Specificity = 0.8405829
#> Current Model Bootstrapped Accuracy = 0.8333695 Sensitivity = 0.8484585 Specificity = 0.8182805
#> Current KNN Accuracy = 0.7407407 Sensitivity = 0.8802589 Specificity = 0.6310433
#> Initial KNN Accuracy = 0.7977208 Sensitivity = 0.8867314 Specificity = 0.7277354
#> Train Correlation: 0.7561591 Blind Correlation : 0.8887218
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 270 15
#> TRUE 125 292
#> Loop : 36 Input Cases = 88 Input Control = 112
#> Loop : 36 Train Cases = 79 Train Control = 101
#> Loop : 36 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8591854 : Labels ~ 1 + V4352 + V1975 + V6163 + V4554 + V9275 + V5321 + V9919 + V1344
#> 1 : 3365 : 0.7960242 : Labels ~ 1 + V5005 + V4183 + V6584 + V130 + V1184
#> 2 : 3360 : 0.8144162 : Labels ~ 1 + V1936 + V7748 + V898 + V3170 + V9395
#> 3 : 3355 : 0.8262966 : Labels ~ 1 + V698 + V9215 + V2804 + V3077 + V5378 + V5881 + V8368 + V819
#> 4 : 3347 : 0.858183 : Labels ~ 1 + V4290 + V1831 + V9965 + V1248 + V1173 + V8055 + V2445
#> 5 : 3340 : 0.8234788 : Labels ~ 1 + V8502 + V4584 + V2309 + V1762 + V8359 + V9818
#> 6 : 3334 : 0.8133772 : Labels ~ 1 + V1476 + V4326 + V312 + V8681 + V9213
#> 7 : 3329 : 0.7897715 : Labels ~ 1 + V436 + V5680 + V3365 + V3082 + V5107
#> 8 : 3324 : 0.8007364 : Labels ~ 1 + V729 + V9617 + V6408 + V4280
#> 9 : 3320 : 0.8185073 : Labels ~ 1 + V7891 + V8156 + V4685 + V9156 + V2358 + V4301
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V4352 + V5005 + V1975 + V6163 + V4554 + V9275 + V5321 + V8623 + V9919 + V1344
#> At Accuracy: Labels ~ 1 + V4352 + V1975 + V6163 + V4554 + V9275 + V5321 + V9919 + V1344
#> B:SWiMS : Labels ~ 1 + V4352 + V1975 + V6163 + V4554 + V9275 + V5321 + V9919 + V1344
#>
#> Num. Models: 320 To Test: 1338 TopFreq: 13.76471 Thrf: 0 Removed: 0
#> ................................*Loop : 36 Blind Cases = 9 Blind Control = 11 Total = 722 Size Cases = 318 Size Control = 404
#> Accumulated Models CV Accuracy = 0.7853186 Sensitivity = 0.7515723 Specificity = 0.8118812 Forw. Ensemble Accuracy= 0.8448753
#> Initial Model Accumulated CV Accuracy = 0.8711911 Sensitivity = 0.8899371 Specificity = 0.8564356
#> Initial Model Bootstrapped Accuracy = 0.8589937 Sensitivity = 0.8797236 Specificity = 0.8382639
#> Current Model Bootstrapped Accuracy = 0.8591854 Sensitivity = 0.8732669 Specificity = 0.845104
#> Current KNN Accuracy = 0.7423823 Sensitivity = 0.8805031 Specificity = 0.6336634
#> Initial KNN Accuracy = 0.799169 Sensitivity = 0.8899371 Specificity = 0.7277228
#> Train Correlation: 0.8260564 Blind Correlation : 0.9278195
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 279 15
#> TRUE 128 300
#> Loop : 37 Input Cases = 88 Input Control = 112
#> Loop : 37 Train Cases = 79 Train Control = 101
#> Loop : 37 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.7925693 : Labels ~ 1 + V2556 + V3952 + V9818 + V9919
#> 1 : 3369 : 0.8646511 : Labels ~ 1 + V7891 + V1831 + V686 + V5321 + V698 + V2973
#> 2 : 3363 : 0.8302462 : Labels ~ 1 + V4290 + V4738 + V3170 + V1248 + V4584
#> 3 : 3358 : 0.8547444 : Labels ~ 1 + V8502 + V5400 + V9275 + V6594 + V6959 + V9213 + V8726
#> 4 : 3351 : 0.8388769 : Labels ~ 1 + V7748 + V9215 + V3365 + V723 + V3554 + V389 + V7426
#> 5 : 3344 : 0.8442783 : Labels ~ 1 + V5796 + V1476 + V6584 + V7272 + V7435 + V8650
#> 6 : 3338 : 0.8293316 : Labels ~ 1 + V5473 + V7928 + V729 + V4194 + V1344 + V256 + V8117 + V1865
#> 7 : 3330 : 0.821796 : Labels ~ 1 + V8156 + V3629 + V436 + V4077 + V6530 + V2294
#> 8 : 3324 : 0.8289814 : Labels ~ 1 + V86 + V1400 + V9965 + V2515 + V3987 + V130
#> 9 : 3318 : 0.7910921 : Labels ~ 1 + V7857 + V7513 + V4326 + V4301 + V2597
#>
#> Num. Models: 10 To Test: 60 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V3952 + V9818 + V9919
#> At Accuracy: Labels ~ 1 + V2556 + V3952 + V9818 + V9919
#> B:SWiMS : Labels ~ 1 + V2556 + V3952 + V9818 + V9919
#>
#> Num. Models: 320 To Test: 1280 TopFreq: 12.36667 Thrf: 0 Removed: 0
#> ................................*Loop : 37 Blind Cases = 9 Blind Control = 11 Total = 742 Size Cases = 327 Size Control = 415
#> Accumulated Models CV Accuracy = 0.7843666 Sensitivity = 0.7461774 Specificity = 0.8144578 Forw. Ensemble Accuracy= 0.8436658
#> Initial Model Accumulated CV Accuracy = 0.8692722 Sensitivity = 0.883792 Specificity = 0.8578313
#> Initial Model Bootstrapped Accuracy = 0.8686014 Sensitivity = 0.9031913 Specificity = 0.8340116
#> Current Model Bootstrapped Accuracy = 0.7925693 Sensitivity = 0.8156412 Specificity = 0.7694974
#> Current KNN Accuracy = 0.7385445 Sensitivity = 0.8776758 Specificity = 0.6289157
#> Initial KNN Accuracy = 0.7991914 Sensitivity = 0.8929664 Specificity = 0.7253012
#> Train Correlation: 0.8046997 Blind Correlation : 0.6406015
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 286 15
#> TRUE 135 306
#> Loop : 38 Input Cases = 88 Input Control = 112
#> Loop : 38 Train Cases = 79 Train Control = 101
#> Loop : 38 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8361957 : Labels ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082
#> 1 : 3367 : 0.8265909 : Labels ~ 1 + V7748 + V3365 + V1831 + V5761 + V3964 + V1344
#> 2 : 3361 : 0.8171577 : Labels ~ 1 + V312 + V4326 + V436 + V1248
#> 3 : 3357 : 0.8374701 : Labels ~ 1 + V4960 + V4973 + V9275 + V6163 + V3170 + V4198
#> 4 : 3351 : 0.8536953 : Labels ~ 1 + V414 + V34 + V729 + V2489 + V649 + V9129
#> 5 : 3345 : 0.7717108 : Labels ~ 1 + V9215 + V9617 + V8135
#> 6 : 3342 : 0.8028412 : Labels ~ 1 + V8368 + V86 + V8156 + V1097 + V9395
#> 7 : 3337 : 0.787146 : Labels ~ 1 + V2309 + V7857 + V5683 + V8038
#> 8 : 3333 : 0.8321792 : Labels ~ 1 + V9027 + V898 + V698 + V6688
#> 9 : 3329 : 0.7851562 : Labels ~ 1 + V4290 + V376 + V6584 + V4185
#>
#> Num. Models: 10 To Test: 48 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082
#> At Accuracy: Labels ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082
#> B:SWiMS : Labels ~ 1 + V1476 + V7272 + V9818 + V4584 + V9371 + V9082
#>
#> Num. Models: 320 To Test: 1253 TopFreq: 14.93617 Thrf: 0 Removed: 0
#> ................................*Loop : 38 Blind Cases = 9 Blind Control = 11 Total = 762 Size Cases = 336 Size Control = 426
#> Accumulated Models CV Accuracy = 0.7821522 Sensitivity = 0.7470238 Specificity = 0.8098592 Forw. Ensemble Accuracy= 0.8412073
#> Initial Model Accumulated CV Accuracy = 0.8687664 Sensitivity = 0.8869048 Specificity = 0.8544601
#> Initial Model Bootstrapped Accuracy = 0.8518917 Sensitivity = 0.8755374 Specificity = 0.8282459
#> Current Model Bootstrapped Accuracy = 0.8361957 Sensitivity = 0.8884783 Specificity = 0.783913
#> Current KNN Accuracy = 0.7375328 Sensitivity = 0.8809524 Specificity = 0.6244131
#> Initial KNN Accuracy = 0.7965879 Sensitivity = 0.8928571 Specificity = 0.7206573
#> Train Correlation: 0.7543745 Blind Correlation : 0.5413534
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 291 15
#> TRUE 139 317
#> Loop : 39 Input Cases = 88 Input Control = 112
#> Loop : 39 Train Cases = 80 Train Control = 101
#> Loop : 39 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8725212 : Labels ~ 1 + V7857 + V6584 + V2636 + V723 + V3778 + V7891 + V3272
#> 1 : 3366 : 0.8812582 : Labels ~ 1 + V9275 + V6594 + V7272 + V6163 + V3161 + V3547 + V5321 + V7260 + V4352
#> 2 : 3357 : 0.8157664 : Labels ~ 1 + V5005 + V4200 + V9818 + V9213 + V3206 + V7402
#> 3 : 3351 : 0.8008734 : Labels ~ 1 + V3592 + V8368 + V1831 + V4584 + V2747
#> 4 : 3346 : 0.8232334 : Labels ~ 1 + V6440 + V1975 + V3365 + V5680 + V3170 + V7435
#> 5 : 3340 : 0.8289823 : Labels ~ 1 + V86 + V2309 + V4326 + V7367 + V4301
#> 6 : 3335 : 0.8530505 : Labels ~ 1 + V1055 + V7748 + V9215 + V7513 + V729 + V2294 + V2783 + V1025
#> 7 : 3327 : 0.7991141 : Labels ~ 1 + V8806 + V312 + V8156 + V4685 + V3861
#> 8 : 3322 : 0.8027562 : Labels ~ 1 + V2556 + V436 + V5417 + V1248 + V1144
#> 9 : 3317 : 0.8483464 : Labels ~ 1 + V5378 + V9617 + V22 + V649 + V9129 + V686
#>
#> Num. Models: 10 To Test: 62 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V7857 + V3170 + V6584 + V4183 + V2636 + V723 + V3778 + V7891 + V3272 + V4178
#> At Accuracy: Labels ~ 1 + V7857 + V6584 + V2636 + V723 + V3778 + V7891 + V3272
#> B:SWiMS : Labels ~ 1 + V7857 + V6584 + V2636 + V723 + V3778 + V7891 + V3272
#>
#> Num. Models: 320 To Test: 1340 TopFreq: 17.77143 Thrf: 0 Removed: 0
#> ................................*Loop : 39 Blind Cases = 8 Blind Control = 11 Total = 781 Size Cases = 344 Size Control = 437
#> Accumulated Models CV Accuracy = 0.7836108 Sensitivity = 0.747093 Specificity = 0.812357 Forw. Ensemble Accuracy= 0.8412292
#> Initial Model Accumulated CV Accuracy = 0.871959 Sensitivity = 0.8895349 Specificity = 0.8581236
#> Initial Model Bootstrapped Accuracy = 0.8452536 Sensitivity = 0.8597746 Specificity = 0.8307326
#> Current Model Bootstrapped Accuracy = 0.8725212 Sensitivity = 0.8888647 Specificity = 0.8561778
#> Current KNN Accuracy = 0.737516 Sensitivity = 0.877907 Specificity = 0.6270023
#> Initial KNN Accuracy = 0.7951344 Sensitivity = 0.8895349 Specificity = 0.7208238
#> Train Correlation: 0.7195556 Blind Correlation : 0.7175439
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 301 15
#> TRUE 141 324
#> Loop : 40 Input Cases = 88 Input Control = 112
#> Loop : 40 Train Cases = 80 Train Control = 101
#> Loop : 40 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8204629 : Labels ~ 1 + V3365 + V9070 + V729 + V4290 + V9818
#> 1 : 3368 : 0.7993848 : Labels ~ 1 + V5005 + V9215 + V1975 + V1248 + V130
#> 2 : 3363 : 0.8366133 : Labels ~ 1 + V2556 + V4183 + V34 + V9275 + V9156 + V3170
#> 3 : 3357 : 0.8455978 : Labels ~ 1 + V7891 + V6163 + V167 + V469 + V2515 + V2358 + V8193
#> 4 : 3350 : 0.8494718 : Labels ~ 1 + V698 + V312 + V6584 + V4584 + V1762 + V3545 + V3161
#> 5 : 3343 : 0.8183294 : Labels ~ 1 + V7748 + V5417 + V4960 + V2438 + V8586
#> 6 : 3338 : 0.8150308 : Labels ~ 1 + V8368 + V872 + V8156 + V7381 + V9213 + V4352
#> 7 : 3332 : 0.8153745 : Labels ~ 1 + V5 + V414 + V1198 + V4900 + V4580
#> 8 : 3327 : 0.8016901 : Labels ~ 1 + V6594 + V1831 + V8267 + V9395 + V4301
#> 9 : 3322 : 0.7975125 : Labels ~ 1 + V2309 + V782 + V2256 + V256 + V5107
#>
#> Num. Models: 10 To Test: 56 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V3365 + V5005 + V9070 + V729 + V4290 + V9818
#> At Accuracy: Labels ~ 1 + V3365 + V9070 + V729 + V4290 + V9818
#> B:SWiMS : Labels ~ 1 + V3365 + V9070 + V729 + V4290 + V9818
#>
#> Num. Models: 320 To Test: 1318 TopFreq: 16.55263 Thrf: 0 Removed: 0
#> ................................*Loop : 40 Blind Cases = 8 Blind Control = 11 Total = 800 Size Cases = 352 Size Control = 448
#> Accumulated Models CV Accuracy = 0.78125 Sensitivity = 0.7471591 Specificity = 0.8080357 Forw. Ensemble Accuracy= 0.83875
#> Initial Model Accumulated CV Accuracy = 0.8725 Sensitivity = 0.8920455 Specificity = 0.8571429
#> Initial Model Bootstrapped Accuracy = 0.8469588 Sensitivity = 0.8696316 Specificity = 0.824286
#> Current Model Bootstrapped Accuracy = 0.8204629 Sensitivity = 0.8462038 Specificity = 0.794722
#> Current KNN Accuracy = 0.73625 Sensitivity = 0.875 Specificity = 0.6272321
#> Initial KNN Accuracy = 0.79375 Sensitivity = 0.8863636 Specificity = 0.7209821
#> Train Correlation: 0.7985591 Blind Correlation : 0.8614035
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 309 16
#> TRUE 142 333
#> Loop : 41 Input Cases = 88 Input Control = 112
#> Loop : 41 Train Cases = 79 Train Control = 100
#> Loop : 41 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8116782 : Labels ~ 1 + V723 + V5417 + V4194 + V3170 + V2597 + V6584
#> 1 : 3367 : 0.8458555 : Labels ~ 1 + V5400 + V4960 + V9215 + V1184 + V52 + V8618 + V4580
#> 2 : 3360 : 0.8498136 : Labels ~ 1 + V7513 + V7272 + V9275 + V2264 + V1344 + V4352 + V5321 + V4584
#> 3 : 3352 : 0.8528571 : Labels ~ 1 + V7928 + V8193 + V256 + V3365 + V4301 + V729 + V6685
#> 4 : 3345 : 0.8733497 : Labels ~ 1 + V312 + V7212 + V1831 + V6380 + V698 + V7026 + V1173 + V3161 + V8181
#> 5 : 3336 : 0.8030069 : Labels ~ 1 + V8368 + V5683 + V4290 + V4185
#> 6 : 3332 : 0.8241674 : Labels ~ 1 + V7748 + V9818 + V2309 + V6114 + V6959 + V8245
#> 7 : 3326 : 0.7774042 : Labels ~ 1 + V414 + V8720 + V8055 + V1046 + V7085
#> 8 : 3321 : 0.8008879 : Labels ~ 1 + V4158 + V1476 + V9070 + V4326
#> 9 : 3317 : 0.7874343 : Labels ~ 1 + V8156 + V9965 + V9027 + V1602 + V6163
#>
#> Num. Models: 10 To Test: 61 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V723 + V698 + V5417 + V4194 + V3170 + V2597 + V6584
#> At Accuracy: Labels ~ 1 + V723 + V5417 + V4194 + V3170 + V2597 + V6584
#> B:SWiMS : Labels ~ 1 + V723 + V5417 + V4194 + V3170 + V2597 + V6584
#>
#> Num. Models: 320 To Test: 1346 TopFreq: 10.54545 Thrf: 0 Removed: 0
#> ................................*Loop : 41 Blind Cases = 9 Blind Control = 12 Total = 821 Size Cases = 361 Size Control = 460
#> Accumulated Models CV Accuracy = 0.7819732 Sensitivity = 0.7534626 Specificity = 0.8043478 Forw. Ensemble Accuracy= 0.8404385
#> Initial Model Accumulated CV Accuracy = 0.8721072 Sensitivity = 0.8864266 Specificity = 0.8608696
#> Initial Model Bootstrapped Accuracy = 0.8550328 Sensitivity = 0.8980306 Specificity = 0.812035
#> Current Model Bootstrapped Accuracy = 0.8116782 Sensitivity = 0.853577 Specificity = 0.7697794
#> Current KNN Accuracy = 0.7381242 Sensitivity = 0.8781163 Specificity = 0.6282609
#> Initial KNN Accuracy = 0.7978076 Sensitivity = 0.8891967 Specificity = 0.726087
#> Train Correlation: 0.7566178 Blind Correlation : 0.8272727
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 316 17
#> TRUE 143 345
#> Loop : 42 Input Cases = 88 Input Control = 112
#> Loop : 42 Train Cases = 79 Train Control = 100
#> Loop : 42 Blind Cases = 9 Blind Control = 12
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8921047 : Labels ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264
#> 1 : 3364 : 0.8075211 : Labels ~ 1 + V5400 + V1831 + V4960 + V7831 + V7426
#> 2 : 3359 : 0.8282527 : Labels ~ 1 + V3365 + V9275 + V7928 + V4352 + V630 + V1946
#> 3 : 3353 : 0.8506508 : Labels ~ 1 + V8368 + V9818 + V6688 + V1476 + V9180 + V4564 + V4178
#> 4 : 3346 : 0.7929696 : Labels ~ 1 + V312 + V7513 + V8055 + V3170 + V7748
#> 5 : 3341 : 0.804415 : Labels ~ 1 + V414 + V9965 + V1975 + V7849 + V9213
#> 6 : 3336 : 0.8152415 : Labels ~ 1 + V2309 + V3014 + V5995 + V3725 + V7584
#> 7 : 3331 : 0.7919139 : Labels ~ 1 + V9027 + V9215 + V3189
#> 8 : 3328 : 0.8460339 : Labels ~ 1 + V2644 + V4183 + V819 + V4396 + V1943 + V2862 + V7402
#> 9 : 3321 : 0.8462043 : Labels ~ 1 + V7994 + V5680 + V22 + V6146 + V2438 + V9234 + V9834
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264
#> At Accuracy: Labels ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264
#> B:SWiMS : Labels ~ 1 + V5005 + V723 + V8156 + V5321 + V2358 + V3675 + V3161 + V5514 + V2264
#>
#> Num. Models: 320 To Test: 1227 TopFreq: 12.61538 Thrf: 0 Removed: 0
#> ................................*Loop : 42 Blind Cases = 9 Blind Control = 12 Total = 842 Size Cases = 370 Size Control = 472
#> Accumulated Models CV Accuracy = 0.7779097 Sensitivity = 0.7459459 Specificity = 0.8029661 Forw. Ensemble Accuracy= 0.8396675
#> Initial Model Accumulated CV Accuracy = 0.8729216 Sensitivity = 0.8891892 Specificity = 0.8601695
#> Initial Model Bootstrapped Accuracy = 0.8467936 Sensitivity = 0.8610199 Specificity = 0.8325673
#> Current Model Bootstrapped Accuracy = 0.8921047 Sensitivity = 0.9035263 Specificity = 0.8806831
#> Current KNN Accuracy = 0.7387173 Sensitivity = 0.8783784 Specificity = 0.6292373
#> Initial KNN Accuracy = 0.7969121 Sensitivity = 0.8891892 Specificity = 0.7245763
#> Train Correlation: 0.802333 Blind Correlation : 0.5571429
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 325 17
#> TRUE 148 352
#> Loop : 43 Input Cases = 88 Input Control = 112
#> Loop : 43 Train Cases = 79 Train Control = 101
#> Loop : 43 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8311351 : Labels ~ 1 + V698 + V312 + V6163 + V256 + V9395
#> 1 : 3368 : 0.8541845 : Labels ~ 1 + V5321 + V8806 + V2309 + V5680 + V3082 + V3170 + V6553
#> 2 : 3361 : 0.824569 : Labels ~ 1 + V7748 + V7062 + V5139 + V1248
#> 3 : 3357 : 0.8485237 : Labels ~ 1 + V3365 + V7857 + V9215 + V8239 + V662 + V8650 + V4352
#> 4 : 3350 : 0.8272629 : Labels ~ 1 + V8368 + V86 + V6584 + V5761 + V8604 + V130
#> 5 : 3344 : 0.8314485 : Labels ~ 1 + V4960 + V4584 + V4973 + V9213 + V5454
#> 6 : 3339 : 0.8481013 : Labels ~ 1 + V8411 + V414 + V5417 + V4301 + V6121
#> 7 : 3334 : 0.806687 : Labels ~ 1 + V1476 + V6959 + V9617 + V7801
#> 8 : 3330 : 0.841596 : Labels ~ 1 + V9585 + V8055 + V7090 + V4580 + V2515
#> 9 : 3325 : 0.8738287 : Labels ~ 1 + V5005 + V3014 + V533 + V1144 + V9319 + V4290 + V4554 + V342 + V9097
#>
#> Num. Models: 10 To Test: 57 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V698 + V312 + V6163 + V256 + V9395
#> At Accuracy: Labels ~ 1 + V698 + V312 + V6163 + V256 + V9395
#> B:SWiMS : Labels ~ 1 + V698 + V312 + V6163 + V256 + V9395
#>
#> Num. Models: 320 To Test: 1335 TopFreq: 9.972222 Thrf: 0 Removed: 0
#> ................................*Loop : 43 Blind Cases = 9 Blind Control = 11 Total = 862 Size Cases = 379 Size Control = 483
#> Accumulated Models CV Accuracy = 0.774942 Sensitivity = 0.7414248 Specificity = 0.8012422 Forw. Ensemble Accuracy= 0.837587
#> Initial Model Accumulated CV Accuracy = 0.8723898 Sensitivity = 0.8891821 Specificity = 0.8592133
#> Initial Model Bootstrapped Accuracy = 0.8634986 Sensitivity = 0.8796276 Specificity = 0.8473696
#> Current Model Bootstrapped Accuracy = 0.8311351 Sensitivity = 0.8575135 Specificity = 0.8047568
#> Current KNN Accuracy = 0.737819 Sensitivity = 0.878628 Specificity = 0.6273292
#> Initial KNN Accuracy = 0.7958237 Sensitivity = 0.8891821 Specificity = 0.7225673
#> Train Correlation: 0.763205 Blind Correlation : 0.7157895
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 332 17
#> TRUE 153 360
#> Loop : 44 Input Cases = 88 Input Control = 112
#> Loop : 44 Train Cases = 79 Train Control = 101
#> Loop : 44 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8230108 : Labels ~ 1 + V3365 + V4352 + V9818 + V4584 + V533 + V1344
#> 1 : 3367 : 0.7899568 : Labels ~ 1 + V5005 + V9215 + V8368 + V762
#> 2 : 3363 : 0.825889 : Labels ~ 1 + V312 + V6163 + V6584 + V22 + V5072
#> 3 : 3358 : 0.842494 : Labels ~ 1 + V4960 + V9275 + V729 + V4290 + V6948 + V6068
#> 4 : 3352 : 0.8801608 : Labels ~ 1 + V414 + V8156 + V4396 + V6083 + V3518 + V9965 + V7891 + V2700
#> 5 : 3344 : 0.8330118 : Labels ~ 1 + V2309 + V3170 + V3222 + V5995 + V8193
#> 6 : 3339 : 0.8099237 : Labels ~ 1 + V9617 + V3014 + V1476 + V6688
#> 7 : 3335 : 0.8465293 : Labels ~ 1 + V376 + V5774 + V1831 + V7831 + V926 + V2783 + V2294
#> 8 : 3328 : 0.842709 : Labels ~ 1 + V9027 + V7319 + V2804 + V3522 + V1087 + V698
#> 9 : 3322 : 0.8173575 : Labels ~ 1 + V7994 + V4326 + V7748 + V2515
#>
#> Num. Models: 10 To Test: 55 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V3365 + V4352 + V9818 + V4584 + V533 + V1344
#> At Accuracy: Labels ~ 1 + V3365 + V4352 + V9818 + V4584 + V533 + V1344
#> B:SWiMS : Labels ~ 1 + V3365 + V4352 + V9818 + V4584 + V533 + V1344
#>
#> Num. Models: 320 To Test: 1324 TopFreq: 11.71795 Thrf: 0 Removed: 0
#> ................................*Loop : 44 Blind Cases = 9 Blind Control = 11 Total = 882 Size Cases = 388 Size Control = 494
#> Accumulated Models CV Accuracy = 0.7709751 Sensitivity = 0.7371134 Specificity = 0.7975709 Forw. Ensemble Accuracy= 0.8367347
#> Initial Model Accumulated CV Accuracy = 0.8707483 Sensitivity = 0.8840206 Specificity = 0.8603239
#> Initial Model Bootstrapped Accuracy = 0.8506269 Sensitivity = 0.8774319 Specificity = 0.8238219
#> Current Model Bootstrapped Accuracy = 0.8230108 Sensitivity = 0.851828 Specificity = 0.7941935
#> Current KNN Accuracy = 0.7335601 Sensitivity = 0.871134 Specificity = 0.6255061
#> Initial KNN Accuracy = 0.792517 Sensitivity = 0.8814433 Specificity = 0.7226721
#> Train Correlation: 0.8210151 Blind Correlation : 0.6992481
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 340 19
#> TRUE 156 367
#> Loop : 45 Input Cases = 88 Input Control = 112
#> Loop : 45 Train Cases = 79 Train Control = 101
#> Loop : 45 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8227903 : Labels ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675
#> 1 : 3367 : 0.8633981 : Labels ~ 1 + V1936 + V6163 + V9275 + V7748 + V4194 + V9395 + V4564 + V6685 + V2397
#> 2 : 3358 : 0.8194354 : Labels ~ 1 + V7857 + V729 + V7891 + V6584 + V1248 + V4301
#> 3 : 3352 : 0.8739149 : Labels ~ 1 + V2556 + V86 + V1831 + V4584 + V7090 + V8726 + V5321 + V3161
#> 4 : 3344 : 0.7899851 : Labels ~ 1 + V1975 + V9215 + V8681 + V414 + V1046
#> 5 : 3339 : 0.7936763 : Labels ~ 1 + V4183 + V4326 + V1344 + V7272
#> 6 : 3335 : 0.7955334 : Labels ~ 1 + V7220 + V5761 + V3206 + V9070 + V3752
#> 7 : 3330 : 0.820382 : Labels ~ 1 + V698 + V8055 + V1055 + V3554 + V5466
#> 8 : 3325 : 0.8269105 : Labels ~ 1 + V4290 + V3170 + V5683 + V1946 + V4352 + V3365
#> 9 : 3319 : 0.7862842 : Labels ~ 1 + V4070 + V5400 + V9818 + V4077 + V7629
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675
#> At Accuracy: Labels ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675
#> B:SWiMS : Labels ~ 1 + V723 + V5005 + V1184 + V898 + V8806 + V3675
#>
#> Num. Models: 320 To Test: 1292 TopFreq: 13.72727 Thrf: 0 Removed: 0
#> ................................*Loop : 45 Blind Cases = 9 Blind Control = 11 Total = 902 Size Cases = 397 Size Control = 505
#> Accumulated Models CV Accuracy = 0.7738359 Sensitivity = 0.7380353 Specificity = 0.8019802 Forw. Ensemble Accuracy= 0.8392461
#> Initial Model Accumulated CV Accuracy = 0.8691796 Sensitivity = 0.884131 Specificity = 0.8574257
#> Initial Model Bootstrapped Accuracy = 0.855283 Sensitivity = 0.8790618 Specificity = 0.8315042
#> Current Model Bootstrapped Accuracy = 0.8227903 Sensitivity = 0.8687175 Specificity = 0.7768631
#> Current KNN Accuracy = 0.7372506 Sensitivity = 0.8740554 Specificity = 0.629703
#> Initial KNN Accuracy = 0.7949002 Sensitivity = 0.884131 Specificity = 0.7247525
#> Train Correlation: 0.8375176 Blind Correlation : 0.9007519
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 349 19
#> TRUE 160 374
#> Loop : 46 Input Cases = 88 Input Control = 112
#> Loop : 46 Train Cases = 79 Train Control = 101
#> Loop : 46 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8510844 : Labels ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358
#> 1 : 3365 : 0.8414792 : Labels ~ 1 + V7891 + V6584 + V698 + V7899 + V8038 + V729
#> 2 : 3359 : 0.80054 : Labels ~ 1 + V1476 + V1936 + V4301 + V4326 + V6958
#> 3 : 3354 : 0.8198569 : Labels ~ 1 + V4290 + V9275 + V8368 + V2064 + V4584
#> 4 : 3349 : 0.8178244 : Labels ~ 1 + V436 + V5761 + V7272 + V9704
#> 5 : 3345 : 0.8337297 : Labels ~ 1 + V8502 + V256 + V3365 + V6163 + V584 + V3170
#> 6 : 3339 : 0.8312164 : Labels ~ 1 + V86 + V9215 + V312 + V762 + V4077 + V1344 + V4738
#> 7 : 3332 : 0.8263284 : Labels ~ 1 + V7857 + V9818 + V4194 + V3161 + V3708
#> 8 : 3327 : 0.8457711 : Labels ~ 1 + V5473 + V2309 + V5680 + V4406 + V2117 + V22
#> 9 : 3321 : 0.8028794 : Labels ~ 1 + V7197 + V4960 + V3014 + V7500 + V1046 + V4900
#>
#> Num. Models: 10 To Test: 58 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358
#> At Accuracy: Labels ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358
#> B:SWiMS : Labels ~ 1 + V2556 + V5005 + V1831 + V1975 + V5489 + V8983 + V7748 + V2358
#>
#> Num. Models: 320 To Test: 1252 TopFreq: 14.97619 Thrf: 0 Removed: 0
#> ................................*Loop : 46 Blind Cases = 9 Blind Control = 11 Total = 922 Size Cases = 406 Size Control = 516
#> Accumulated Models CV Accuracy = 0.7754881 Sensitivity = 0.7389163 Specificity = 0.8042636 Forw. Ensemble Accuracy= 0.840564
#> Initial Model Accumulated CV Accuracy = 0.8698482 Sensitivity = 0.8842365 Specificity = 0.8585271
#> Initial Model Bootstrapped Accuracy = 0.8453183 Sensitivity = 0.8716055 Specificity = 0.8190311
#> Current Model Bootstrapped Accuracy = 0.8510844 Sensitivity = 0.8606399 Specificity = 0.8415289
#> Current KNN Accuracy = 0.7375271 Sensitivity = 0.8743842 Specificity = 0.629845
#> Initial KNN Accuracy = 0.7939262 Sensitivity = 0.8817734 Specificity = 0.7248062
#> Train Correlation: 0.8330874 Blind Correlation : 0.8992481
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 356 20
#> TRUE 165 381
#> Loop : 47 Input Cases = 88 Input Control = 112
#> Loop : 47 Train Cases = 79 Train Control = 101
#> Loop : 47 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8255106 : Labels ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285
#> 1 : 3367 : 0.8158582 : Labels ~ 1 + V5005 + V9818 + V7032 + V1184 + V3947
#> 2 : 3362 : 0.816836 : Labels ~ 1 + V4564 + V4290 + V312 + V5761 + V9395
#> 3 : 3357 : 0.870088 : Labels ~ 1 + V7748 + V4326 + V7891 + V6688 + V2991 + V6408 + V5321 + V1748 + V9704
#> 4 : 3348 : 0.8269231 : Labels ~ 1 + V2556 + V1476 + V6584 + V4069 + V1943 + V8484
#> 5 : 3342 : 0.794214 : Labels ~ 1 + V8502 + V8368 + V9924 + V9031
#> 6 : 3338 : 0.8144695 : Labels ~ 1 + V436 + V256 + V7272 + V4584 + V3545 + V5359
#> 7 : 3332 : 0.8055556 : Labels ~ 1 + V4070 + V5680 + V4960 + V762 + V5107
#> 8 : 3327 : 0.8368741 : Labels ~ 1 + V5473 + V9215 + V8411 + V2309 + V8479 + V2397 + V8598 + V4352
#> 9 : 3319 : 0.8041685 : Labels ~ 1 + V414 + V8055 + V4973 + V1344 + V3708
#>
#> Num. Models: 10 To Test: 59 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285
#> At Accuracy: Labels ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285
#> B:SWiMS : Labels ~ 1 + V1936 + V698 + V3170 + V729 + V3365 + V6285
#>
#> Num. Models: 320 To Test: 1250 TopFreq: 13.9697 Thrf: 0 Removed: 0
#> ................................*Loop : 47 Blind Cases = 9 Blind Control = 11 Total = 942 Size Cases = 415 Size Control = 527
#> Accumulated Models CV Accuracy = 0.7802548 Sensitivity = 0.7445783 Specificity = 0.8083491 Forw. Ensemble Accuracy= 0.8428875
#> Initial Model Accumulated CV Accuracy = 0.8715499 Sensitivity = 0.886747 Specificity = 0.8595825
#> Initial Model Bootstrapped Accuracy = 0.848855 Sensitivity = 0.8708833 Specificity = 0.8268266
#> Current Model Bootstrapped Accuracy = 0.8255106 Sensitivity = 0.8376793 Specificity = 0.813342
#> Current KNN Accuracy = 0.7377919 Sensitivity = 0.8771084 Specificity = 0.6280835
#> Initial KNN Accuracy = 0.7951168 Sensitivity = 0.8843373 Specificity = 0.7248577
#> Train Correlation: 0.8785909 Blind Correlation : 0.8857143
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 362 20
#> TRUE 170 390
#> Loop : 48 Input Cases = 88 Input Control = 112
#> Loop : 48 Train Cases = 79 Train Control = 101
#> Loop : 48 Blind Cases = 9 Blind Control = 11
#> K : 13 KNN T Cases = 79 KNN T Control = 79
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.832788 : Labels ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107
#> 1 : 3366 : 0.8583778 : Labels ~ 1 + V698 + V312 + V898 + V4295 + V3170 + V4352 + V7605
#> 2 : 3359 : 0.8497521 : Labels ~ 1 + V7748 + V9818 + V3365 + V6163 + V6181 + V5672 + V2862
#> 3 : 3352 : 0.8223997 : Labels ~ 1 + V1476 + V8368 + V8055 + V1943
#> 4 : 3348 : 0.8105161 : Labels ~ 1 + V4960 + V4301 + V5680 + V8089 + V9395
#> 5 : 3343 : 0.8116209 : Labels ~ 1 + V8502 + V2309 + V4584 + V6688
#> 6 : 3339 : 0.8134215 : Labels ~ 1 + V436 + V9617 + V9215 + V22 + V4406 + V1344
#> 7 : 3333 : 0.8071197 : Labels ~ 1 + V86 + V414 + V8156 + V729 + V2515
#> 8 : 3328 : 0.7920932 : Labels ~ 1 + V7891 + V1831 + V3876 + V8650
#> 9 : 3324 : 0.7891933 : Labels ~ 1 + V9027 + V1046 + V9275 + V1975 + V1248
#>
#> Num. Models: 10 To Test: 54 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107
#> At Accuracy: Labels ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107
#> B:SWiMS : Labels ~ 1 + V4290 + V5005 + V9213 + V4326 + V3082 + V5487 + V5107
#>
#> Num. Models: 320 To Test: 1321 TopFreq: 11.36667 Thrf: 0 Removed: 0
#> ................................*Loop : 48 Blind Cases = 9 Blind Control = 11 Total = 962 Size Cases = 424 Size Control = 538
#> Accumulated Models CV Accuracy = 0.7806653 Sensitivity = 0.7476415 Specificity = 0.8066914 Forw. Ensemble Accuracy= 0.8440748
#> Initial Model Accumulated CV Accuracy = 0.8700624 Sensitivity = 0.8867925 Specificity = 0.8568773
#> Initial Model Bootstrapped Accuracy = 0.8555145 Sensitivity = 0.8858011 Specificity = 0.825228
#> Current Model Bootstrapped Accuracy = 0.832788 Sensitivity = 0.8475131 Specificity = 0.8180628
#> Current KNN Accuracy = 0.7359667 Sensitivity = 0.879717 Specificity = 0.6226766
#> Initial KNN Accuracy = 0.7941788 Sensitivity = 0.8867925 Specificity = 0.7211896
#> Train Correlation: 0.9111228 Blind Correlation : 0.7894737
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 365 21
#> TRUE 176 400
#> Loop : 49 Input Cases = 88 Input Control = 112
#> Loop : 49 Train Cases = 80 Train Control = 101
#> Loop : 49 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8881234 : Labels ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V3947 + V4134
#> 1 : 3363 : 0.8856117 : Labels ~ 1 + V698 + V3365 + V6584 + V4584 + V3161 + V649 + V3522 + V7334
#> 2 : 3355 : 0.869613 : Labels ~ 1 + V312 + V4326 + V7748 + V6688 + V3592 + V1944 + V1882
#> 3 : 3348 : 0.8573301 : Labels ~ 1 + V4290 + V4960 + V5761 + V1248 + V9268 + V9648
#> 4 : 3342 : 0.8696739 : Labels ~ 1 + V8368 + V1476 + V9818 + V723 + V2266 + V7891 + V7141
#> 5 : 3335 : 0.7853231 : Labels ~ 1 + V2309 + V8156 + V5774 + V1865
#> 6 : 3331 : 0.8555992 : Labels ~ 1 + V414 + V5417 + V86 + V7584 + V6146 + V1184 + V3265
#> 7 : 3324 : 0.8216463 : Labels ~ 1 + V9617 + V436 + V9275 + V1943 + V3778
#> 8 : 3319 : 0.8569719 : Labels ~ 1 + V7857 + V9027 + V1831 + V7196 + V4185 + V7131 + V6685
#> 9 : 3312 : 0.789738 : Labels ~ 1 + V8806 + V7994 + V3014 + V6780
#>
#> Num. Models: 10 To Test: 65 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V6573 + V3947 + V4134
#> At Accuracy: Labels ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V3947 + V4134
#> B:SWiMS : Labels ~ 1 + V5005 + V4352 + V7272 + V7402 + V9215 + V6163 + V7513 + V4751 + V3947 + V4134
#>
#> Num. Models: 320 To Test: 1398 TopFreq: 13.97368 Thrf: 0 Removed: 0
#> ................................*Loop : 49 Blind Cases = 8 Blind Control = 11 Total = 981 Size Cases = 432 Size Control = 549
#> Accumulated Models CV Accuracy = 0.7798165 Sensitivity = 0.7476852 Specificity = 0.8051002 Forw. Ensemble Accuracy= 0.841998
#> Initial Model Accumulated CV Accuracy = 0.8685015 Sensitivity = 0.8865741 Specificity = 0.8542805
#> Initial Model Bootstrapped Accuracy = 0.849989 Sensitivity = 0.8682188 Specificity = 0.8317593
#> Current Model Bootstrapped Accuracy = 0.8881234 Sensitivity = 0.8930446 Specificity = 0.8832021
#> Current KNN Accuracy = 0.7329256 Sensitivity = 0.8773148 Specificity = 0.6193078
#> Initial KNN Accuracy = 0.7900102 Sensitivity = 0.8842593 Specificity = 0.715847
#> Train Correlation: 0.80409 Blind Correlation : 0.8052632
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 372 21
#> TRUE 179 409
#> Loop : 50 Input Cases = 88 Input Control = 112
#> Loop : 50 Train Cases = 80 Train Control = 101
#> Loop : 50 Blind Cases = 8 Blind Control = 11
#> K : 13 KNN T Cases = 80 KNN T Control = 80
#> 4117 : Number of variables to test: 3373
#> 0 : 3373 : 0.8149007 : Labels ~ 1 + V5005 + V4352 + V723 + V4301 + V4738
#> 1 : 3368 : 0.8064307 : Labels ~ 1 + V1936 + V1476 + V9215 + V5400 + V2358
#> 2 : 3363 : 0.8419278 : Labels ~ 1 + V7891 + V9965 + V3591 + V3170 + V1198 + V4295 + V8156
#> 3 : 3356 : 0.7813512 : Labels ~ 1 + V2556 + V9275 + V9617 + V7513
#> 4 : 3352 : 0.8252999 : Labels ~ 1 + V6594 + V9818 + V7260 + V1046 + V5283
#> 5 : 3347 : 0.8352248 : Labels ~ 1 + V698 + V6584 + V3365 + V2515 + V4584 + V4564 + V1289
#> 6 : 3340 : 0.7886701 : Labels ~ 1 + V7748 + V6163 + V312 + V7584
#> 7 : 3336 : 0.7927524 : Labels ~ 1 + V436 + V376 + V5680 + V1248
#> 8 : 3332 : 0.7716457 : Labels ~ 1 + V86 + V5761 + V2866
#> 9 : 3329 : 0.8407359 : Labels ~ 1 + V7857 + V8368 + V1831 + V7212 + V4011 + V5808 + V5587 + V4580
#>
#> Num. Models: 10 To Test: 52 TopFreq: 1 Thrf: 0 Removed: 0
#> .*Update : Labels ~ 1 + V5005 + V4352 + V723 + V4301 + V4738
#> At Accuracy: Labels ~ 1 + V5005 + V4352 + V723 + V4301 + V4738
#> B:SWiMS : Labels ~ 1 + V5005 + V4352 + V723 + V4301 + V4738
#>
#> Num. Models: 320 To Test: 1373 TopFreq: 15.4375 Thrf: 0 Removed: 0
#> ................................*Loop : 50 Blind Cases = 8 Blind Control = 11 Total = 1000 Size Cases = 440 Size Control = 560
#> Accumulated Models CV Accuracy = 0.783 Sensitivity = 0.7522727 Specificity = 0.8071429 Forw. Ensemble Accuracy= 0.844
#> Initial Model Accumulated CV Accuracy = 0.868 Sensitivity = 0.8863636 Specificity = 0.8535714
#> Initial Model Bootstrapped Accuracy = 0.8551007 Sensitivity = 0.8756768 Specificity = 0.8345246
#> Current Model Bootstrapped Accuracy = 0.8149007 Sensitivity = 0.8419426 Specificity = 0.7878587
#> Current KNN Accuracy = 0.734 Sensitivity = 0.875 Specificity = 0.6232143
#> Initial KNN Accuracy = 0.79 Sensitivity = 0.8818182 Specificity = 0.7178571
#> Train Correlation: 0.7807583 Blind Correlation : 0.9438596
#> KNN to Model Confusion Matrix:
#>
#> FALSE TRUE
#> FALSE 381 23
#> TRUE 180 416
#>
#> Num. Models: 320 To Test: 1381 TopFreq: 10.56364 Thrf: 0 Removed: 0
#> ................................*:.....#...:.....#...:.....#...:.....#...:.....#...:.....#...:.....#...
#> Num. Models: 62 To Test: 66 TopFreq: 60 Thrf: 0 Removed: 0
#> ......*
save(arceneCV10,file="ArceneCV_01_10_3_wsvn.RDATA")
arceneCV10$cvObject$Models.testPrediction$usrFitFunction_Sel <- arceneCV10$cvObject$Models.testPrediction$usrFitFunction_Sel -0.5
arceneCV10$cvObject$Models.testPrediction$usrFitFunction <- arceneCV10$cvObject$Models.testPrediction$usrFitFunction -0.5
pm <- plotModels.ROC(arceneCV10$cvObject$LASSO.testPredictions,theCVfolds=10,main="CV LASSO",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="Prediction",main="BB:SWiMS",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="Ensemble.Forward",main="Forward Median",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="Forward.Selection.Bagged",main="Forward Bagged",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="usrFitFunction",main="SVM",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
pm <- plotModels.ROC(arceneCV10$cvObject$Models.testPrediction,theCVfolds=10,predictor="usrFitFunction_Sel",main="SVM",cex=0.90)
ci <- epi.tests(pm$predictionTable)
CVACCTable <- rbind(CVACCTable,ci$elements$diag.acc)
CVBETable <- rbind(CVBETable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
bp <- barPlotCiError(as.matrix(CVACCTable),metricname="Accuracy",thesets=CVthesets,themethod=c("CV:3","CV:10"),main="Accuracy",args.legend = list(x = "bottomright"))
bp <- barPlotCiError(as.matrix(CVBETable),metricname="Balanced Error",thesets=CVthesets,themethod=c("CV:3","CV:10"),main="Balanced Error",args.legend = list(x = "topright"))