load library start h2o
library(h2o)
h2o.init()
H2O is not running yet, starting it now...
Note: In case of errors look at the following log files:
C:\Users\r631758\AppData\Local\Temp\1\Rtmp4y1xDl/h2o_r631758_started_from_r.out
C:\Users\r631758\AppData\Local\Temp\1\Rtmp4y1xDl/h2o_r631758_started_from_r.err
java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
Starting H2O JVM and connecting: . Connection successful!
R is connected to the H2O cluster:
H2O cluster uptime: 1 seconds 897 milliseconds
H2O cluster version: 3.14.0.3
H2O cluster version age: 13 days
H2O cluster name: H2O_started_from_R_r631758_mjf733
H2O cluster total nodes: 1
H2O cluster total memory: 3.48 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: TRUE
H2O Connection ip: localhost
H2O Connection port: 54321
H2O Connection proxy: NA
H2O Internal Security: FALSE
H2O API Extensions: Algos, AutoML, Core V3, Core V4
R Version: R version 3.4.2 (2017-09-28)
h2o.removeAll()
[1] 0
demo(h2o.deeplearning)
demo(h2o.deeplearning)
---- ~~~~~~~~~~~~~~~~
> # This is a demo of H2O's Deep Learning function
> # It imports a data set, parses it, and prints a summary
> # Then, it runs Deep Learning on the dataset
> # Note: This demo runs H2O on localhost:54321
> library(h2o)
> h2o.init()
Connection successful!
R is connected to the H2O cluster:
H2O cluster uptime: 1 minutes 58 seconds
H2O cluster version: 3.14.0.3
H2O cluster version age: 12 days
H2O cluster name: H2O_started_from_R_r631758_bqi699
H2O cluster total nodes: 1
H2O cluster total memory: 3.46 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: TRUE
H2O Connection ip: localhost
H2O Connection port: 54321
H2O Connection proxy: NA
H2O Internal Security: FALSE
H2O API Extensions: Algos, AutoML, Core V3, Core V4
R Version: R version 3.4.2 (2017-09-28)
> prostate.hex = h2o.uploadFile(path = system.file("extdata", "prostate.csv", package="h2o"), destination_frame = "prostate.hex")
|
| | 0%
|
|======================================================================================| 100%
> summary(prostate.hex)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
ID CAPSULE AGE RACE DPROS
Min. : 1.00 Min. :0.0000 Min. :43.00 Min. :0.000 Min. :1.000
1st Qu.: 95.75 1st Qu.:0.0000 1st Qu.:62.00 1st Qu.:1.000 1st Qu.:1.000
Median :190.50 Median :0.0000 Median :67.00 Median :1.000 Median :2.000
Mean :190.50 Mean :0.4026 Mean :66.04 Mean :1.087 Mean :2.271
3rd Qu.:285.25 3rd Qu.:1.0000 3rd Qu.:71.00 3rd Qu.:1.000 3rd Qu.:3.000
Max. :380.00 Max. :1.0000 Max. :79.00 Max. :2.000 Max. :4.000
DCAPS PSA VOL GLEASON
Min. :1.000 Min. : 0.300 Min. : 0.00 Min. :0.000
1st Qu.:1.000 1st Qu.: 4.900 1st Qu.: 0.00 1st Qu.:6.000
Median :1.000 Median : 8.664 Median :14.20 Median :6.000
Mean :1.108 Mean : 15.409 Mean :15.81 Mean :6.384
3rd Qu.:1.000 3rd Qu.: 17.063 3rd Qu.:26.40 3rd Qu.:7.000
Max. :2.000 Max. :139.700 Max. :97.60 Max. :9.000
> # Set the CAPSULE column to be a factor column then build model.
> prostate.hex$CAPSULE = as.factor(prostate.hex$CAPSULE)
> model = h2o.deeplearning(x = setdiff(colnames(prostate.hex), c("ID","CAPSULE")), y = "CAPSULE", training_frame = prostate.hex, activation = "Tanh", hidden = c(10, 10, 10), epochs = 10000)
|
| | 0%
|
|= | 1%
|
|========= | 10%
|
|================== | 21%
|
|=========================== | 31%
|
|=================================== | 40%
|
|=========================================== | 50%
|
|=================================================== | 60%
|
|=========================================================== | 68%
|
|================================================================== | 77%
|
|========================================================================= | 85%
|
|================================================================================= | 94%
|
|======================================================================================| 100%
> print(model@model$model_summary)
Status of Neuron Layers: predicting CAPSULE, 2-class classification, bernoulli distribution, CrossEntropy loss, 322 weights/biases, 8.5 KB, 3,800,000 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum mean_weight
1 1 7 Input 0.00 %
2 2 10 Tanh 0.00 % 0.000000 0.000000 0.011487 0.023725 0.000000 0.094133
3 3 10 Tanh 0.00 % 0.000000 0.000000 0.015676 0.020728 0.000000 -0.055270
4 4 10 Tanh 0.00 % 0.000000 0.000000 0.051680 0.071301 0.000000 0.090554
5 5 2 Softmax 0.000000 0.000000 0.005545 0.000859 0.000000 0.036777
weight_rms mean_bias bias_rms
1
2 1.525877 -0.387521 0.686546
3 1.536213 0.432871 1.124933
4 1.830349 0.431010 1.177110
5 3.853290 -0.109997 0.315070
> # Make predictions with the trained model with training data.
> predictions = predict(object = model, newdata = prostate.hex)
|
| | 0%
|
|======================================================================================| 100%
> # Export predictions from H2O Cluster as R dataframe.
> predictions.R = as.data.frame(predictions)
> head(predictions.R)
predict p0 p1
1 0 9.994378e-01 5.621654e-04
2 0 9.999996e-01 3.673545e-07
3 0 1.000000e+00 1.174420e-18
4 0 9.995415e-01 4.584792e-04
5 0 9.988428e-01 1.157197e-03
6 1 1.905897e-06 9.999981e-01
> tail(predictions.R)
predict p0 p1
375 0 9.996771e-01 3.228955e-04
376 0 1.000000e+00 2.526000e-14
377 0 1.000000e+00 2.472152e-19
378 1 2.678242e-09 1.000000e+00
379 0 1.000000e+00 5.539717e-19
380 0 9.999997e-01 3.255905e-07
> # Check performance of classification model.
> performance = h2o.performance(model = model)
> print(performance)
H2OBinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on full training frame **
MSE: 0.0105719
RMSE: 0.1028198
LogLoss: 0.03906477
Mean Per-Class Error: 0.009875903
AUC: 0.9991362
Gini: 0.9982724
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
0 1 Error Rate
0 224 3 0.013216 =3/227
1 1 152 0.006536 =1/153
Totals 225 155 0.010526 =4/380
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
1 max f1 0.140100 0.987013 114
2 max f2 0.140100 0.990874 114
3 max f0point5 0.941564 0.993289 107
4 max accuracy 0.876176 0.989474 110
5 max precision 1.000000 1.000000 0
6 max recall 0.004372 1.000000 134
7 max specificity 1.000000 1.000000 0
8 max absolute_mcc 0.140100 0.978222 114
9 max min_per_class_accuracy 0.675828 0.986784 113
10 max mean_per_class_accuracy 0.140100 0.990124 114
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
load sample data
grid<-h2o.importFile(path="Z:\\HealthCare Informatics\\r631758\\R codes\\H2O\\exercise\\grid.csv")
|
| | 0%
|
|======================================================================================| 100%
Define helper to plot contours

dev.new(noRStudioGD=FALSE) #direct plotting output to a new window
par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
plotC( "DL", h2o.deeplearning(1:2,3,spiral,epochs=1e3))
|
| | 0%
|
|=== | 3%
|
|============ | 14%
|
|============================ | 32%
|
|============================================ | 51%
|
|============================================================= | 71%
|
|============================================================================= | 90%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
plotC("GBM", h2o.gbm (1:2,3,spiral))
|
| | 0%
|
|===== | 6%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
plotC("DRF", h2o.randomForest(1:2,3,spiral))
|
| | 0%
|
|====================== | 26%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
plotC("GLM", h2o.glm (1:2,3,spiral,family="binomial"))
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%

dev.new(noRStudioGD=FALSE) #direct plotting output to a new window
par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
ep <- c(1,250,500,750)
plotC(paste0("DL ",ep[1]," epochs"),
h2o.deeplearning(1:2,3,spiral,epochs=ep[1],
model_id="dl_1"))
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
plotC(paste0("DL ",ep[2]," epochs"),
h2o.deeplearning(1:2,3,spiral,epochs=ep[2],
checkpoint="dl_1",model_id="dl_2"))
|
| | 0%
|
|======= | 8%
|
|==================================================== | 60%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
plotC(paste0("DL ",ep[3]," epochs"),
h2o.deeplearning(1:2,3,spiral,epochs=ep[3],
checkpoint="dl_2",model_id="dl_3"))
|
| | 0%
|
|============ | 14%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
plotC(paste0("DL ",ep[4]," epochs"),
h2o.deeplearning(1:2,3,spiral,epochs=ep[4],
checkpoint="dl_3",model_id="dl_4"))
|
| | 0%
|
|========================== | 31%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%

You can see how the network learns the structure of the spirals with enough training time. We explore different network architectures next:
dev.new(noRStudioGD=FALSE) #direct plotting output to a new window
par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
for (hidden in list(c(11,13,17,19),c(42,42,42),c(200,200),c(1000))) {
plotC(paste0("DL hidden=",paste0(hidden, collapse="x")),
h2o.deeplearning(1:2,3,spiral,hidden=hidden,epochs=500))
}
|
| | 0%
|
|========================================================== | 68%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|===================== | 24%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|=== | 4%
|
|================= | 20%
|
|====================================== | 44%
|
|================================================================ | 74%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|=== | 4%
|
|====================================== | 44%
|
|=============================================================================== | 92%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%

It is clear that different configurations can achieve similar performance, and that tuning will be required for optimal performance. Next, we compare between different activation functions, including one with 50% dropout regularization in the hidden layers:
dev.new(noRStudioGD=FALSE) #direct plotting output to a new window
par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
for (act in c("Tanh","Maxout","Rectifier","RectifierWithDropout")) {
plotC(paste0("DL ",act," activation"),
h2o.deeplearning(1:2,3,spiral,
activation=act,hidden=c(100,100),epochs=1000))
}
|
| | 0%
|
|== | 2%
|
|============= | 15%
|
|======================== | 28%
|
|=================================== | 41%
|
|============================================== | 54%
|
|========================================================== | 67%
|
|==================================================================== | 79%
|
|================================================================================ | 93%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|== | 2%
|
|============ | 14%
|
|====================== | 26%
|
|================================== | 39%
|
|=========================================== | 50%
|
|==================================================== | 61%
|
|============================================================= | 71%
|
|======================================================================= | 82%
|
|================================================================================= | 94%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|======= | 8%
|
|================================== | 40%
|
|===================================================================== | 80%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%
|
| | 0%
|
|============== | 16%
|
|======================================================================================| 100%
|
| | 0%
|
|======================================================================================| 100%

To predict the 80-th percentile of the petal length of the Iris dataset in R
dl1
Model Details:
==============
H2ORegressionModel: deeplearning
Model ID: DeepLearning_model_R_1507322206419_2
Status of Neuron Layers: predicting petal_len, regression, quantile distribution, Quantile loss, 41,001 weights/biases, 488.5 KB, 1,100 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum mean_weight
1 1 2 Input 0.00 %
2 2 200 Rectifier 0.00 % 0.000000 0.000000 0.026735 0.013758 0.000000 0.007604
3 3 200 Rectifier 0.00 % 0.000000 0.000000 0.160165 0.230002 0.000000 -0.005706
4 4 1 Linear 0.000000 0.000000 0.008027 0.061922 0.000000 0.000605
weight_rms mean_bias bias_rms
1
2 0.098877 0.470853 0.018668
3 0.069888 0.988443 0.007587
4 0.063543 0.000329 0.000000
H2ORegressionMetrics: deeplearning
** Reported on training data. **
** Metrics reported on full training frame **
MSE: 1.156228
RMSE: 1.075281
MAE: 0.9202413
RMSLE: 0.2506345
Mean Residual Deviance : 0.2099247
handwriting example
summary(train)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
C1 C2 C3 C4 C5 C6
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C7 C8 C9 C10 C11 C12
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C13 C14 C15 C16 C17
Min. : 0.0000 Min. :0.000e+00 Min. : 0.0000 Min. :0.00000 Min. : 0
C18 C19 C20 C21 C22 C23
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C24 C25 C26 C27 C28 C29
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C30 C31 C32 C33 C34
Min. : 0 Min. : 0 Min. : 0 Min. :0.000e+00 Min. :0.000e+00
C35 C36 C37 C38
Min. :0.000e+00 Min. : 0.00000 Min. : 0.00000 Min. : 0.0000
C39 C40 C41 C42
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C43 C44 C45 C46
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C47 C48 C49 C50
Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000
C51 C52 C53 C54 C55
Min. : 0.00000 Min. :0.000e+00 Min. : 0 Min. : 0 Min. : 0
C56 C57 C58 C59 C60
Min. : 0 Min. : 0 Min. : 0 Min. : 0.000000 Min. : 0.0000
C61 C62 C63 C64
Min. :0.00e+00 Min. : 0.000000 Min. : 0.0000 Min. : 0.0000
C65 C66 C67 C68 C69
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00 Min. : 0.00
C70 C71 C72 C73 C74
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C75 C76 C77 C78 C79
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C80 C81 C82 C83 C84
Min. : 0.00000 Min. : 0.00000 Min. :0.000e+00 Min. : 0 Min. : 0
C85 C86 C87 C88 C89
Min. : 0 Min. : 0 Min. :0.000e+00 Min. :0.00e+00 Min. : 0.00000
C90 C91 C92 C93 C94
Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C95 C96 C97 C98 C99
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C100 C101 C102 C103 C104
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C105 C106 C107 C108 C109
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C110 C111 C112 C113 C114
Min. : 0.00000 Min. : 0.0000 Min. : 0 Min. : 0 Min. :0.000e+00
C115 C116 C117 C118
Min. :0.000e+00 Min. : 0.00000 Min. : 0.00000 Min. : 0.0000
C119 C120 C121 C122 C123
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C124 C125 C126 C127 C128
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C129 C130 C131 C132 C133
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C134 C135 C136 C137 C138
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C139 C140 C141 C142 C143
Min. : 0.00000 Min. : 0.000000 Min. : 0 Min. : 0 Min. : 0.00000
C144 C145 C146 C147 C148
Min. : 0.00000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C149 C150 C151 C152 C153
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
C154 C155 C156 C157 C158
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C159 C160 C161 C162 C163
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C164 C165 C166 C167 C168
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C169 C170 C171 C172 C173
Min. : 0 Min. :0.0000000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00
C174 C175 C176 C177 C178
Min. : 0.00 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C179 C180 C181 C182 C183
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C184 C185 C186 C187 C188
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.00 Min. : 0.00
C189 C190 C191 C192 C193
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C194 C195 C196 C197
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. :0.000e+00
C198 C199 C200 C201 C202
Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C203 C204 C205 C206 C207
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C208 C209 C210 C211 C212 C213
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C214 C215 C216 C217 C218
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C219 C220 C221 C222 C223
Min. : 0.00 Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.0000
C224 C225 C226 C227
Min. : 0.00000 Min. :0.000e+00 Min. : 0.00000 Min. : 0.0000
C228 C229 C230 C231 C232
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.0
C233 C234 C235 C236 C237
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C238 C239 C240 C241 C242 C243
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C244 C245 C246 C247 C248
Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
C249 C250 C251 C252
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.00000
C253 C254 C255 C256 C257
Min. :0.000e+00 Min. : 0.00000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C258 C259 C260 C261 C262
Min. : 0.000 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00
C263 C264 C265 C266 C267
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C268 C269 C270 C271 C272
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C273 C274 C275 C276 C277
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C278 C279 C280 C281
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00
C282 C283 C284 C285 C286
Min. : 0.00000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C287 C288 C289 C290 C291
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C292 C293 C294 C295 C296
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C297 C298 C299 C300 C301
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C302 C303 C304 C305 C306
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.000 Min. : 0.00
C307 C308 C309 C310
Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00 Min. : 0.0000
C311 C312 C313 C314 C315
Min. : 0.0000 Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.00
C316 C317 C318 C319 C320
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C321 C322 C323 C324 C325
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C326 C327 C328 C329 C330
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.0
C331 C332 C333 C334 C335
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
C336 C337 C338 C339
Min. :0.000e+00 Min. : 0.0000 Min. : 0.00000 Min. : 0.000
C340 C341 C342 C343 C344
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C345 C346 C347 C348 C349
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C350 C351 C352 C353 C354
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0 Min. : 0.0
C355 C356 C357 C358 C359
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C360 C361 C362 C363 C364
Min. : 0.00 Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
C365 C366 C367 C368
Min. :0.000e+00 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C369 C370 C371 C372 C373
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C374 C375 C376 C377 C378
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
C379 C380 C381 C382 C383
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C384 C385 C386 C387 C388
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
C389 C390 C391 C392
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
C393 C394 C395 C396
Min. :0.000e+00 Min. :0.00e+00 Min. : 0.00000 Min. : 0.0000
C397 C398 C399 C400 C401
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C402 C403 C404 C405 C406
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C407 C408 C409 C410 C411
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0
C412 C413 C414 C415 C416
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C417 C418 C419 C420
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.000000
C421 C422 C423 C424
Min. :0.000e+00 Min. :0.000e+00 Min. : 0.0000 Min. : 0.0000
C425 C426 C427 C428 C429
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C430 C431 C432 C433 C434
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0 Min. : 0.0
C435 C436 C437 C438 C439
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C440 C441 C442 C443 C444
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C445 C446 C447 C448 C449
Min. : 0.000 Min. : 0.00 Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00
C450 C451 C452 C453 C454
Min. :0.000e+00 Min. : 0.00000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C455 C456 C457 C458 C459
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C460 C461 C462 C463 C464
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C465 C466 C467 C468 C469
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C470 C471 C472 C473 C474
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C475 C476 C477 C478 C479
Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. :0.000e+00 Min. : 0.0000
C480 C481 C482 C483 C484
Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C485 C486 C487 C488 C489
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C490 C491 C492 C493 C494
Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C495 C496 C497 C498 C499
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C500 C501 C502 C503 C504
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. :0.000e+00
C505 C506 C507 C508 C509
Min. : 0.0000 Min. :0.000e+00 Min. : 0.0000 Min. : 0.00 Min. : 0.000
C510 C511 C512 C513 C514
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C515 C516 C517 C518 C519
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C520 C521 C522 C523 C524
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.00 Min. : 0.00
C525 C526 C527 C528 C529
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C530 C531 C532 C533
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. :0.0e+00
C534 C535 C536 C537 C538
Min. : 0.00000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C539 C540 C541 C542 C543
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C544 C545 C546 C547 C548
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
C549 C550 C551 C552 C553
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.0
C554 C555 C556 C557 C558
Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.00 Min. : 0.000
C559 C560 C561 C562 C563
Min. : 0.0000 Min. :0.000e+00 Min. : 0 Min. : 0.00000 Min. : 0.000
C564 C565 C566 C567 C568
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C569 C570 C571 C572 C573
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C574 C575 C576 C577 C578
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C579 C580 C581 C582 C583
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C584 C585 C586 C587 C588
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000000
C589 C590 C591 C592 C593
Min. :0.000e+00 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C594 C595 C596 C597 C598
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C599 C600 C601 C602 C603 C604
Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C605 C606 C607 C608 C609
Min. : 0 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
C610 C611 C612 C613 C614
Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000
C615 C616 C617 C618
Min. : 0.00000 Min. :0.0e+00 Min. :0.000e+00 Min. :0.000e+00
C619 C620 C621 C622 C623
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C624 C625 C626 C627 C628
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C629 C630 C631 C632 C633
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C634 C635 C636 C637 C638
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.000
C639 C640 C641 C642 C643
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00000
C644 C645 C646 C647 C648
Min. : 0.0000 Min. : 0 Min. : 0 Min. : 0.00000 Min. : 0.0000
C649 C650 C651 C652 C653
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C654 C655 C656 C657 C658
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
C659 C660 C661 C662 C663
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C664 C665 C666 C667 C668
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000
C669 C670 C671 C672 C673
Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00 Min. : 0 Min. : 0
C674 C675 C676 C677 C678
Min. : 0 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
C679 C680 C681 C682 C683
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.0
C684 C685 C686 C687 C688
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C689 C690 C691 C692 C693
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C694 C695 C696 C697
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C698 C699 C700 C701 C702
Min. : 0.00000 Min. : 0.000000 Min. : 0 Min. : 0 Min. : 0
C703 C704 C705 C706
Min. : 0.000000 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C707 C708 C709 C710 C711
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C712 C713 C714 C715 C716
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C717 C718 C719 C720 C721
Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C722 C723 C724 C725
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00000
C726 C727 C728 C729 C730
Min. :0.000e+00 Min. :0.000e+00 Min. : 0 Min. : 0 Min. : 0
C731 C732 C733 C734 C735
Min. : 0 Min. :0.000e+00 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C736 C737 C738 C739 C740
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C741 C742 C743 C744 C745
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C746 C747 C748 C749 C750
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C751 C752 C753 C754 C755
Min. : 0.00000 Min. : 0.00000 Min. :0.000e+00 Min. :0.000e+00 Min. : 0
C756 C757 C758 C759 C760 C761
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0.000000
C762 C763 C764 C765
Min. : 0.00000 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C766 C767 C768 C769 C770
Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.0000
C771 C772 C773 C774 C775
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C776 C777 C778 C779
Min. : 0.00000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000
C780 C781 C782 C783 C784 C785
Min. : 0.000 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. :0.000
[ reached getOption("max.print") -- omitted 5 rows ]
summary(train)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
C1 C2 C3 C4 C5 C6
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C7 C8 C9 C10 C11 C12
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C13 C14 C15 C16 C17
Min. : 0.0000 Min. :0.000e+00 Min. : 0.0000 Min. :0.00000 Min. : 0
C18 C19 C20 C21 C22 C23
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C24 C25 C26 C27 C28 C29
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C30 C31 C32 C33 C34
Min. : 0 Min. : 0 Min. : 0 Min. :0.000e+00 Min. :0.000e+00
C35 C36 C37 C38
Min. :0.000e+00 Min. : 0.00000 Min. : 0.00000 Min. : 0.0000
C39 C40 C41 C42
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C43 C44 C45 C46
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C47 C48 C49 C50
Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000
C51 C52 C53 C54 C55
Min. : 0.00000 Min. :0.000e+00 Min. : 0 Min. : 0 Min. : 0
C56 C57 C58 C59 C60
Min. : 0 Min. : 0 Min. : 0 Min. : 0.000000 Min. : 0.0000
C61 C62 C63 C64
Min. :0.00e+00 Min. : 0.000000 Min. : 0.0000 Min. : 0.0000
C65 C66 C67 C68 C69
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00 Min. : 0.00
C70 C71 C72 C73 C74
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C75 C76 C77 C78 C79
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C80 C81 C82 C83 C84
Min. : 0.00000 Min. : 0.00000 Min. :0.000e+00 Min. : 0 Min. : 0
C85 C86 C87 C88 C89
Min. : 0 Min. : 0 Min. :0.000e+00 Min. :0.00e+00 Min. : 0.00000
C90 C91 C92 C93 C94
Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C95 C96 C97 C98 C99
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C100 C101 C102 C103 C104
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C105 C106 C107 C108 C109
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C110 C111 C112 C113 C114
Min. : 0.00000 Min. : 0.0000 Min. : 0 Min. : 0 Min. :0.000e+00
C115 C116 C117 C118
Min. :0.000e+00 Min. : 0.00000 Min. : 0.00000 Min. : 0.0000
C119 C120 C121 C122 C123
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C124 C125 C126 C127 C128
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C129 C130 C131 C132 C133
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C134 C135 C136 C137 C138
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C139 C140 C141 C142 C143
Min. : 0.00000 Min. : 0.000000 Min. : 0 Min. : 0 Min. : 0.00000
C144 C145 C146 C147 C148
Min. : 0.00000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C149 C150 C151 C152 C153
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
C154 C155 C156 C157 C158
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C159 C160 C161 C162 C163
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C164 C165 C166 C167 C168
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C169 C170 C171 C172 C173
Min. : 0 Min. :0.0000000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00
C174 C175 C176 C177 C178
Min. : 0.00 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C179 C180 C181 C182 C183
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C184 C185 C186 C187 C188
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.00 Min. : 0.00
C189 C190 C191 C192 C193
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C194 C195 C196 C197
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. :0.000e+00
C198 C199 C200 C201 C202
Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C203 C204 C205 C206 C207
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C208 C209 C210 C211 C212 C213
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C214 C215 C216 C217 C218
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C219 C220 C221 C222 C223
Min. : 0.00 Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.0000
C224 C225 C226 C227
Min. : 0.00000 Min. :0.000e+00 Min. : 0.00000 Min. : 0.0000
C228 C229 C230 C231 C232
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.0
C233 C234 C235 C236 C237
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C238 C239 C240 C241 C242 C243
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C244 C245 C246 C247 C248
Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
C249 C250 C251 C252
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.00000
C253 C254 C255 C256 C257
Min. :0.000e+00 Min. : 0.00000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C258 C259 C260 C261 C262
Min. : 0.000 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00
C263 C264 C265 C266 C267
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C268 C269 C270 C271 C272
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C273 C274 C275 C276 C277
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C278 C279 C280 C281
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00
C282 C283 C284 C285 C286
Min. : 0.00000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C287 C288 C289 C290 C291
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C292 C293 C294 C295 C296
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C297 C298 C299 C300 C301
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C302 C303 C304 C305 C306
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.000 Min. : 0.00
C307 C308 C309 C310
Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00 Min. : 0.0000
C311 C312 C313 C314 C315
Min. : 0.0000 Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.00
C316 C317 C318 C319 C320
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C321 C322 C323 C324 C325
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C326 C327 C328 C329 C330
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.0
C331 C332 C333 C334 C335
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
C336 C337 C338 C339
Min. :0.000e+00 Min. : 0.0000 Min. : 0.00000 Min. : 0.000
C340 C341 C342 C343 C344
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C345 C346 C347 C348 C349
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C350 C351 C352 C353 C354
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0 Min. : 0.0
C355 C356 C357 C358 C359
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C360 C361 C362 C363 C364
Min. : 0.00 Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
C365 C366 C367 C368
Min. :0.000e+00 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C369 C370 C371 C372 C373
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C374 C375 C376 C377 C378
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
C379 C380 C381 C382 C383
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C384 C385 C386 C387 C388
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
C389 C390 C391 C392
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
C393 C394 C395 C396
Min. :0.000e+00 Min. :0.00e+00 Min. : 0.00000 Min. : 0.0000
C397 C398 C399 C400 C401
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C402 C403 C404 C405 C406
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C407 C408 C409 C410 C411
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0
C412 C413 C414 C415 C416
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C417 C418 C419 C420
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.000000
C421 C422 C423 C424
Min. :0.000e+00 Min. :0.000e+00 Min. : 0.0000 Min. : 0.0000
C425 C426 C427 C428 C429
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C430 C431 C432 C433 C434
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0 Min. : 0.0
C435 C436 C437 C438 C439
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C440 C441 C442 C443 C444
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C445 C446 C447 C448 C449
Min. : 0.000 Min. : 0.00 Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00
C450 C451 C452 C453 C454
Min. :0.000e+00 Min. : 0.00000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C455 C456 C457 C458 C459
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C460 C461 C462 C463 C464
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C465 C466 C467 C468 C469
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C470 C471 C472 C473 C474
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C475 C476 C477 C478 C479
Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. :0.000e+00 Min. : 0.0000
C480 C481 C482 C483 C484
Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C485 C486 C487 C488 C489
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C490 C491 C492 C493 C494
Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C495 C496 C497 C498 C499
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C500 C501 C502 C503 C504
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. :0.000e+00
C505 C506 C507 C508 C509
Min. : 0.0000 Min. :0.000e+00 Min. : 0.0000 Min. : 0.00 Min. : 0.000
C510 C511 C512 C513 C514
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C515 C516 C517 C518 C519
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C520 C521 C522 C523 C524
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.00 Min. : 0.00
C525 C526 C527 C528 C529
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C530 C531 C532 C533
Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. :0.0e+00
C534 C535 C536 C537 C538
Min. : 0.00000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C539 C540 C541 C542 C543
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C544 C545 C546 C547 C548
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
C549 C550 C551 C552 C553
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.0
C554 C555 C556 C557 C558
Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.00 Min. : 0.000
C559 C560 C561 C562 C563
Min. : 0.0000 Min. :0.000e+00 Min. : 0 Min. : 0.00000 Min. : 0.000
C564 C565 C566 C567 C568
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C569 C570 C571 C572 C573
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C574 C575 C576 C577 C578
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C579 C580 C581 C582 C583
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C584 C585 C586 C587 C588
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000000
C589 C590 C591 C592 C593
Min. :0.000e+00 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C594 C595 C596 C597 C598
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C599 C600 C601 C602 C603 C604
Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C605 C606 C607 C608 C609
Min. : 0 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
C610 C611 C612 C613 C614
Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000
C615 C616 C617 C618
Min. : 0.00000 Min. :0.0e+00 Min. :0.000e+00 Min. :0.000e+00
C619 C620 C621 C622 C623
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C624 C625 C626 C627 C628
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C629 C630 C631 C632 C633
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C634 C635 C636 C637 C638
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.000
C639 C640 C641 C642 C643
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00000
C644 C645 C646 C647 C648
Min. : 0.0000 Min. : 0 Min. : 0 Min. : 0.00000 Min. : 0.0000
C649 C650 C651 C652 C653
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C654 C655 C656 C657 C658
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
C659 C660 C661 C662 C663
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C664 C665 C666 C667 C668
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000
C669 C670 C671 C672 C673
Min. : 0.0000 Min. : 0.00000 Min. :0.000e+00 Min. : 0 Min. : 0
C674 C675 C676 C677 C678
Min. : 0 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
C679 C680 C681 C682 C683
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.0
C684 C685 C686 C687 C688
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C689 C690 C691 C692 C693
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C694 C695 C696 C697
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C698 C699 C700 C701 C702
Min. : 0.00000 Min. : 0.000000 Min. : 0 Min. : 0 Min. : 0
C703 C704 C705 C706
Min. : 0.000000 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C707 C708 C709 C710 C711
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C712 C713 C714 C715 C716
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C717 C718 C719 C720 C721
Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C722 C723 C724 C725
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00000
C726 C727 C728 C729 C730
Min. :0.000e+00 Min. :0.000e+00 Min. : 0 Min. : 0 Min. : 0
C731 C732 C733 C734 C735
Min. : 0 Min. :0.000e+00 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C736 C737 C738 C739 C740
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C741 C742 C743 C744 C745
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C746 C747 C748 C749 C750
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C751 C752 C753 C754 C755
Min. : 0.00000 Min. : 0.00000 Min. :0.000e+00 Min. :0.000e+00 Min. : 0
C756 C757 C758 C759 C760 C761
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0.000000
C762 C763 C764 C765
Min. : 0.00000 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
C766 C767 C768 C769 C770
Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.0000
C771 C772 C773 C774 C775
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C776 C777 C778 C779
Min. : 0.00000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000
C780 C781 C782 C783 C784 C785
Min. : 0.000 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. :0.000
[ reached getOption("max.print") -- omitted 5 rows ]
summary(test)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
C1 C2 C3 C4 C5 C6
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C7 C8 C9 C10 C11 C12
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C13 C14 C15 C16 C17 C18
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C19 C20 C21 C22 C23 C24
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C25 C26 C27 C28 C29 C30
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C31 C32 C33 C34 C35
Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.0000
C36 C37 C38 C39
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C40 C41 C42 C43 C44
Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C45 C46 C47 C48 C49
Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C50 C51 C52 C53 C54 C55
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C56 C57 C58 C59 C60 C61
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C62 C63 C64 C65
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C66 C67 C68 C69 C70
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C71 C72 C73 C74 C75
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C76 C77 C78 C79 C80
Min. : 0.000 Min. : 0.00 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C81 C82 C83 C84 C85 C86
Min. :0e+00 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C87 C88 C89 C90 C91
Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C92 C93 C94 C95 C96
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C97 C98 C99 C100 C101
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C102 C103 C104 C105 C106
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C107 C108 C109 C110 C111
Min. : 0.000 Min. : 0.0000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C112 C113 C114 C115 C116 C117
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.0000
C118 C119 C120 C121 C122
Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C123 C124 C125 C126 C127
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C128 C129 C130 C131 C132
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
C133 C134 C135 C136 C137
Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000
C138 C139 C140 C141 C142
Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0 Min. : 0.0000
C143 C144 C145 C146 C147
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C148 C149 C150 C151 C152
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C153 C154 C155 C156 C157
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C158 C159 C160 C161 C162
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C163 C164 C165 C166 C167
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C168 C169 C170 C171 C172
Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.0000
C173 C174 C175 C176 C177
Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.0 Min. : 0.00
C178 C179 C180 C181 C182
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C183 C184 C185 C186 C187
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C188 C189 C190 C191 C192
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C193 C194 C195 C196 C197
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0
C198 C199 C200 C201 C202
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C203 C204 C205 C206 C207
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C208 C209 C210 C211 C212
Min. : 0.00 Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0
C213 C214 C215 C216 C217
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C218 C219 C220 C221 C222
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C223 C224 C225 C226 C227
Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0.0000 Min. : 0.0000
C228 C229 C230 C231 C232
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C233 C234 C235 C236 C237
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0
C238 C239 C240 C241 C242 C243
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0
C244 C245 C246 C247 C248
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C249 C250 C251 C252 C253
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C254 C255 C256 C257 C258
Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C259 C260 C261 C262 C263
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C264 C265 C266 C267 C268
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C269 C270 C271 C272 C273
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C274 C275 C276 C277 C278
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
C279 C280 C281 C282 C283
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C284 C285 C286 C287 C288
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.0
C289 C290 C291 C292 C293
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00
C294 C295 C296 C297 C298
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.0
C299 C300 C301 C302 C303
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C304 C305 C306 C307 C308
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C309 C310 C311 C312 C313
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C314 C315 C316 C317 C318
Min. : 0.000 Min. : 0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C319 C320 C321 C322 C323
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C324 C325 C326 C327 C328
Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00
C329 C330 C331 C332 C333
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C334 C335 C336 C337 C338
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0.0000
C339 C340 C341 C342 C343
Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.0
C344 C345 C346 C347 C348
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
C349 C350 C351 C352 C353
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C354 C355 C356 C357 C358
Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C359 C360 C361 C362 C363
Min. : 0.00 Min. : 0 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
C364 C365 C366 C367 C368
Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C369 C370 C371 C372 C373
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C374 C375 C376 C377 C378
Min. : 0.00 Min. : 0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C379 C380 C381 C382 C383 C384
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0 Min. : 0.00
C385 C386 C387 C388 C389
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C390 C391 C392 C393 C394
Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0 Min. : 0
C395 C396 C397 C398 C399
Min. : 0.000 Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C400 C401 C402 C403 C404
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.00
C405 C406 C407 C408 C409
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C410 C411 C412 C413 C414
Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.00 Min. : 0.00
C415 C416 C417 C418 C419
Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C420 C421 C422 C423 C424
Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.00
C425 C426 C427 C428 C429
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C430 C431 C432 C433 C434
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
C435 C436 C437 C438 C439
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C440 C441 C442 C443 C444
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C445 C446 C447 C448 C449
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0
C450 C451 C452 C453 C454
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00 Min. : 0.00
C455 C456 C457 C458 C459
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C460 C461 C462 C463 C464
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0
C465 C466 C467 C468 C469
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
C470 C471 C472 C473 C474
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.000 Min. : 0.000
C475 C476 C477 C478 C479
Min. : 0.0000 Min. : 0.000 Min. : 0 Min. : 0 Min. : 0.0000
C480 C481 C482 C483 C484
Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
C485 C486 C487 C488 C489
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C490 C491 C492 C493 C494
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
C495 C496 C497 C498 C499
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C500 C501 C502 C503 C504
Min. : 0.00 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
C505 C506 C507 C508 C509
Min. : 0 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C510 C511 C512 C513 C514
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C515 C516 C517 C518 C519
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0
C520 C521 C522 C523 C524
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C525 C526 C527 C528 C529
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C530 C531 C532 C533 C534
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0.0000
C535 C536 C537 C538 C539
Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C540 C541 C542 C543 C544
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C545 C546 C547 C548 C549
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0
C550 C551 C552 C553 C554
Min. : 0.0 Min. : 0.00 Min. : 0 Min. : 0.00 Min. : 0.00
C555 C556 C557 C558 C559
Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C560 C561 C562 C563 C564
Min. :0e+00 Min. : 0 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
C565 C566 C567 C568 C569
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C570 C571 C572 C573 C574
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
C575 C576 C577 C578 C579
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
C580 C581 C582 C583 C584
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
C585 C586 C587 C588 C589
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0
C590 C591 C592 C593 C594
Min. : 0 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C595 C596 C597 C598 C599
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
C600 C601 C602 C603 C604 C605
Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0
C606 C607 C608 C609 C610
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C611 C612 C613 C614 C615
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C616 C617 C618 C619 C620
Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.000
C621 C622 C623 C624 C625
Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C626 C627 C628 C629 C630
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
C631 C632 C633 C634 C635
Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C636 C637 C638 C639 C640
Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000
C641 C642 C643 C644 C645
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0 Min. : 0
C646 C647 C648 C649 C650
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
C651 C652 C653 C654 C655
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C656 C657 C658 C659 C660
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0
C661 C662 C663 C664 C665
Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.00 Min. : 0.000
C666 C667 C668 C669 C670
Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.000 Min. : 0.0000
C671 C672 C673 C674 C675 C676
Min. :0e+00 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000
C677 C678 C679 C680 C681
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
C682 C683 C684 C685 C686
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C687 C688 C689 C690 C691
Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
C692 C693 C694 C695 C696
Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
C697 C698 C699 C700 C701 C702
Min. : 0.0000 Min. :0e+00 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C703 C704 C705 C706 C707
Min. : 0 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
C708 C709 C710 C711 C712
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
C713 C714 C715 C716 C717
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
C718 C719 C720 C721 C722
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.0000
C723 C724 C725 C726 C727
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0
C728 C729 C730 C731 C732 C733
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000
C734 C735 C736 C737 C738
Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C739 C740 C741 C742 C743
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
C744 C745 C746 C747 C748
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.0000
C749 C750 C751 C752 C753
Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00 Min. : 0.0000
C754 C755 C756 C757 C758 C759
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C760 C761 C762 C763 C764
Min. : 0 Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.0000
C765 C766 C767 C768 C769
Min. : 0.0000 Min. : 0.0000 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
C770 C771 C772 C773
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
C774 C775 C776 C777 C778
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. :0e+00
C779 C780 C781 C782 C783 C784
Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0 Min. : 0
C785
Min. :0.000
[ reached getOption("max.print") -- omitted 5 rows ]
specify response and predictor
y="C785"
x<-setdiff(names(train),y)
x
[1] "C1" "C2" "C3" "C4" "C5" "C6" "C7" "C8" "C9" "C10" "C11" "C12"
[13] "C13" "C14" "C15" "C16" "C17" "C18" "C19" "C20" "C21" "C22" "C23" "C24"
[25] "C25" "C26" "C27" "C28" "C29" "C30" "C31" "C32" "C33" "C34" "C35" "C36"
[37] "C37" "C38" "C39" "C40" "C41" "C42" "C43" "C44" "C45" "C46" "C47" "C48"
[49] "C49" "C50" "C51" "C52" "C53" "C54" "C55" "C56" "C57" "C58" "C59" "C60"
[61] "C61" "C62" "C63" "C64" "C65" "C66" "C67" "C68" "C69" "C70" "C71" "C72"
[73] "C73" "C74" "C75" "C76" "C77" "C78" "C79" "C80" "C81" "C82" "C83" "C84"
[85] "C85" "C86" "C87" "C88" "C89" "C90" "C91" "C92" "C93" "C94" "C95" "C96"
[97] "C97" "C98" "C99" "C100" "C101" "C102" "C103" "C104" "C105" "C106" "C107" "C108"
[109] "C109" "C110" "C111" "C112" "C113" "C114" "C115" "C116" "C117" "C118" "C119" "C120"
[121] "C121" "C122" "C123" "C124" "C125" "C126" "C127" "C128" "C129" "C130" "C131" "C132"
[133] "C133" "C134" "C135" "C136" "C137" "C138" "C139" "C140" "C141" "C142" "C143" "C144"
[145] "C145" "C146" "C147" "C148" "C149" "C150" "C151" "C152" "C153" "C154" "C155" "C156"
[157] "C157" "C158" "C159" "C160" "C161" "C162" "C163" "C164" "C165" "C166" "C167" "C168"
[169] "C169" "C170" "C171" "C172" "C173" "C174" "C175" "C176" "C177" "C178" "C179" "C180"
[181] "C181" "C182" "C183" "C184" "C185" "C186" "C187" "C188" "C189" "C190" "C191" "C192"
[193] "C193" "C194" "C195" "C196" "C197" "C198" "C199" "C200" "C201" "C202" "C203" "C204"
[205] "C205" "C206" "C207" "C208" "C209" "C210" "C211" "C212" "C213" "C214" "C215" "C216"
[217] "C217" "C218" "C219" "C220" "C221" "C222" "C223" "C224" "C225" "C226" "C227" "C228"
[229] "C229" "C230" "C231" "C232" "C233" "C234" "C235" "C236" "C237" "C238" "C239" "C240"
[241] "C241" "C242" "C243" "C244" "C245" "C246" "C247" "C248" "C249" "C250" "C251" "C252"
[253] "C253" "C254" "C255" "C256" "C257" "C258" "C259" "C260" "C261" "C262" "C263" "C264"
[265] "C265" "C266" "C267" "C268" "C269" "C270" "C271" "C272" "C273" "C274" "C275" "C276"
[277] "C277" "C278" "C279" "C280" "C281" "C282" "C283" "C284" "C285" "C286" "C287" "C288"
[289] "C289" "C290" "C291" "C292" "C293" "C294" "C295" "C296" "C297" "C298" "C299" "C300"
[301] "C301" "C302" "C303" "C304" "C305" "C306" "C307" "C308" "C309" "C310" "C311" "C312"
[313] "C313" "C314" "C315" "C316" "C317" "C318" "C319" "C320" "C321" "C322" "C323" "C324"
[325] "C325" "C326" "C327" "C328" "C329" "C330" "C331" "C332" "C333" "C334" "C335" "C336"
[337] "C337" "C338" "C339" "C340" "C341" "C342" "C343" "C344" "C345" "C346" "C347" "C348"
[349] "C349" "C350" "C351" "C352" "C353" "C354" "C355" "C356" "C357" "C358" "C359" "C360"
[361] "C361" "C362" "C363" "C364" "C365" "C366" "C367" "C368" "C369" "C370" "C371" "C372"
[373] "C373" "C374" "C375" "C376" "C377" "C378" "C379" "C380" "C381" "C382" "C383" "C384"
[385] "C385" "C386" "C387" "C388" "C389" "C390" "C391" "C392" "C393" "C394" "C395" "C396"
[397] "C397" "C398" "C399" "C400" "C401" "C402" "C403" "C404" "C405" "C406" "C407" "C408"
[409] "C409" "C410" "C411" "C412" "C413" "C414" "C415" "C416" "C417" "C418" "C419" "C420"
[421] "C421" "C422" "C423" "C424" "C425" "C426" "C427" "C428" "C429" "C430" "C431" "C432"
[433] "C433" "C434" "C435" "C436" "C437" "C438" "C439" "C440" "C441" "C442" "C443" "C444"
[445] "C445" "C446" "C447" "C448" "C449" "C450" "C451" "C452" "C453" "C454" "C455" "C456"
[457] "C457" "C458" "C459" "C460" "C461" "C462" "C463" "C464" "C465" "C466" "C467" "C468"
[469] "C469" "C470" "C471" "C472" "C473" "C474" "C475" "C476" "C477" "C478" "C479" "C480"
[481] "C481" "C482" "C483" "C484" "C485" "C486" "C487" "C488" "C489" "C490" "C491" "C492"
[493] "C493" "C494" "C495" "C496" "C497" "C498" "C499" "C500" "C501" "C502" "C503" "C504"
[505] "C505" "C506" "C507" "C508" "C509" "C510" "C511" "C512" "C513" "C514" "C515" "C516"
[517] "C517" "C518" "C519" "C520" "C521" "C522" "C523" "C524" "C525" "C526" "C527" "C528"
[529] "C529" "C530" "C531" "C532" "C533" "C534" "C535" "C536" "C537" "C538" "C539" "C540"
[541] "C541" "C542" "C543" "C544" "C545" "C546" "C547" "C548" "C549" "C550" "C551" "C552"
[553] "C553" "C554" "C555" "C556" "C557" "C558" "C559" "C560" "C561" "C562" "C563" "C564"
[565] "C565" "C566" "C567" "C568" "C569" "C570" "C571" "C572" "C573" "C574" "C575" "C576"
[577] "C577" "C578" "C579" "C580" "C581" "C582" "C583" "C584" "C585" "C586" "C587" "C588"
[589] "C589" "C590" "C591" "C592" "C593" "C594" "C595" "C596" "C597" "C598" "C599" "C600"
[601] "C601" "C602" "C603" "C604" "C605" "C606" "C607" "C608" "C609" "C610" "C611" "C612"
[613] "C613" "C614" "C615" "C616" "C617" "C618" "C619" "C620" "C621" "C622" "C623" "C624"
[625] "C625" "C626" "C627" "C628" "C629" "C630" "C631" "C632" "C633" "C634" "C635" "C636"
[637] "C637" "C638" "C639" "C640" "C641" "C642" "C643" "C644" "C645" "C646" "C647" "C648"
[649] "C649" "C650" "C651" "C652" "C653" "C654" "C655" "C656" "C657" "C658" "C659" "C660"
[661] "C661" "C662" "C663" "C664" "C665" "C666" "C667" "C668" "C669" "C670" "C671" "C672"
[673] "C673" "C674" "C675" "C676" "C677" "C678" "C679" "C680" "C681" "C682" "C683" "C684"
[685] "C685" "C686" "C687" "C688" "C689" "C690" "C691" "C692" "C693" "C694" "C695" "C696"
[697] "C697" "C698" "C699" "C700" "C701" "C702" "C703" "C704" "C705" "C706" "C707" "C708"
[709] "C709" "C710" "C711" "C712" "C713" "C714" "C715" "C716" "C717" "C718" "C719" "C720"
[721] "C721" "C722" "C723" "C724" "C725" "C726" "C727" "C728" "C729" "C730" "C731" "C732"
[733] "C733" "C734" "C735" "C736" "C737" "C738" "C739" "C740" "C741" "C742" "C743" "C744"
[745] "C745" "C746" "C747" "C748" "C749" "C750" "C751" "C752" "C753" "C754" "C755" "C756"
[757] "C757" "C758" "C759" "C760" "C761" "C762" "C763" "C764" "C765" "C766" "C767" "C768"
[769] "C769" "C770" "C771" "C772" "C773" "C774" "C775" "C776" "C777" "C778" "C779" "C780"
[781] "C781" "C782" "C783" "C784"
set y as factor
model_cv<-h2o.deeplearning(x=x,y=y, training_frame = train, distribution = "multinomial", activation="RectifierWithDropout", hidden=c(32,32,32), input_dropout_ratio=0.2, sparse=TRUE, l1=1e-5, epochs = 10, nfolds=5)
Dropping bad and constant columns: [C86, C85, C729, C728, C646, C645, C169, C760, C561, C53, C11, C55, C10, C54, C57, C12, C56, C58, C17, C19, C18, C731, C730, C20, C22, C21, C24, C23, C26, C25, C28, C27, C702, C701, C29, C700, C1, C2, C784, C3, C783, C4, C782, C5, C781, C6, C142, C7, C141, C8, C9, C31, C30, C32, C759, C758, C757, C756, C755, C477, C113, C674, C112, C673, C672, C84, C83].
|
| | 0%
|
|===== | 5%
|
|========== | 12%
|
|============= | 15%
|
|=============== | 17%
|
|================ | 19%
|
|====================== | 25%
|
|=========================== | 32%
|
|============================== | 35%
|
|================================ | 37%
|
|===================================== | 44%
|
|========================================== | 49%
|
|============================================ | 52%
|
|============================================= | 53%
|
|================================================== | 59%
|
|========================================================= | 67%
|
|============================================================ | 71%
|
|============================================================= | 72%
|
|================================================================== | 77%
|
|======================================================================= | 84%
|
|=========================================================================== | 88%
|
|============================================================================= | 91%
|
|================================================================================= | 96%
|
|=====================================================================================| 100%
model_cv
Model Details:
==============
H2OMultinomialModel: deeplearning
Model ID: DeepLearning_model_R_1507322206419_4
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 374.8 KB, 686,260 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum
1 1 717 Input 20.00 %
2 2 32 RectifierDropout 50.00 % 0.000010 0.000000 0.032148 0.182078 0.000000
3 3 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000316 0.000184 0.000000
4 4 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000575 0.000316 0.000000
5 5 10 Softmax 0.000010 0.000000 0.002882 0.002806 0.000000
mean_weight weight_rms mean_bias bias_rms
1
2 -0.010521 0.067818 0.534664 0.228609
3 -0.036404 0.206775 0.633899 0.321838
4 -0.041562 0.222377 0.561128 0.422619
5 -0.503300 1.103185 -2.239528 1.251503
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 10017 samples **
Training Set Metrics:
=====================
MSE: (Extract with `h2o.mse`) 0.14834
RMSE: (Extract with `h2o.rmse`) 0.3851493
Logloss: (Extract with `h2o.logloss`) 0.4727512
Mean Per-Class Error: 0.1157331
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 918 0 6 2 4 7 4 0 33 2 0.0594 = 58 / 976
1 0 1131 3 14 0 0 1 2 27 2 0.0415 = 49 / 1,180
2 4 6 855 88 10 4 13 9 24 1 0.1568 = 159 / 1,014
3 0 1 11 985 0 9 0 5 9 3 0.0371 = 38 / 1,023
4 0 2 3 5 901 3 7 1 19 85 0.1218 = 125 / 1,026
5 5 1 10 193 2 560 4 0 63 6 0.3365 = 284 / 844
6 8 3 8 1 7 24 881 0 29 1 0.0842 = 81 / 962
7 3 1 9 38 3 0 0 940 3 29 0.0838 = 86 / 1,026
8 0 9 6 46 0 6 0 0 925 2 0.0694 = 69 / 994
9 2 1 0 97 19 1 0 21 21 810 0.1667 = 162 / 972
Totals 940 1155 911 1469 946 614 910 978 1153 941 0.1109 = 1,111 / 10,017
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.889089
2 2 0.948488
3 3 0.968853
4 4 0.980134
5 5 0.988020
6 6 0.993910
7 7 0.996606
8 8 0.998602
9 9 0.999601
10 10 1.000000
H2OMultinomialMetrics: deeplearning
** Reported on cross-validation data. **
** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
Cross-Validation Set Metrics:
=====================
Extract cross-validation frame with `h2o.getFrame("RTMP_sid_b48f_157")`
MSE: (Extract with `h2o.mse`) 0.1273986
RMSE: (Extract with `h2o.rmse`) 0.3569295
Logloss: (Extract with `h2o.logloss`) 0.4228517
Mean Per-Class Error: 0.09928181
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,xval = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.902633
2 2 0.953600
3 3 0.972850
4 4 0.982050
5 5 0.989433
6 6 0.994167
7 7 0.996483
8 8 0.998033
9 9 0.999283
10 10 1.000000
Cross-Validation Metrics Summary:
mean sd cv_1_valid cv_2_valid cv_3_valid
accuracy 0.9026182 0.0040974915 0.90128064 0.9097332 0.8924319
err 0.097381756 0.0040974915 0.098719366 0.09026681 0.10756806
err_count 1168.4 47.763165 1164.0 1086.0 1292.0
logloss 0.4229333 0.020707238 0.4337107 0.39469606 0.47525612
max_per_class_error 0.2157862 0.015042614 0.21295474 0.22273567 0.21661238
mean_per_class_accuracy 0.9006914 0.0039779264 0.89941067 0.90786743 0.89104694
mean_per_class_error 0.09930864 0.0039779264 0.10058931 0.092132546 0.108953066
mse 0.12742995 0.008456517 0.13102913 0.11791809 0.14929952
r2 0.98473376 0.0010199259 0.9843297 0.98585975 0.98209006
rmse 0.3565962 0.011599256 0.36197945 0.34339204 0.38639295
cv_4_valid cv_5_valid
accuracy 0.9038221 0.90582335
err 0.09617787 0.09417667
err_count 1155.0 1145.0
logloss 0.40169317 0.40931046
max_per_class_error 0.24643198 0.18019626
mean_per_class_accuracy 0.9009753 0.90415645
mean_per_class_error 0.09902473 0.09584354
mse 0.117703974 0.121199004
r2 0.985955 0.9854344
rmse 0.34308013 0.34813648
# View specified parameters of the deep learning model
dl1@parameters
$model_id
[1] "DeepLearning_model_R_1507322206419_3"
$training_frame
[1] "RTMP_sid_b48f_157"
$validation_frame
[1] "RTMP_sid_b48f_158"
$activation
[1] "RectifierWithDropout"
$hidden
[1] 32 32 32
$seed
[1] -5.165887e+17
$input_dropout_ratio
[1] 0.2
$l1
[1] 1e-05
$distribution
[1] "multinomial"
$sparse
[1] TRUE
$x
[1] "C13" "C14" "C15" "C16" "C33" "C34" "C35" "C36" "C37" "C38" "C39" "C40"
[13] "C41" "C42" "C43" "C44" "C45" "C46" "C47" "C48" "C49" "C50" "C51" "C52"
[25] "C59" "C60" "C61" "C62" "C63" "C64" "C65" "C66" "C67" "C68" "C69" "C70"
[37] "C71" "C72" "C73" "C74" "C75" "C76" "C77" "C78" "C79" "C80" "C81" "C82"
[49] "C87" "C88" "C89" "C90" "C91" "C92" "C93" "C94" "C95" "C96" "C97" "C98"
[61] "C99" "C100" "C101" "C102" "C103" "C104" "C105" "C106" "C107" "C108" "C109" "C110"
[73] "C111" "C114" "C115" "C116" "C117" "C118" "C119" "C120" "C121" "C122" "C123" "C124"
[85] "C125" "C126" "C127" "C128" "C129" "C130" "C131" "C132" "C133" "C134" "C135" "C136"
[97] "C137" "C138" "C139" "C140" "C143" "C144" "C145" "C146" "C147" "C148" "C149" "C150"
[109] "C151" "C152" "C153" "C154" "C155" "C156" "C157" "C158" "C159" "C160" "C161" "C162"
[121] "C163" "C164" "C165" "C166" "C167" "C168" "C170" "C171" "C172" "C173" "C174" "C175"
[133] "C176" "C177" "C178" "C179" "C180" "C181" "C182" "C183" "C184" "C185" "C186" "C187"
[145] "C188" "C189" "C190" "C191" "C192" "C193" "C194" "C195" "C196" "C197" "C198" "C199"
[157] "C200" "C201" "C202" "C203" "C204" "C205" "C206" "C207" "C208" "C209" "C210" "C211"
[169] "C212" "C213" "C214" "C215" "C216" "C217" "C218" "C219" "C220" "C221" "C222" "C223"
[181] "C224" "C225" "C226" "C227" "C228" "C229" "C230" "C231" "C232" "C233" "C234" "C235"
[193] "C236" "C237" "C238" "C239" "C240" "C241" "C242" "C243" "C244" "C245" "C246" "C247"
[205] "C248" "C249" "C250" "C251" "C252" "C253" "C254" "C255" "C256" "C257" "C258" "C259"
[217] "C260" "C261" "C262" "C263" "C264" "C265" "C266" "C267" "C268" "C269" "C270" "C271"
[229] "C272" "C273" "C274" "C275" "C276" "C277" "C278" "C279" "C280" "C281" "C282" "C283"
[241] "C284" "C285" "C286" "C287" "C288" "C289" "C290" "C291" "C292" "C293" "C294" "C295"
[253] "C296" "C297" "C298" "C299" "C300" "C301" "C302" "C303" "C304" "C305" "C306" "C307"
[265] "C308" "C309" "C310" "C311" "C312" "C313" "C314" "C315" "C316" "C317" "C318" "C319"
[277] "C320" "C321" "C322" "C323" "C324" "C325" "C326" "C327" "C328" "C329" "C330" "C331"
[289] "C332" "C333" "C334" "C335" "C336" "C337" "C338" "C339" "C340" "C341" "C342" "C343"
[301] "C344" "C345" "C346" "C347" "C348" "C349" "C350" "C351" "C352" "C353" "C354" "C355"
[313] "C356" "C357" "C358" "C359" "C360" "C361" "C362" "C363" "C364" "C365" "C366" "C367"
[325] "C368" "C369" "C370" "C371" "C372" "C373" "C374" "C375" "C376" "C377" "C378" "C379"
[337] "C380" "C381" "C382" "C383" "C384" "C385" "C386" "C387" "C388" "C389" "C390" "C391"
[349] "C392" "C393" "C394" "C395" "C396" "C397" "C398" "C399" "C400" "C401" "C402" "C403"
[361] "C404" "C405" "C406" "C407" "C408" "C409" "C410" "C411" "C412" "C413" "C414" "C415"
[373] "C416" "C417" "C418" "C419" "C420" "C421" "C422" "C423" "C424" "C425" "C426" "C427"
[385] "C428" "C429" "C430" "C431" "C432" "C433" "C434" "C435" "C436" "C437" "C438" "C439"
[397] "C440" "C441" "C442" "C443" "C444" "C445" "C446" "C447" "C448" "C449" "C450" "C451"
[409] "C452" "C453" "C454" "C455" "C456" "C457" "C458" "C459" "C460" "C461" "C462" "C463"
[421] "C464" "C465" "C466" "C467" "C468" "C469" "C470" "C471" "C472" "C473" "C474" "C475"
[433] "C476" "C478" "C479" "C480" "C481" "C482" "C483" "C484" "C485" "C486" "C487" "C488"
[445] "C489" "C490" "C491" "C492" "C493" "C494" "C495" "C496" "C497" "C498" "C499" "C500"
[457] "C501" "C502" "C503" "C504" "C505" "C506" "C507" "C508" "C509" "C510" "C511" "C512"
[469] "C513" "C514" "C515" "C516" "C517" "C518" "C519" "C520" "C521" "C522" "C523" "C524"
[481] "C525" "C526" "C527" "C528" "C529" "C530" "C531" "C532" "C533" "C534" "C535" "C536"
[493] "C537" "C538" "C539" "C540" "C541" "C542" "C543" "C544" "C545" "C546" "C547" "C548"
[505] "C549" "C550" "C551" "C552" "C553" "C554" "C555" "C556" "C557" "C558" "C559" "C560"
[517] "C562" "C563" "C564" "C565" "C566" "C567" "C568" "C569" "C570" "C571" "C572" "C573"
[529] "C574" "C575" "C576" "C577" "C578" "C579" "C580" "C581" "C582" "C583" "C584" "C585"
[541] "C586" "C587" "C588" "C589" "C590" "C591" "C592" "C593" "C594" "C595" "C596" "C597"
[553] "C598" "C599" "C600" "C601" "C602" "C603" "C604" "C605" "C606" "C607" "C608" "C609"
[565] "C610" "C611" "C612" "C613" "C614" "C615" "C616" "C617" "C618" "C619" "C620" "C621"
[577] "C622" "C623" "C624" "C625" "C626" "C627" "C628" "C629" "C630" "C631" "C632" "C633"
[589] "C634" "C635" "C636" "C637" "C638" "C639" "C640" "C641" "C642" "C643" "C644" "C647"
[601] "C648" "C649" "C650" "C651" "C652" "C653" "C654" "C655" "C656" "C657" "C658" "C659"
[613] "C660" "C661" "C662" "C663" "C664" "C665" "C666" "C667" "C668" "C669" "C670" "C671"
[625] "C675" "C676" "C677" "C678" "C679" "C680" "C681" "C682" "C683" "C684" "C685" "C686"
[637] "C687" "C688" "C689" "C690" "C691" "C692" "C693" "C694" "C695" "C696" "C697" "C698"
[649] "C699" "C703" "C704" "C705" "C706" "C707" "C708" "C709" "C710" "C711" "C712" "C713"
[661] "C714" "C715" "C716" "C717" "C718" "C719" "C720" "C721" "C722" "C723" "C724" "C725"
[673] "C726" "C727" "C732" "C733" "C734" "C735" "C736" "C737" "C738" "C739" "C740" "C741"
[685] "C742" "C743" "C744" "C745" "C746" "C747" "C748" "C749" "C750" "C751" "C752" "C753"
[697] "C754" "C761" "C762" "C763" "C764" "C765" "C766" "C767" "C768" "C769" "C770" "C771"
[709] "C772" "C773" "C774" "C775" "C776" "C777" "C778" "C779" "C780"
$y
[1] "C785"
# Examine the performance of the trained model
dl1 # display all performance metrics
Model Details:
==============
H2OMultinomialModel: deeplearning
Model ID: DeepLearning_model_R_1507322206419_3
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 409.8 KB, 600,000 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum
1 1 717 Input 20.00 %
2 2 32 RectifierDropout 50.00 % 0.000010 0.000000 0.033193 0.184886 0.000000
3 3 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000381 0.000238 0.000000
4 4 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000562 0.000300 0.000000
5 5 10 Softmax 0.000010 0.000000 0.002876 0.002770 0.000000
mean_weight weight_rms mean_bias bias_rms
1
2 -0.012797 0.068251 0.489545 0.154301
3 -0.016404 0.211795 0.786406 0.364354
4 -0.047360 0.210892 0.593834 0.442483
5 -0.451849 1.028717 -2.187110 1.001856
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 9896 samples **
Training Set Metrics:
=====================
MSE: (Extract with `h2o.mse`) 0.1733473
RMSE: (Extract with `h2o.rmse`) 0.41635
Logloss: (Extract with `h2o.logloss`) 0.5235443
Mean Per-Class Error: 0.1105624
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 906 0 31 0 1 6 9 1 6 0 0.0563 = 54 / 960
1 0 1042 14 6 0 1 3 0 27 0 0.0467 = 51 / 1,093
2 4 2 948 6 1 2 18 8 21 0 0.0614 = 62 / 1,010
3 0 2 33 883 0 25 2 3 23 3 0.0934 = 91 / 974
4 3 0 14 1 726 103 9 1 39 66 0.2453 = 236 / 962
5 4 1 20 68 1 742 6 1 39 3 0.1616 = 143 / 885
6 3 2 30 0 2 11 911 0 6 0 0.0560 = 54 / 965
7 3 4 19 37 4 5 0 937 14 17 0.0990 = 103 / 1,040
8 6 10 24 29 0 27 6 0 889 0 0.1029 = 102 / 991
9 3 2 3 34 7 65 2 32 38 830 0.1831 = 186 / 1,016
Totals 932 1065 1136 1064 742 987 966 983 1102 919 0.1093 = 1,082 / 9,896
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.890663
2 2 0.939875
3 3 0.960085
4 4 0.976960
5 5 0.984640
6 6 0.990097
7 7 0.993836
8 8 0.997373
9 9 0.999293
10 10 1.000000
H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **
Validation Set Metrics:
=====================
Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1692767
RMSE: (Extract with `h2o.rmse`) 0.4114325
Logloss: (Extract with `h2o.logloss`) 0.5244263
Mean Per-Class Error: 0.1055435
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 944 0 21 1 0 4 5 3 2 0 0.0367 = 36 / 980
1 0 1092 9 3 0 1 4 0 26 0 0.0379 = 43 / 1,135
2 3 0 966 6 3 3 10 10 30 1 0.0640 = 66 / 1,032
3 2 0 33 930 0 14 1 7 21 2 0.0792 = 80 / 1,010
4 1 0 10 2 731 106 18 1 39 74 0.2556 = 251 / 982
5 7 1 8 68 0 751 7 4 46 0 0.1581 = 141 / 892
6 16 3 34 1 2 13 884 0 5 0 0.0772 = 74 / 958
7 0 5 33 28 1 2 0 936 6 17 0.0895 = 92 / 1,028
8 7 3 20 17 2 28 10 5 875 7 0.1016 = 99 / 974
9 6 3 3 30 4 56 2 21 32 852 0.1556 = 157 / 1,009
Totals 986 1107 1137 1086 743 978 941 987 1082 953 0.1039 = 1,039 / 10,000
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.896100
2 2 0.940300
3 3 0.960000
4 4 0.975000
5 5 0.982500
6 6 0.988000
7 7 0.993300
8 8 0.996600
9 9 0.999600
10 10 1.000000
h2o.performance(dl1) # training metrics
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 9896 samples **
Training Set Metrics:
=====================
MSE: (Extract with `h2o.mse`) 0.1733473
RMSE: (Extract with `h2o.rmse`) 0.41635
Logloss: (Extract with `h2o.logloss`) 0.5235443
Mean Per-Class Error: 0.1105624
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 906 0 31 0 1 6 9 1 6 0 0.0563 = 54 / 960
1 0 1042 14 6 0 1 3 0 27 0 0.0467 = 51 / 1,093
2 4 2 948 6 1 2 18 8 21 0 0.0614 = 62 / 1,010
3 0 2 33 883 0 25 2 3 23 3 0.0934 = 91 / 974
4 3 0 14 1 726 103 9 1 39 66 0.2453 = 236 / 962
5 4 1 20 68 1 742 6 1 39 3 0.1616 = 143 / 885
6 3 2 30 0 2 11 911 0 6 0 0.0560 = 54 / 965
7 3 4 19 37 4 5 0 937 14 17 0.0990 = 103 / 1,040
8 6 10 24 29 0 27 6 0 889 0 0.1029 = 102 / 991
9 3 2 3 34 7 65 2 32 38 830 0.1831 = 186 / 1,016
Totals 932 1065 1136 1064 742 987 966 983 1102 919 0.1093 = 1,082 / 9,896
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.890663
2 2 0.939875
3 3 0.960085
4 4 0.976960
5 5 0.984640
6 6 0.990097
7 7 0.993836
8 8 0.997373
9 9 0.999293
10 10 1.000000
h2o.performance(dl1, valid = TRUE) # validation metrics
H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **
Validation Set Metrics:
=====================
Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1692767
RMSE: (Extract with `h2o.rmse`) 0.4114325
Logloss: (Extract with `h2o.logloss`) 0.5244263
Mean Per-Class Error: 0.1055435
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 944 0 21 1 0 4 5 3 2 0 0.0367 = 36 / 980
1 0 1092 9 3 0 1 4 0 26 0 0.0379 = 43 / 1,135
2 3 0 966 6 3 3 10 10 30 1 0.0640 = 66 / 1,032
3 2 0 33 930 0 14 1 7 21 2 0.0792 = 80 / 1,010
4 1 0 10 2 731 106 18 1 39 74 0.2556 = 251 / 982
5 7 1 8 68 0 751 7 4 46 0 0.1581 = 141 / 892
6 16 3 34 1 2 13 884 0 5 0 0.0772 = 74 / 958
7 0 5 33 28 1 2 0 936 6 17 0.0895 = 92 / 1,028
8 7 3 20 17 2 28 10 5 875 7 0.1016 = 99 / 974
9 6 3 3 30 4 56 2 21 32 852 0.1556 = 157 / 1,009
Totals 986 1107 1137 1086 743 978 941 987 1082 953 0.1039 = 1,039 / 10,000
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.896100
2 2 0.940300
3 3 0.960000
4 4 0.975000
5 5 0.982500
6 6 0.988000
7 7 0.993300
8 8 0.996600
9 9 0.999600
10 10 1.000000
# Get MSE only
h2o.mse(dl1, valid = TRUE)
[1] 0.1692767
# Cross-validated MSE
h2o.mse(model_cv, xval = TRUE)
[1] 0.1273986
apply predication to test data
checkpint model
model_chkp
Model Details:
==============
H2OMultinomialModel: deeplearning
Model ID: DeepLearning_model_R_1507322206419_5
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 386.8 KB, 1,299,513 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum
1 1 717 Input 20.00 %
2 2 32 RectifierDropout 50.00 % 0.000010 0.000000 0.030488 0.175945 0.000000
3 3 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000350 0.000289 0.000000
4 4 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000523 0.000361 0.000000
5 5 10 Softmax 0.000010 0.000000 0.003678 0.003975 0.000000
mean_weight weight_rms mean_bias bias_rms
1
2 -0.015660 0.072580 0.532219 0.247582
3 -0.010307 0.215607 0.707758 0.400854
4 -0.042087 0.220341 0.552796 0.537820
5 -0.921071 1.392229 -4.404200 1.106735
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 10081 samples **
Training Set Metrics:
=====================
MSE: (Extract with `h2o.mse`) 0.1690245
RMSE: (Extract with `h2o.rmse`) 0.4111259
Logloss: (Extract with `h2o.logloss`) 0.5166035
Mean Per-Class Error: 0.1141356
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 885 0 104 0 1 13 5 0 5 1 0.1272 = 129 / 1,014
1 0 1110 15 7 1 5 2 0 37 0 0.0569 = 67 / 1,177
2 2 0 926 3 3 3 9 0 17 2 0.0404 = 39 / 965
3 0 2 65 909 0 14 3 0 10 1 0.0946 = 95 / 1,004
4 0 1 17 1 829 55 14 1 7 33 0.1347 = 129 / 958
5 1 1 25 51 2 767 15 0 31 2 0.1430 = 128 / 895
6 5 0 23 0 1 11 971 0 1 0 0.0405 = 41 / 1,012
7 0 4 71 16 1 13 2 930 4 32 0.1333 = 143 / 1,073
8 0 10 38 15 0 23 10 1 891 1 0.0991 = 98 / 989
9 0 1 8 31 8 189 2 9 22 724 0.2716 = 270 / 994
Totals 893 1129 1292 1033 846 1093 1033 941 1025 796 0.1130 = 1,139 / 10,081
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.887015
2 2 0.943656
3 3 0.962305
4 4 0.976193
5 5 0.983037
6 6 0.990477
7 7 0.995338
8 8 0.997421
9 9 0.999008
10 10 1.000000
H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **
Validation Set Metrics:
=====================
Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1686103
RMSE: (Extract with `h2o.rmse`) 0.4106219
Logloss: (Extract with `h2o.logloss`) 0.5216791
Mean Per-Class Error: 0.1149102
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 844 0 109 1 0 14 8 2 2 0 0.1388 = 136 / 980
1 0 1097 11 2 0 1 4 0 20 0 0.0335 = 38 / 1,135
2 1 0 986 4 4 3 9 3 21 1 0.0446 = 46 / 1,032
3 0 0 48 921 0 16 2 5 17 1 0.0881 = 89 / 1,010
4 0 0 13 0 814 64 23 0 8 60 0.1711 = 168 / 982
5 1 1 18 59 0 766 13 2 31 1 0.1413 = 126 / 892
6 3 2 30 1 0 15 907 0 0 0 0.0532 = 51 / 958
7 0 4 84 20 3 7 2 872 4 32 0.1518 = 156 / 1,028
8 0 2 36 14 2 29 16 2 869 4 0.1078 = 105 / 974
9 2 3 7 17 8 158 2 5 19 788 0.2190 = 221 / 1,009
Totals 851 1109 1342 1039 831 1073 986 891 991 887 0.1136 = 1,136 / 10,000
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.886400
2 2 0.945300
3 3 0.965300
4 4 0.976100
5 5 0.981800
6 6 0.989000
7 7 0.994500
8 8 0.997500
9 9 0.999300
10 10 1.000000
save model
model_path<-h2o.saveModel(object=dl1,path=getwd(), force=TRUE)
print(model_path)
[1] "C:\\Users\\r631758\\Desktop\\r631758\\R codes\\H2O\\exercise\\DeepLearning_model_R_1507322206419_3"
retrieve model by h2o key
model
Model Details:
==============
H2OMultinomialModel: deeplearning
Model ID: DeepLearning_model_R_1507322206419_5
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 386.8 KB, 1,299,513 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum
1 1 717 Input 20.00 %
2 2 32 RectifierDropout 50.00 % 0.000010 0.000000 0.030488 0.175945 0.000000
3 3 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000350 0.000289 0.000000
4 4 32 RectifierDropout 50.00 % 0.000010 0.000000 0.000523 0.000361 0.000000
5 5 10 Softmax 0.000010 0.000000 0.003678 0.003975 0.000000
mean_weight weight_rms mean_bias bias_rms
1
2 -0.015660 0.072580 0.532219 0.247582
3 -0.010307 0.215607 0.707758 0.400854
4 -0.042087 0.220341 0.552796 0.537820
5 -0.921071 1.392229 -4.404200 1.106735
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 10081 samples **
Training Set Metrics:
=====================
MSE: (Extract with `h2o.mse`) 0.1690245
RMSE: (Extract with `h2o.rmse`) 0.4111259
Logloss: (Extract with `h2o.logloss`) 0.5166035
Mean Per-Class Error: 0.1141356
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 885 0 104 0 1 13 5 0 5 1 0.1272 = 129 / 1,014
1 0 1110 15 7 1 5 2 0 37 0 0.0569 = 67 / 1,177
2 2 0 926 3 3 3 9 0 17 2 0.0404 = 39 / 965
3 0 2 65 909 0 14 3 0 10 1 0.0946 = 95 / 1,004
4 0 1 17 1 829 55 14 1 7 33 0.1347 = 129 / 958
5 1 1 25 51 2 767 15 0 31 2 0.1430 = 128 / 895
6 5 0 23 0 1 11 971 0 1 0 0.0405 = 41 / 1,012
7 0 4 71 16 1 13 2 930 4 32 0.1333 = 143 / 1,073
8 0 10 38 15 0 23 10 1 891 1 0.0991 = 98 / 989
9 0 1 8 31 8 189 2 9 22 724 0.2716 = 270 / 994
Totals 893 1129 1292 1033 846 1093 1033 941 1025 796 0.1130 = 1,139 / 10,081
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.887015
2 2 0.943656
3 3 0.962305
4 4 0.976193
5 5 0.983037
6 6 0.990477
7 7 0.995338
8 8 0.997421
9 9 0.999008
10 10 1.000000
H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **
Validation Set Metrics:
=====================
Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1686103
RMSE: (Extract with `h2o.rmse`) 0.4106219
Logloss: (Extract with `h2o.logloss`) 0.5216791
Mean Per-Class Error: 0.1149102
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 844 0 109 1 0 14 8 2 2 0 0.1388 = 136 / 980
1 0 1097 11 2 0 1 4 0 20 0 0.0335 = 38 / 1,135
2 1 0 986 4 4 3 9 3 21 1 0.0446 = 46 / 1,032
3 0 0 48 921 0 16 2 5 17 1 0.0881 = 89 / 1,010
4 0 0 13 0 814 64 23 0 8 60 0.1711 = 168 / 982
5 1 1 18 59 0 766 13 2 31 1 0.1413 = 126 / 892
6 3 2 30 1 0 15 907 0 0 0 0.0532 = 51 / 958
7 0 4 84 20 3 7 2 872 4 32 0.1518 = 156 / 1,028
8 0 2 36 14 2 29 16 2 869 4 0.1078 = 105 / 974
9 2 3 7 17 8 158 2 5 19 788 0.2190 = 221 / 1,009
Totals 851 1109 1342 1039 831 1073 986 891 991 887 0.1136 = 1,136 / 10,000
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.886400
2 2 0.945300
3 3 0.965300
4 4 0.976100
5 5 0.981800
6 6 0.989000
7 7 0.994500
8 8 0.997500
9 9 0.999300
10 10 1.000000
world record run used epochs=8000
saved_model
Model Details:
==============
H2OMultinomialModel: deeplearning
Model ID: DeepLearning_model_R_1507322206419_6
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 3,904,522 weights/biases, 44.8 MB, 600,000 training samples, mini-batch size 1
layer units type dropout l1 l2 mean_rate rate_rms momentum
1 1 717 Input 20.00 %
2 2 1024 RectifierDropout 50.00 % 0.000010 0.000000 0.191445 0.298210 0.000000
3 3 1024 RectifierDropout 50.00 % 0.000010 0.000000 0.006911 0.006140 0.000000
4 4 2048 RectifierDropout 50.00 % 0.000010 0.000000 0.028010 0.024994 0.000000
5 5 10 Softmax 0.000010 0.000000 0.016443 0.055269 0.000000
mean_weight weight_rms mean_bias bias_rms
1
2 0.005567 0.045159 0.232284 0.075551
3 -0.007659 0.038646 0.963923 0.035513
4 -0.005470 0.029926 0.786008 0.092608
5 -0.052810 0.046578 -1.113460 0.090975
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 9949 samples **
Training Set Metrics:
=====================
MSE: (Extract with `h2o.mse`) 0.007523151
RMSE: (Extract with `h2o.rmse`) 0.0867361
Logloss: (Extract with `h2o.logloss`) 0.02923425
Mean Per-Class Error: 0.008487407
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 980 0 0 1 1 0 1 0 0 1 0.0041 = 4 / 984
1 0 1097 3 0 0 0 0 1 0 0 0.0036 = 4 / 1,101
2 0 0 996 3 0 0 0 2 0 1 0.0060 = 6 / 1,002
3 0 0 3 977 0 3 0 1 2 0 0.0091 = 9 / 986
4 0 0 1 0 983 0 1 3 0 7 0.0121 = 12 / 995
5 1 1 1 2 0 844 2 1 1 0 0.0106 = 9 / 853
6 3 0 1 0 0 1 965 0 0 0 0.0052 = 5 / 970
7 0 3 6 0 0 0 0 1036 0 3 0.0115 = 12 / 1,048
8 2 0 1 3 0 2 1 1 979 0 0.0101 = 10 / 989
9 0 1 0 0 1 3 0 7 1 1008 0.0127 = 13 / 1,021
Totals 986 1102 1012 986 985 853 970 1052 983 1020 0.0084 = 84 / 9,949
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.991557
2 2 0.998291
3 3 0.999095
4 4 0.999699
5 5 1.000000
6 6 1.000000
7 7 1.000000
8 8 1.000000
9 9 1.000000
10 10 1.000000
H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **
Validation Set Metrics:
=====================
Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.01601349
RMSE: (Extract with `h2o.rmse`) 0.1265444
Logloss: (Extract with `h2o.logloss`) 0.06764258
Mean Per-Class Error: 0.01966306
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
0 1 2 3 4 5 6 7 8 9 Error Rate
0 971 0 0 1 0 1 4 1 2 0 0.0092 = 9 / 980
1 0 1126 3 2 0 0 2 0 2 0 0.0079 = 9 / 1,135
2 5 0 1014 3 1 0 2 5 2 0 0.0174 = 18 / 1,032
3 0 0 1 996 0 3 0 5 3 2 0.0139 = 14 / 1,010
4 3 0 3 0 959 0 4 2 1 10 0.0234 = 23 / 982
5 2 0 0 10 1 874 2 1 1 1 0.0202 = 18 / 892
6 5 2 0 1 3 3 940 0 4 0 0.0188 = 18 / 958
7 1 5 10 3 0 0 0 1000 1 8 0.0272 = 28 / 1,028
8 4 1 3 6 1 8 1 3 943 4 0.0318 = 31 / 974
9 4 2 0 7 7 1 0 4 2 982 0.0268 = 27 / 1,009
Totals 995 1136 1034 1029 972 890 955 1021 961 1007 0.0195 = 195 / 10,000
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios:
k hit_ratio
1 1 0.980500
2 2 0.994700
3 3 0.998200
4 4 0.999500
5 5 0.999600
6 6 0.999900
7 7 1.000000
8 8 1.000000
9 9 1.000000
10 10 1.000000
LS0tDQp0aXRsZTogIkRlZXAgTGVhcm5pbmcgaDJvIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KI2xvYWQgbGlicmFyeSBzdGFydCBoMm8NCmBgYHtyfQ0KbGlicmFyeShoMm8pDQpoMm8uaW5pdCgpDQpoMm8ucmVtb3ZlQWxsKCkNCmBgYA0KDQpgYGB7cn0NCmV4YW1wbGUoaDJvLmRlZXBsZWFybmluZykNCmRlbW8oaDJvLmRlZXBsZWFybmluZykNCmBgYA0KDQojbG9hZCBzYW1wbGUgZGF0YQ0KYGBge3J9DQpzcGlyYWw8LWgyby5pbXBvcnRGaWxlKHBhdGg9Ilo6XFxIZWFsdGhDYXJlIEluZm9ybWF0aWNzXFxyNjMxNzU4XFxSIGNvZGVzXFxIMk9cXGV4ZXJjaXNlXFxzcGlyYWwuY3N2IikNCmdyaWQ8LWgyby5pbXBvcnRGaWxlKHBhdGg9Ilo6XFxIZWFsdGhDYXJlIEluZm9ybWF0aWNzXFxyNjMxNzU4XFxSIGNvZGVzXFxIMk9cXGV4ZXJjaXNlXFxncmlkLmNzdiIpDQpgYGANCg0KI0RlZmluZSBoZWxwZXIgdG8gcGxvdCBjb250b3Vycw0KYGBge3J9DQpwbG90QzwtZnVuY3Rpb24obmFtZSwgbW9kZWwsIGRhdGE9c3BpcmFsLCBnPWdyaWQpew0KICBkYXRhPC1hcy5kYXRhLmZyYW1lKGRhdGEpDQogIHByZWQ8LWFzLmRhdGEuZnJhbWUoaDJvLnByZWRpY3QobW9kZWwsZykpDQogIG49MC41KihzcXJ0KG5yb3coZykpLTEpOyBkPC0xLjU7IGg8LWQqKC1uOm4pL24NCiAgcGxvdChkYXRhWywtM10scGNoPTE5LGNvbD1kYXRhWywzXSxjZXg9MC41LHhsaW09YygtZCxkKSwgeWxpbT1jKC1kLGQpLCBtYWluPW5hbWUpDQogIGNvbnRvdXIoaCxoLHo9YXJyYXkoaWZlbHNlKHByZWRbLDFdPT0iUmVkIiwwLDEpLGRpbT1jKDIqbisxLDIqbisxKSksY29sPSJibHVlIiwgbHdkPTIsIGFkZD1UKQ0KfQ0KYGBgDQoNCiNkZXYubmV3KG5vUlN0dWRpb0dEPUZBTFNFKSAjZGlyZWN0IHBsb3R0aW5nIG91dHB1dCB0byBhIG5ldyB3aW5kb3cNCmBgYHtyfQ0KcGFyKG1mcm93PWMoMiwyKSkgI3NldCB1cCB0aGUgY2FudmFzIGZvciAyeDIgcGxvdHMNCnBsb3RDKCAiREwiLCBoMm8uZGVlcGxlYXJuaW5nKDE6MiwzLHNwaXJhbCxlcG9jaHM9MWUzKSkNCnBsb3RDKCJHQk0iLCBoMm8uZ2JtICAgICAgICAgKDE6MiwzLHNwaXJhbCkpDQpwbG90QygiRFJGIiwgaDJvLnJhbmRvbUZvcmVzdCgxOjIsMyxzcGlyYWwpKQ0KcGxvdEMoIkdMTSIsIGgyby5nbG0gICAgICAgICAoMToyLDMsc3BpcmFsLGZhbWlseT0iYmlub21pYWwiKSkNCmBgYA0KDQojZGV2Lm5ldyhub1JTdHVkaW9HRD1GQUxTRSkgI2RpcmVjdCBwbG90dGluZyBvdXRwdXQgdG8gYSBuZXcgd2luZG93DQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpICNzZXQgdXAgdGhlIGNhbnZhcyBmb3IgMngyIHBsb3RzDQplcCA8LSBjKDEsMjUwLDUwMCw3NTApDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbMV0sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFsxXSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2lkPSJkbF8xIikpDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbMl0sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFsyXSwNCiAgICAgICAgICAgIGNoZWNrcG9pbnQ9ImRsXzEiLG1vZGVsX2lkPSJkbF8yIikpDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbM10sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFszXSwNCiAgICAgICAgICAgIGNoZWNrcG9pbnQ9ImRsXzIiLG1vZGVsX2lkPSJkbF8zIikpDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbNF0sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFs0XSwNCiAgICAgICAgICAgIGNoZWNrcG9pbnQ9ImRsXzMiLG1vZGVsX2lkPSJkbF80IikpDQpgYGANCg0KI1lvdSBjYW4gc2VlIGhvdyB0aGUgbmV0d29yayBsZWFybnMgdGhlIHN0cnVjdHVyZSBvZiB0aGUgc3BpcmFscyB3aXRoIGVub3VnaCB0cmFpbmluZyB0aW1lLiBXZSBleHBsb3JlIGRpZmZlcmVudCBuZXR3b3JrIGFyY2hpdGVjdHVyZXMgbmV4dDoNCiMjZGV2Lm5ldyhub1JTdHVkaW9HRD1GQUxTRSkgI2RpcmVjdCBwbG90dGluZyBvdXRwdXQgdG8gYSBuZXcgd2luZG93DQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpICNzZXQgdXAgdGhlIGNhbnZhcyBmb3IgMngyIHBsb3RzDQpmb3IgKGhpZGRlbiBpbiBsaXN0KGMoMTEsMTMsMTcsMTkpLGMoNDIsNDIsNDIpLGMoMjAwLDIwMCksYygxMDAwKSkpIHsNCiAgcGxvdEMocGFzdGUwKCJETCBoaWRkZW49IixwYXN0ZTAoaGlkZGVuLCBjb2xsYXBzZT0ieCIpKSwNCiAgICAgICAgaDJvLmRlZXBsZWFybmluZygxOjIsMyxzcGlyYWwsaGlkZGVuPWhpZGRlbixlcG9jaHM9NTAwKSkNCn0NCmBgYA0KDQojSXQgaXMgY2xlYXIgdGhhdCBkaWZmZXJlbnQgY29uZmlndXJhdGlvbnMgY2FuIGFjaGlldmUgc2ltaWxhciBwZXJmb3JtYW5jZSwgYW5kIHRoYXQgdHVuaW5nIHdpbGwgYmUgcmVxdWlyZWQgZm9yIG9wdGltYWwgcGVyZm9ybWFuY2UuIE5leHQsIHdlIGNvbXBhcmUgYmV0d2VlbiBkaWZmZXJlbnQgYWN0aXZhdGlvbiBmdW5jdGlvbnMsIGluY2x1ZGluZyBvbmUgd2l0aCA1MCUgZHJvcG91dCByZWd1bGFyaXphdGlvbiBpbiB0aGUgaGlkZGVuIGxheWVyczoNCg0KI2Rldi5uZXcobm9SU3R1ZGlvR0Q9RkFMU0UpICNkaXJlY3QgcGxvdHRpbmcgb3V0cHV0IHRvIGEgbmV3IHdpbmRvdw0KDQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpICNzZXQgdXAgdGhlIGNhbnZhcyBmb3IgMngyIHBsb3RzDQpmb3IgKGFjdCBpbiBjKCJUYW5oIiwiTWF4b3V0IiwiUmVjdGlmaWVyIiwiUmVjdGlmaWVyV2l0aERyb3BvdXQiKSkgew0KICBwbG90QyhwYXN0ZTAoIkRMICIsYWN0LCIgYWN0aXZhdGlvbiIpLCANCiAgICAgICAgaDJvLmRlZXBsZWFybmluZygxOjIsMyxzcGlyYWwsDQogICAgICAgICAgICAgIGFjdGl2YXRpb249YWN0LGhpZGRlbj1jKDEwMCwxMDApLGVwb2Nocz0xMDAwKSkNCn0NCg0KYGBgDQojQ2xlYXJseSwgdGhlIGRyb3BvdXQgcmF0ZSB3YXMgdG9vIGhpZ2ggb3IgdGhlIG51bWJlciBvZiBlcG9jaHMgd2FzIHRvbyBsb3cgZm9yIHRoZSBsYXN0IGNvbmZpZ3VyYXRpb24sIHdoaWNoIG9mdGVuIGVuZHMgdXAgcGVyZm9ybWluZyB0aGUgYmVzdCBvbiBsYXJnZXIgZGF0YXNldHMgd2hlcmUgZ2VuZXJhbGl6YXRpb24gaXMgaW1wb3J0YW50Lg0KDQpgYGB7cn0NCmgyby5zaHV0ZG93bigpDQpgYGANCg0KDQojVG8gcHJlZGljdCB0aGUgODAtdGggcGVyY2VudGlsZSBvZiB0aGUgcGV0YWwgbGVuZ3RoIG9mIHRoZSBJcmlzIGRhdGFzZXQgaW4gUg0KYGBge3J9DQppcmlzUGF0aCA8LSBzeXN0ZW0uZmlsZSgiZXh0ZGF0YSIsICJpcmlzX3doZWFkZXIuY3N2IiwgcGFja2FnZSA9ICJoMm8iKQ0KaXJpcy5oZXggPC0gaDJvLnVwbG9hZEZpbGUocGF0aCA9IGlyaXNQYXRoKQ0KaXJpcy5SPC1hcy5kYXRhLmZyYW1lKGlyaXMuaGV4KQ0Kc3BsaXRzPC1oMm8uc3BsaXRGcmFtZShpcmlzLmhleCwgcmF0aW89MC43LCBzZWVkPTEyMzQgKQ0KZGwxPC1oMm8uZGVlcGxlYXJuaW5nKHg9MToyLCB5PSJwZXRhbF9sZW4iLCB0cmFpbmluZ19mcmFtZSA9IHNwbGl0c1tbMV1dLCBkaXN0cmlidXRpb24gPSAicXVhbnRpbGUiLHF1YW50aWxlX2FscGhhID0gMC44KQ0KZGwxDQpgYGANCg0KI2hhbmR3cml0aW5nIGV4YW1wbGUNCmBgYHtyfQ0KdHJhaW48LWgyby5pbXBvcnRGaWxlKHBhdGg9Imh0dHBzOi8vaDJvLXB1YmxpYy10ZXN0LWRhdGEuczMuYW1hem9uYXdzLmNvbS9iaWdkYXRhL2xhcHRvcC9tbmlzdC90cmFpbi5jc3YuZ3oiKQ0KdGVzdDwtaDJvLmltcG9ydEZpbGUocGF0aD0iaHR0cHM6Ly9oMm8tcHVibGljLXRlc3QtZGF0YS5zMy5hbWF6b25hd3MuY29tL2JpZ2RhdGEvbGFwdG9wL21uaXN0L3Rlc3QuY3N2Lmd6IikNCiMgc3VtbWFyeSh0cmFpbikNCiMgc3VtbWFyeSh0ZXN0KQ0KYGBgDQoNCiNzcGVjaWZ5IHJlc3BvbnNlIGFuZCBwcmVkaWN0b3INCmBgYHtyfQ0KeT0iQzc4NSINCng8LXNldGRpZmYobmFtZXModHJhaW4pLHkpDQp4DQpgYGANCg0KI3NldCB5IGFzIGZhY3Rvcg0KYGBge3J9DQp0cmFpblsseV09YXMuZmFjdG9yKHRyYWluWyx5XSkNCnRlc3RbLHldPWFzLmZhY3Rvcih0ZXN0Wyx5XSkNCmRsMTwtaDJvLmRlZXBsZWFybmluZyh4PXgseT15LCB0cmFpbmluZ19mcmFtZSA9IHRyYWluLCB2YWxpZGF0aW9uX2ZyYW1lID0gdGVzdCwgZGlzdHJpYnV0aW9uID0gIm11bHRpbm9taWFsIiwgYWN0aXZhdGlvbj0iUmVjdGlmaWVyV2l0aERyb3BvdXQiLCBoaWRkZW49YygzMiwzMiwzMiksIGlucHV0X2Ryb3BvdXRfcmF0aW89MC4yLCBzcGFyc2U9VFJVRSwgbDE9MWUtNSwgZXBvY2hzID0gMTApDQpkbDENCg0KbW9kZWxfY3Y8LWgyby5kZWVwbGVhcm5pbmcoeD14LHk9eSwgdHJhaW5pbmdfZnJhbWUgPSB0cmFpbiwgIGRpc3RyaWJ1dGlvbiA9ICJtdWx0aW5vbWlhbCIsIGFjdGl2YXRpb249IlJlY3RpZmllcldpdGhEcm9wb3V0IiwgaGlkZGVuPWMoMzIsMzIsMzIpLCBpbnB1dF9kcm9wb3V0X3JhdGlvPTAuMiwgc3BhcnNlPVRSVUUsIGwxPTFlLTUsIGVwb2NocyA9IDEwLCBuZm9sZHM9NSkNCm1vZGVsX2N2DQpgYGANCg0KYGBge3J9DQojIFZpZXcgc3BlY2lmaWVkIHBhcmFtZXRlcnMgb2YgdGhlIGRlZXAgbGVhcm5pbmcgbW9kZWwNCiBkbDFAcGFyYW1ldGVycw0KDQogIyBFeGFtaW5lIHRoZSBwZXJmb3JtYW5jZSBvZiB0aGUgdHJhaW5lZCBtb2RlbA0KZGwxICMgZGlzcGxheSBhbGwgcGVyZm9ybWFuY2UgbWV0cmljcw0KDQogaDJvLnBlcmZvcm1hbmNlKGRsMSkgIyB0cmFpbmluZyBtZXRyaWNzDQogaDJvLnBlcmZvcm1hbmNlKGRsMSwgdmFsaWQgPSBUUlVFKSAjIHZhbGlkYXRpb24gbWV0cmljcw0KDQogIyBHZXQgTVNFIG9ubHkNCiBoMm8ubXNlKGRsMSwgdmFsaWQgPSBUUlVFKQ0KDQogIyBDcm9zcy12YWxpZGF0ZWQgTVNFDQogaDJvLm1zZShtb2RlbF9jdiwgeHZhbCA9IFRSVUUpDQpgYGANCg0KI2FwcGx5IHByZWRpY2F0aW9uIHRvIHRlc3QgZGF0YQ0KYGBge3J9DQpwcmVkPC1oMm8ucHJlZGljdChkbDEsbmV3ZGF0YT10ZXN0KQ0KaGVhZChwcmVkKQ0KYGBgDQoNCiNjaGVja3BpbnQgbW9kZWwNCmBgYHtyfQ0KIyBSZS1zdGFydCB0aGUgdHJhaW5pbmcgcHJvY2VzcyBvbiBhIHNhdmVkIERMIG1vZGVsDQogIyB1c2luZyB0aGUg4oCYY2hlY2twb2ludOKAmCBhcmd1bWVudA0KIG1vZGVsX2Noa3AgPC0gaDJvLmRlZXBsZWFybmluZygNCiB4ID0geCwNCiB5ID0geSwNCiB0cmFpbmluZ19mcmFtZSA9IHRyYWluLA0KIHZhbGlkYXRpb25fZnJhbWUgPSB0ZXN0LA0KIGRpc3RyaWJ1dGlvbiA9ICJtdWx0aW5vbWlhbCIsDQogY2hlY2twb2ludCA9IGRsMUBtb2RlbF9pZCwNCiBhY3RpdmF0aW9uID0gIlJlY3RpZmllcldpdGhEcm9wb3V0IiwNCiBoaWRkZW4gPSBjKDMyLDMyLDMyKSwNCiBpbnB1dF9kcm9wb3V0X3JhdGlvID0gMC4yLA0KIHNwYXJzZSA9IFRSVUUsDQogbDEgPSAxZS01LA0KIGVwb2NocyA9IDIwKQ0KbW9kZWxfY2hrcA0KDQpgYGANCiNzYXZlIG1vZGVsDQpgYGB7cn0NCm1vZGVsX3BhdGg8LWgyby5zYXZlTW9kZWwob2JqZWN0PWRsMSxwYXRoPWdldHdkKCksIGZvcmNlPVRSVUUpDQpwcmludChtb2RlbF9wYXRoKQ0Kc2F2ZWRfbW9kZWw8LWgyby5sb2FkTW9kZWwobW9kZWxfcGF0aCkNCmBgYA0KDQojcmV0cmlldmUgbW9kZWwgYnkgaDJvIGtleQ0KYGBge3J9DQptb2RlbCA8LSBoMm8uZ2V0TW9kZWwobW9kZWxfaWQgPSBtb2RlbF9jaGtwQG1vZGVsX2lkKQ0KbW9kZWwNCmBgYA0KI3dvcmxkIHJlY29yZCBydW4gdXNlZCBlcG9jaHM9ODAwMA0KYGBge3J9DQpTdGFydHRpbWU9U3lzLnRpbWUoKQ0KIyBtb2RlbCA8LSBoMm8uZGVlcGxlYXJuaW5nKHg9eCwgeT15LA0KIyAgdHJhaW5pbmdfZnJhbWU9dHJhaW4sIHZhbGlkYXRpb25fZnJhbWU9dGVzdCwNCiMgIGFjdGl2YXRpb249IlJlY3RpZmllcldpdGhEcm9wb3V0IiwNCiMgIGhpZGRlbj1jKDEwMjQsMTAyNCwyMDQ4KSwgZXBvY2hzPTEwLA0KIyAgaW5wdXRfZHJvcG91dF9yYXRpbz0wLjIsIGwxPTFlLTUsIG1heF93Mj0xMCwNCiMgIHRyYWluX3NhbXBsZXNfcGVyX2l0ZXJhdGlvbj0tMSwNCiMgIGNsYXNzaWZpY2F0aW9uX3N0b3A9LTEsIHN0b3BwaW5nX3JvdW5kcz0wKQ0KbW9kZWxfdGltZT1TeXMudGltZSgpLVN0YXJ0dGltZQ0KcHJpbnQocGFzdGUoIlRvb2siLCByb3VuZChtb2RlbF90aW1lLCBkaWdpdHM9MiksIHVuaXRzKG1vZGVsX3RpbWUpLCAidG8gYnVpbGQgRGVlcExlYXJuaW5nIG1vZGVsLiIpKQ0KbW9kZWxAcGFyYW1ldGVycw0KDQojIHdvcmxkTW9kZWw8LWgyby5zYXZlTW9kZWwob2JqZWN0PW1vZGVsLHBhdGg9Ii4vV29ybGRNb2RlbCIsIGZvcmNlPVRSVUUpDQojcHJpbnQod29ybGRNb2RlbCkNCnNhdmVkX21vZGVsPC1oMm8ubG9hZE1vZGVsKCJDOlxcVXNlcnNcXHI2MzE3NThcXERlc2t0b3BcXHI2MzE3NThcXFIgY29kZXNcXEgyT1xcZXhlcmNpc2VcXFdvcmxkTW9kZWxcXERlZXBMZWFybmluZ19tb2RlbF9SXzE1MDczMjIyMDY0MTlfNiIpDQpzYXZlZF9tb2RlbA0KYGBgDQo=