load library start h2o

library(h2o)
h2o.init()

H2O is not running yet, starting it now...

Note:  In case of errors look at the following log files:
    C:\Users\r631758\AppData\Local\Temp\1\Rtmp4y1xDl/h2o_r631758_started_from_r.out
    C:\Users\r631758\AppData\Local\Temp\1\Rtmp4y1xDl/h2o_r631758_started_from_r.err

java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)

Starting H2O JVM and connecting: . Connection successful!

R is connected to the H2O cluster: 
    H2O cluster uptime:         1 seconds 897 milliseconds 
    H2O cluster version:        3.14.0.3 
    H2O cluster version age:    13 days  
    H2O cluster name:           H2O_started_from_R_r631758_mjf733 
    H2O cluster total nodes:    1 
    H2O cluster total memory:   3.48 GB 
    H2O cluster total cores:    8 
    H2O cluster allowed cores:  8 
    H2O cluster healthy:        TRUE 
    H2O Connection ip:          localhost 
    H2O Connection port:        54321 
    H2O Connection proxy:       NA 
    H2O Internal Security:      FALSE 
    H2O API Extensions:         Algos, AutoML, Core V3, Core V4 
    R Version:                  R version 3.4.2 (2017-09-28) 
h2o.removeAll()
[1] 0
demo(h2o.deeplearning)


    demo(h2o.deeplearning)
    ---- ~~~~~~~~~~~~~~~~

> # This is a demo of H2O's Deep Learning function
> # It imports a data set, parses it, and prints a summary
> # Then, it runs Deep Learning on the dataset
> # Note: This demo runs H2O on localhost:54321
> library(h2o)

> h2o.init()
 Connection successful!

R is connected to the H2O cluster: 
    H2O cluster uptime:         1 minutes 58 seconds 
    H2O cluster version:        3.14.0.3 
    H2O cluster version age:    12 days  
    H2O cluster name:           H2O_started_from_R_r631758_bqi699 
    H2O cluster total nodes:    1 
    H2O cluster total memory:   3.46 GB 
    H2O cluster total cores:    8 
    H2O cluster allowed cores:  8 
    H2O cluster healthy:        TRUE 
    H2O Connection ip:          localhost 
    H2O Connection port:        54321 
    H2O Connection proxy:       NA 
    H2O Internal Security:      FALSE 
    H2O API Extensions:         Algos, AutoML, Core V3, Core V4 
    R Version:                  R version 3.4.2 (2017-09-28) 


> prostate.hex = h2o.uploadFile(path = system.file("extdata", "prostate.csv", package="h2o"), destination_frame = "prostate.hex")

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

> summary(prostate.hex)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
 ID               CAPSULE          AGE             RACE            DPROS          
 Min.   :  1.00   Min.   :0.0000   Min.   :43.00   Min.   :0.000   Min.   :1.000  
 1st Qu.: 95.75   1st Qu.:0.0000   1st Qu.:62.00   1st Qu.:1.000   1st Qu.:1.000  
 Median :190.50   Median :0.0000   Median :67.00   Median :1.000   Median :2.000  
 Mean   :190.50   Mean   :0.4026   Mean   :66.04   Mean   :1.087   Mean   :2.271  
 3rd Qu.:285.25   3rd Qu.:1.0000   3rd Qu.:71.00   3rd Qu.:1.000   3rd Qu.:3.000  
 Max.   :380.00   Max.   :1.0000   Max.   :79.00   Max.   :2.000   Max.   :4.000  
 DCAPS           PSA               VOL             GLEASON        
 Min.   :1.000   Min.   :  0.300   Min.   : 0.00   Min.   :0.000  
 1st Qu.:1.000   1st Qu.:  4.900   1st Qu.: 0.00   1st Qu.:6.000  
 Median :1.000   Median :  8.664   Median :14.20   Median :6.000  
 Mean   :1.108   Mean   : 15.409   Mean   :15.81   Mean   :6.384  
 3rd Qu.:1.000   3rd Qu.: 17.063   3rd Qu.:26.40   3rd Qu.:7.000  
 Max.   :2.000   Max.   :139.700   Max.   :97.60   Max.   :9.000  

> # Set the CAPSULE column to be a factor column then build model.
> prostate.hex$CAPSULE = as.factor(prostate.hex$CAPSULE)

> model = h2o.deeplearning(x = setdiff(colnames(prostate.hex), c("ID","CAPSULE")), y = "CAPSULE", training_frame = prostate.hex, activation = "Tanh", hidden = c(10, 10, 10), epochs = 10000)

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |=                                                                                     |   1%
  |                                                                                            
  |=========                                                                             |  10%
  |                                                                                            
  |==================                                                                    |  21%
  |                                                                                            
  |===========================                                                           |  31%
  |                                                                                            
  |===================================                                                   |  40%
  |                                                                                            
  |===========================================                                           |  50%
  |                                                                                            
  |===================================================                                   |  60%
  |                                                                                            
  |===========================================================                           |  68%
  |                                                                                            
  |==================================================================                    |  77%
  |                                                                                            
  |=========================================================================             |  85%
  |                                                                                            
  |=================================================================================     |  94%
  |                                                                                            
  |======================================================================================| 100%

> print(model@model$model_summary)
Status of Neuron Layers: predicting CAPSULE, 2-class classification, bernoulli distribution, CrossEntropy loss, 322 weights/biases, 8.5 KB, 3,800,000 training samples, mini-batch size 1
  layer units    type dropout       l1       l2 mean_rate rate_rms momentum mean_weight
1     1     7   Input  0.00 %                                                          
2     2    10    Tanh  0.00 % 0.000000 0.000000  0.011487 0.023725 0.000000    0.094133
3     3    10    Tanh  0.00 % 0.000000 0.000000  0.015676 0.020728 0.000000   -0.055270
4     4    10    Tanh  0.00 % 0.000000 0.000000  0.051680 0.071301 0.000000    0.090554
5     5     2 Softmax         0.000000 0.000000  0.005545 0.000859 0.000000    0.036777
  weight_rms mean_bias bias_rms
1                              
2   1.525877 -0.387521 0.686546
3   1.536213  0.432871 1.124933
4   1.830349  0.431010 1.177110
5   3.853290 -0.109997 0.315070

> # Make predictions with the trained model with training data.
> predictions = predict(object = model, newdata = prostate.hex)

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

> # Export predictions from H2O Cluster as R dataframe.
> predictions.R = as.data.frame(predictions)

> head(predictions.R)
  predict           p0           p1
1       0 9.994378e-01 5.621654e-04
2       0 9.999996e-01 3.673545e-07
3       0 1.000000e+00 1.174420e-18
4       0 9.995415e-01 4.584792e-04
5       0 9.988428e-01 1.157197e-03
6       1 1.905897e-06 9.999981e-01

> tail(predictions.R)
    predict           p0           p1
375       0 9.996771e-01 3.228955e-04
376       0 1.000000e+00 2.526000e-14
377       0 1.000000e+00 2.472152e-19
378       1 2.678242e-09 1.000000e+00
379       0 1.000000e+00 5.539717e-19
380       0 9.999997e-01 3.255905e-07

> # Check performance of classification model.
> performance = h2o.performance(model = model)

> print(performance)
H2OBinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on full training frame **

MSE:  0.0105719
RMSE:  0.1028198
LogLoss:  0.03906477
Mean Per-Class Error:  0.009875903
AUC:  0.9991362
Gini:  0.9982724

Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
         0   1    Error    Rate
0      224   3 0.013216  =3/227
1        1 152 0.006536  =1/153
Totals 225 155 0.010526  =4/380

Maximum Metrics: Maximum metrics at their respective thresholds
                        metric threshold    value idx
1                       max f1  0.140100 0.987013 114
2                       max f2  0.140100 0.990874 114
3                 max f0point5  0.941564 0.993289 107
4                 max accuracy  0.876176 0.989474 110
5                max precision  1.000000 1.000000   0
6                   max recall  0.004372 1.000000 134
7              max specificity  1.000000 1.000000   0
8             max absolute_mcc  0.140100 0.978222 114
9   max min_per_class_accuracy  0.675828 0.986784 113
10 max mean_per_class_accuracy  0.140100 0.990124 114

Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`

load sample data

grid<-h2o.importFile(path="Z:\\HealthCare Informatics\\r631758\\R codes\\H2O\\exercise\\grid.csv")

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

Define helper to plot contours

dev.new(noRStudioGD=FALSE) #direct plotting output to a new window

par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
plotC( "DL", h2o.deeplearning(1:2,3,spiral,epochs=1e3))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |===                                                                                   |   3%
  |                                                                                            
  |============                                                                          |  14%
  |                                                                                            
  |============================                                                          |  32%
  |                                                                                            
  |============================================                                          |  51%
  |                                                                                            
  |=============================================================                         |  71%
  |                                                                                            
  |=============================================================================         |  90%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%
plotC("GBM", h2o.gbm         (1:2,3,spiral))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |=====                                                                                 |   6%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%
plotC("DRF", h2o.randomForest(1:2,3,spiral))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================                                                                |  26%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%
plotC("GLM", h2o.glm         (1:2,3,spiral,family="binomial"))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

dev.new(noRStudioGD=FALSE) #direct plotting output to a new window

par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
ep <- c(1,250,500,750)
plotC(paste0("DL ",ep[1]," epochs"),
      h2o.deeplearning(1:2,3,spiral,epochs=ep[1],
                              model_id="dl_1"))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%
plotC(paste0("DL ",ep[2]," epochs"),
      h2o.deeplearning(1:2,3,spiral,epochs=ep[2],
            checkpoint="dl_1",model_id="dl_2"))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |=======                                                                               |   8%
  |                                                                                            
  |====================================================                                  |  60%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%
plotC(paste0("DL ",ep[3]," epochs"),
      h2o.deeplearning(1:2,3,spiral,epochs=ep[3],
            checkpoint="dl_2",model_id="dl_3"))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |============                                                                          |  14%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%
plotC(paste0("DL ",ep[4]," epochs"),
      h2o.deeplearning(1:2,3,spiral,epochs=ep[4],
            checkpoint="dl_3",model_id="dl_4"))

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |==========================                                                            |  31%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

You can see how the network learns the structure of the spirals with enough training time. We explore different network architectures next:

dev.new(noRStudioGD=FALSE) #direct plotting output to a new window

par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
for (hidden in list(c(11,13,17,19),c(42,42,42),c(200,200),c(1000))) {
  plotC(paste0("DL hidden=",paste0(hidden, collapse="x")),
        h2o.deeplearning(1:2,3,spiral,hidden=hidden,epochs=500))
}

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |==========================================================                            |  68%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |=====================                                                                 |  24%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |===                                                                                   |   4%
  |                                                                                            
  |=================                                                                     |  20%
  |                                                                                            
  |======================================                                                |  44%
  |                                                                                            
  |================================================================                      |  74%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |===                                                                                   |   4%
  |                                                                                            
  |======================================                                                |  44%
  |                                                                                            
  |===============================================================================       |  92%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

It is clear that different configurations can achieve similar performance, and that tuning will be required for optimal performance. Next, we compare between different activation functions, including one with 50% dropout regularization in the hidden layers:

dev.new(noRStudioGD=FALSE) #direct plotting output to a new window

par(mfrow=c(2,2)) #set up the canvas for 2x2 plots
for (act in c("Tanh","Maxout","Rectifier","RectifierWithDropout")) {
  plotC(paste0("DL ",act," activation"), 
        h2o.deeplearning(1:2,3,spiral,
              activation=act,hidden=c(100,100),epochs=1000))
}

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |==                                                                                    |   2%
  |                                                                                            
  |=============                                                                         |  15%
  |                                                                                            
  |========================                                                              |  28%
  |                                                                                            
  |===================================                                                   |  41%
  |                                                                                            
  |==============================================                                        |  54%
  |                                                                                            
  |==========================================================                            |  67%
  |                                                                                            
  |====================================================================                  |  79%
  |                                                                                            
  |================================================================================      |  93%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |==                                                                                    |   2%
  |                                                                                            
  |============                                                                          |  14%
  |                                                                                            
  |======================                                                                |  26%
  |                                                                                            
  |==================================                                                    |  39%
  |                                                                                            
  |===========================================                                           |  50%
  |                                                                                            
  |====================================================                                  |  61%
  |                                                                                            
  |=============================================================                         |  71%
  |                                                                                            
  |=======================================================================               |  82%
  |                                                                                            
  |=================================================================================     |  94%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |=======                                                                               |   8%
  |                                                                                            
  |==================================                                                    |  40%
  |                                                                                            
  |=====================================================================                 |  80%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |==============                                                                        |  16%
  |                                                                                            
  |======================================================================================| 100%

  |                                                                                            
  |                                                                                      |   0%
  |                                                                                            
  |======================================================================================| 100%

Clearly, the dropout rate was too high or the number of epochs was too low for the last configuration, which often ends up performing the best on larger datasets where generalization is important.

h2o.shutdown()
y
[1] TRUE

To predict the 80-th percentile of the petal length of the Iris dataset in R

dl1
Model Details:
==============

H2ORegressionModel: deeplearning
Model ID:  DeepLearning_model_R_1507322206419_2 
Status of Neuron Layers: predicting petal_len, regression, quantile distribution, Quantile loss, 41,001 weights/biases, 488.5 KB, 1,100 training samples, mini-batch size 1
  layer units      type dropout       l1       l2 mean_rate rate_rms momentum mean_weight
1     1     2     Input  0.00 %                                                          
2     2   200 Rectifier  0.00 % 0.000000 0.000000  0.026735 0.013758 0.000000    0.007604
3     3   200 Rectifier  0.00 % 0.000000 0.000000  0.160165 0.230002 0.000000   -0.005706
4     4     1    Linear         0.000000 0.000000  0.008027 0.061922 0.000000    0.000605
  weight_rms mean_bias bias_rms
1                              
2   0.098877  0.470853 0.018668
3   0.069888  0.988443 0.007587
4   0.063543  0.000329 0.000000


H2ORegressionMetrics: deeplearning
** Reported on training data. **
** Metrics reported on full training frame **

MSE:  1.156228
RMSE:  1.075281
MAE:  0.9202413
RMSLE:  0.2506345
Mean Residual Deviance :  0.2099247

handwriting example

summary(train)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
 C1            C2            C3            C4            C5            C6           
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C7            C8            C9            C10           C11           C12          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C13                C14                 C15                C16               C17          
 Min.   :  0.0000   Min.   :0.000e+00   Min.   :  0.0000   Min.   :0.00000   Min.   :  0  
 C18           C19           C20           C21           C22           C23          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C24           C25           C26           C27           C28           C29          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C30           C31           C32           C33                 C34                
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :0.000e+00   Min.   :0.000e+00  
 C35                 C36                 C37                 C38               
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000  
 C39                C40                C41                C42               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C43                C44                C45                C46               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C47                C48                 C49                 C50                
 Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000  
 C51                 C52                 C53           C54           C55          
 Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0   Min.   :  0   Min.   :  0  
 C56           C57           C58           C59                 C60              
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.000000   Min.   : 0.0000  
 C61                C62                 C63                C64               
 Min.   :0.00e+00   Min.   : 0.000000   Min.   :  0.0000   Min.   :  0.0000  
 C65                C66                C67                C68              C69             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.00  
 C70              C71               C72               C73               C74              
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C75               C76               C77               C78                C79               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C80                 C81                 C82                 C83           C84          
 Min.   :  0.00000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0   Min.   :  0  
 C85           C86           C87                 C88                C89               
 Min.   :  0   Min.   :  0   Min.   :0.000e+00   Min.   :0.00e+00   Min.   : 0.00000  
 C90                 C91                C92                C93               C94              
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C95              C96               C97               C98               C99             
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C100             C101             C102             C103              C104             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C105              C106              C107              C108               C109              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C110                C111               C112          C113          C114               
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0   Min.   :  0   Min.   :0.000e+00  
 C115                C116                C117                C118              
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000  
 C119              C120              C121              C122              C123            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C124             C125             C126             C127             C128            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C129             C130             C131             C132             C133            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C134              C135              C136              C137               C138              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C139                C140                C141          C142          C143              
 Min.   :  0.00000   Min.   : 0.000000   Min.   :  0   Min.   :  0   Min.   : 0.00000  
 C144                C145               C146              C147              C148             
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C149             C150             C151            C152             C153           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0  
 C154            C155            C156            C157             C158            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C159             C160             C161             C162             C163            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C164              C165              C166               C167               C168             
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   : 0.0000  
 C169          C170                C171               C172               C173            
 Min.   :  0   Min.   :0.0000000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00  
 C174             C175              C176             C177             C178            
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C179             C180             C181             C182            C183           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C184            C185            C186          C187             C188            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.00   Min.   :  0.00  
 C189             C190             C191             C192             C193             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C194              C195               C196               C197               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :0.000e+00  
 C198                C199               C200               C201              C202             
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C203             C204             C205             C206             C207            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C208            C209            C210          C211            C212            C213           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C214            C215            C216             C217             C218            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C219             C220            C221              C222              C223              
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
 C224                C225                C226                C227              
 Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.0000  
 C228              C229              C230              C231             C232           
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.0  
 C233             C234             C235             C236            C237           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C238            C239          C240            C241            C242            C243           
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C244            C245             C246            C247             C248            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C249              C250              C251               C252               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000  
 C253                C254                C255              C256              C257             
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C258              C259             C260            C261            C262            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C263             C264            C265            C266            C267            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C268             C269            C270            C271            C272            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C273             C274             C275             C276             C277             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C278              C279               C280                C281               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00  
 C282                C283              C284              C285              C286             
 Min.   :  0.00000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C287             C288             C289             C290            C291           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C292            C293             C294             C295             C296            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C297             C298            C299            C300             C301            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C302             C303             C304            C305              C306            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.000   Min.   :  0.00  
 C307               C308                C309                C310              
 Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0.0000  
 C311               C312             C313              C314              C315            
 Min.   :  0.0000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C316             C317             C318             C319             C320            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C321             C322             C323             C324             C325            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C326            C327            C328             C329             C330           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C331             C332             C333             C334               C335              
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0000   Min.   :  0.0000  
 C336                C337               C338                C339             
 Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.000  
 C340               C341              C342              C343             C344            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C345             C346             C347             C348             C349            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C350             C351             C352            C353          C354           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
 C355            C356             C357             C358             C359            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C360             C361              C362               C363                C364               
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000  
 C365                C366                C367               C368              
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C369              C370             C371             C372             C373            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C374             C375             C376            C377             C378            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C379            C380          C381            C382            C383           
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C384             C385             C386            C387             C388            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C389              C390               C391                C392               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000  
 C393                C394               C395                C396              
 Min.   :0.000e+00   Min.   :0.00e+00   Min.   :  0.00000   Min.   :  0.0000  
 C397              C398             C399             C400             C401            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C402             C403             C404             C405             C406           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C407            C408            C409            C410            C411         
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0  
 C412             C413            C414             C415             C416            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C417              C418               C419                C420               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   : 0.000000  
 C421                C422                C423               C424              
 Min.   :0.000e+00   Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.0000  
 C425              C426             C427             C428             C429            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C430             C431             C432             C433          C434           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0   Min.   :  0.0  
 C435            C436            C437            C438            C439           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C440             C441             C442             C443             C444            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C445              C446             C447               C448                C449               
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00  
 C450                C451                C452              C453             C454            
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C455             C456             C457             C458             C459            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C460             C461            C462            C463            C464           
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C465            C466            C467             C468             C469            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C470             C471             C472             C473              C474             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C475               C476               C477          C478                C479              
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :0.000e+00   Min.   :  0.0000  
 C480               C481              C482             C483             C484            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C485             C486             C487             C488             C489            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C490          C491            C492            C493            C494           
 Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C495             C496             C497             C498             C499            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C500             C501              C502              C503             C504               
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :0.000e+00  
 C505              C506                C507               C508             C509             
 Min.   : 0.0000   Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.000  
 C510             C511             C512             C513             C514            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C515             C516             C517             C518             C519           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C520            C521            C522          C523             C524            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.00   Min.   :  0.00  
 C525            C526             C527             C528             C529             
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C530              C531               C532                C533             
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :0.0e+00  
 C534                C535               C536              C537              C538            
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C539             C540             C541             C542             C543            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C544             C545             C546            C547            C548           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C549            C550            C551             C552             C553           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C554             C555             C556              C557             C558             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.00   Min.   :  0.000  
 C559               C560                C561          C562                C563             
 Min.   :  0.0000   Min.   :0.000e+00   Min.   :  0   Min.   :  0.00000   Min.   :  0.000  
 C564              C565              C566             C567             C568            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C569             C570             C571             C572             C573           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C574            C575          C576            C577            C578           
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C579             C580             C581             C582             C583            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C584              C585              C586               C587               C588               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   : 0.000000  
 C589                C590               C591               C592              C593             
 Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C594            C595             C596             C597             C598            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C599          C600            C601            C602            C603            C604           
 Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C605          C606             C607             C608            C609            
 Min.   :  0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
 C610            C611              C612              C613              C614              
 Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
 C615                C616              C617                C618               
 Min.   :  0.00000   Min.   :0.0e+00   Min.   :0.000e+00   Min.   :0.000e+00  
 C619               C620              C621              C622             C623            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C624             C625             C626             C627             C628           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C629            C630            C631            C632            C633            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C634             C635             C636             C637            C638             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.000  
 C639              C640              C641               C642               C643               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000  
 C644              C645          C646          C647                C648              
 Min.   : 0.0000   Min.   :  0   Min.   :  0   Min.   :  0.00000   Min.   :  0.0000  
 C649              C650              C651             C652             C653            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C654             C655             C656             C657            C658            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
 C659             C660             C661             C662             C663           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C664             C665              C666              C667              C668              
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
 C669               C670                C671                C672          C673         
 Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0   Min.   :  0  
 C674          C675                C676               C677               C678             
 Min.   :  0   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000  
 C679              C680              C681             C682             C683           
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C684             C685             C686             C687             C688            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C689             C690             C691             C692              C693             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C694              C695               C696               C697              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C698                C699                C700          C701          C702         
 Min.   :  0.00000   Min.   : 0.000000   Min.   :  0   Min.   :  0   Min.   :  0  
 C703                C704                C705               C706              
 Min.   : 0.000000   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C707              C708              C709              C710              C711            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C712             C713            C714             C715             C716            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C717            C718              C719              C720              C721             
 Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C722               C723               C724               C725               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000  
 C726                C727                C728          C729          C730         
 Min.   :0.000e+00   Min.   :0.000e+00   Min.   :  0   Min.   :  0   Min.   :  0  
 C731          C732                C733                C734               C735              
 Min.   :  0   Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C736              C737              C738              C739             C740            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C741              C742              C743              C744              C745             
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C746              C747              C748              C749               C750              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C751                C752                C753                C754                C755         
 Min.   :  0.00000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :0.000e+00   Min.   :  0  
 C756          C757          C758          C759          C760          C761               
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.000000  
 C762                C763                C764               C765              
 Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C766               C767              C768             C769              C770              
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000  
 C771              C772               C773               C774               C775              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C776                C777                C778                C779               
 Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000  
 C780             C781          C782          C783          C784          C785           
 Min.   : 0.000   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :0.000  
 [ reached getOption("max.print") -- omitted 5 rows ]
summary(train)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
 C1            C2            C3            C4            C5            C6           
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C7            C8            C9            C10           C11           C12          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C13                C14                 C15                C16               C17          
 Min.   :  0.0000   Min.   :0.000e+00   Min.   :  0.0000   Min.   :0.00000   Min.   :  0  
 C18           C19           C20           C21           C22           C23          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C24           C25           C26           C27           C28           C29          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C30           C31           C32           C33                 C34                
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :0.000e+00   Min.   :0.000e+00  
 C35                 C36                 C37                 C38               
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000  
 C39                C40                C41                C42               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C43                C44                C45                C46               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C47                C48                 C49                 C50                
 Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000  
 C51                 C52                 C53           C54           C55          
 Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0   Min.   :  0   Min.   :  0  
 C56           C57           C58           C59                 C60              
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.000000   Min.   : 0.0000  
 C61                C62                 C63                C64               
 Min.   :0.00e+00   Min.   : 0.000000   Min.   :  0.0000   Min.   :  0.0000  
 C65                C66                C67                C68              C69             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.00  
 C70              C71               C72               C73               C74              
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C75               C76               C77               C78                C79               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C80                 C81                 C82                 C83           C84          
 Min.   :  0.00000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0   Min.   :  0  
 C85           C86           C87                 C88                C89               
 Min.   :  0   Min.   :  0   Min.   :0.000e+00   Min.   :0.00e+00   Min.   : 0.00000  
 C90                 C91                C92                C93               C94              
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C95              C96               C97               C98               C99             
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C100             C101             C102             C103              C104             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C105              C106              C107              C108               C109              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C110                C111               C112          C113          C114               
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0   Min.   :  0   Min.   :0.000e+00  
 C115                C116                C117                C118              
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000  
 C119              C120              C121              C122              C123            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C124             C125             C126             C127             C128            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C129             C130             C131             C132             C133            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C134              C135              C136              C137               C138              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C139                C140                C141          C142          C143              
 Min.   :  0.00000   Min.   : 0.000000   Min.   :  0   Min.   :  0   Min.   : 0.00000  
 C144                C145               C146              C147              C148             
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C149             C150             C151            C152             C153           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0  
 C154            C155            C156            C157             C158            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C159             C160             C161             C162             C163            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C164              C165              C166               C167               C168             
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   : 0.0000  
 C169          C170                C171               C172               C173            
 Min.   :  0   Min.   :0.0000000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00  
 C174             C175              C176             C177             C178            
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C179             C180             C181             C182            C183           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C184            C185            C186          C187             C188            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.00   Min.   :  0.00  
 C189             C190             C191             C192             C193             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C194              C195               C196               C197               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :0.000e+00  
 C198                C199               C200               C201              C202             
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C203             C204             C205             C206             C207            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C208            C209            C210          C211            C212            C213           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C214            C215            C216             C217             C218            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C219             C220            C221              C222              C223              
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
 C224                C225                C226                C227              
 Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.0000  
 C228              C229              C230              C231             C232           
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.0  
 C233             C234             C235             C236            C237           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C238            C239          C240            C241            C242            C243           
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C244            C245             C246            C247             C248            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C249              C250              C251               C252               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000  
 C253                C254                C255              C256              C257             
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C258              C259             C260            C261            C262            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C263             C264            C265            C266            C267            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C268             C269            C270            C271            C272            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C273             C274             C275             C276             C277             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C278              C279               C280                C281               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00  
 C282                C283              C284              C285              C286             
 Min.   :  0.00000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C287             C288             C289             C290            C291           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C292            C293             C294             C295             C296            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C297             C298            C299            C300             C301            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C302             C303             C304            C305              C306            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.000   Min.   :  0.00  
 C307               C308                C309                C310              
 Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0.0000  
 C311               C312             C313              C314              C315            
 Min.   :  0.0000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C316             C317             C318             C319             C320            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C321             C322             C323             C324             C325            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C326            C327            C328             C329             C330           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C331             C332             C333             C334               C335              
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0000   Min.   :  0.0000  
 C336                C337               C338                C339             
 Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.000  
 C340               C341              C342              C343             C344            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C345             C346             C347             C348             C349            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C350             C351             C352            C353          C354           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
 C355            C356             C357             C358             C359            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C360             C361              C362               C363                C364               
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000  
 C365                C366                C367               C368              
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C369              C370             C371             C372             C373            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C374             C375             C376            C377             C378            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C379            C380          C381            C382            C383           
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C384             C385             C386            C387             C388            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C389              C390               C391                C392               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000  
 C393                C394               C395                C396              
 Min.   :0.000e+00   Min.   :0.00e+00   Min.   :  0.00000   Min.   :  0.0000  
 C397              C398             C399             C400             C401            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C402             C403             C404             C405             C406           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C407            C408            C409            C410            C411         
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0  
 C412             C413            C414             C415             C416            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C417              C418               C419                C420               
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   : 0.000000  
 C421                C422                C423               C424              
 Min.   :0.000e+00   Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.0000  
 C425              C426             C427             C428             C429            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C430             C431             C432             C433          C434           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0   Min.   :  0.0  
 C435            C436            C437            C438            C439           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C440             C441             C442             C443             C444            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C445              C446             C447               C448                C449               
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00  
 C450                C451                C452              C453             C454            
 Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C455             C456             C457             C458             C459            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C460             C461            C462            C463            C464           
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C465            C466            C467             C468             C469            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C470             C471             C472             C473              C474             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C475               C476               C477          C478                C479              
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :0.000e+00   Min.   :  0.0000  
 C480               C481              C482             C483             C484            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C485             C486             C487             C488             C489            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C490          C491            C492            C493            C494           
 Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C495             C496             C497             C498             C499            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C500             C501              C502              C503             C504               
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :0.000e+00  
 C505              C506                C507               C508             C509             
 Min.   : 0.0000   Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.000  
 C510             C511             C512             C513             C514            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C515             C516             C517             C518             C519           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C520            C521            C522          C523             C524            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.00   Min.   :  0.00  
 C525            C526             C527             C528             C529             
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C530              C531               C532                C533             
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :0.0e+00  
 C534                C535               C536              C537              C538            
 Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C539             C540             C541             C542             C543            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C544             C545             C546            C547            C548           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C549            C550            C551             C552             C553           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C554             C555             C556              C557             C558             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.00   Min.   :  0.000  
 C559               C560                C561          C562                C563             
 Min.   :  0.0000   Min.   :0.000e+00   Min.   :  0   Min.   :  0.00000   Min.   :  0.000  
 C564              C565              C566             C567             C568            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C569             C570             C571             C572             C573           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C574            C575          C576            C577            C578           
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C579             C580             C581             C582             C583            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C584              C585              C586               C587               C588               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   : 0.000000  
 C589                C590               C591               C592              C593             
 Min.   :0.000e+00   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C594            C595             C596             C597             C598            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C599          C600            C601            C602            C603            C604           
 Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C605          C606             C607             C608            C609            
 Min.   :  0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
 C610            C611              C612              C613              C614              
 Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
 C615                C616              C617                C618               
 Min.   :  0.00000   Min.   :0.0e+00   Min.   :0.000e+00   Min.   :0.000e+00  
 C619               C620              C621              C622             C623            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C624             C625             C626             C627             C628           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C629            C630            C631            C632            C633            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C634             C635             C636             C637            C638             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.000  
 C639              C640              C641               C642               C643               
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000  
 C644              C645          C646          C647                C648              
 Min.   : 0.0000   Min.   :  0   Min.   :  0   Min.   :  0.00000   Min.   :  0.0000  
 C649              C650              C651             C652             C653            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C654             C655             C656             C657            C658            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
 C659             C660             C661             C662             C663           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C664             C665              C666              C667              C668              
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
 C669               C670                C671                C672          C673         
 Min.   :  0.0000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :  0   Min.   :  0  
 C674          C675                C676               C677               C678             
 Min.   :  0   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000  
 C679              C680              C681             C682             C683           
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C684             C685             C686             C687             C688            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C689             C690             C691             C692              C693             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C694              C695               C696               C697              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C698                C699                C700          C701          C702         
 Min.   :  0.00000   Min.   : 0.000000   Min.   :  0   Min.   :  0   Min.   :  0  
 C703                C704                C705               C706              
 Min.   : 0.000000   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C707              C708              C709              C710              C711            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C712             C713            C714             C715             C716            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C717            C718              C719              C720              C721             
 Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C722               C723               C724               C725               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000  
 C726                C727                C728          C729          C730         
 Min.   :0.000e+00   Min.   :0.000e+00   Min.   :  0   Min.   :  0   Min.   :  0  
 C731          C732                C733                C734               C735              
 Min.   :  0   Min.   :0.000e+00   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C736              C737              C738              C739             C740            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C741              C742              C743              C744              C745             
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C746              C747              C748              C749               C750              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C751                C752                C753                C754                C755         
 Min.   :  0.00000   Min.   :  0.00000   Min.   :0.000e+00   Min.   :0.000e+00   Min.   :  0  
 C756          C757          C758          C759          C760          C761               
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.000000  
 C762                C763                C764               C765              
 Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
 C766               C767              C768             C769              C770              
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000  
 C771              C772               C773               C774               C775              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C776                C777                C778                C779               
 Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000  
 C780             C781          C782          C783          C784          C785           
 Min.   : 0.000   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :0.000  
 [ reached getOption("max.print") -- omitted 5 rows ]
summary(test)
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `exact_quantiles=TRUE` parameter.
 C1            C2            C3            C4            C5            C6           
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C7            C8            C9            C10           C11           C12          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C13           C14           C15           C16           C17           C18          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C19           C20           C21           C22           C23           C24          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C25           C26           C27           C28           C29           C30          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C31           C32           C33           C34               C35               
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.0000   Min.   :  0.0000  
 C36                C37                C38                C39               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C40                C41                C42               C43                C44               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C45                C46                C47               C48                C49               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C50           C51           C52           C53           C54           C55          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C56           C57           C58           C59           C60           C61          
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C62                C63                C64                C65               
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C66                C67               C68               C69               C70              
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C71               C72               C73               C74               C75              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C76               C77              C78                C79                C80               
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C81             C82           C83           C84           C85           C86          
 Min.   :0e+00   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C87           C88           C89                C90                C91               
 Min.   :  0   Min.   :  0   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C92                C93               C94               C95               C96              
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C97              C98              C99              C100             C101            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C102              C103              C104              C105              C106             
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C107              C108               C109              C110               C111              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C112          C113          C114          C115          C116               C117              
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0.0000   Min.   :  0.0000  
 C118               C119               C120              C121              C122             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C123             C124             C125             C126             C127            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C128             C129             C130            C131             C132           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0  
 C133             C134             C135              C136              C137             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C138               C139               C140          C141          C142             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0   Min.   : 0.0000  
 C143              C144              C145               C146              C147             
 Min.   : 0.0000   Min.   : 0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C148              C149             C150             C151             C152            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C153             C154             C155             C156             C157            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C158            C159             C160             C161             C162            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C163             C164              C165              C166               C167              
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C168          C169          C170          C171              C172              
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.0000   Min.   :  0.0000  
 C173              C174             C175              C176            C177            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0   Min.   :  0.00  
 C178             C179             C180             C181             C182           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C183            C184            C185            C186            C187            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C188            C189             C190             C191             C192            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C193              C194              C195               C196               C197         
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0  
 C198               C199               C200               C201              C202             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C203             C204             C205             C206             C207            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C208             C209            C210          C211            C212           
 Min.   :  0.00   Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0  
 C213            C214            C215            C216             C217            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C218             C219             C220             C221              C222             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C223               C224               C225          C226               C227              
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0.0000   Min.   :  0.0000  
 C228              C229              C230              C231             C232            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C233             C234            C235             C236            C237         
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0   Min.   :  0  
 C238            C239            C240            C241            C242          C243           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
 C244            C245             C246             C247             C248            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C249              C250              C251               C252               C253              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C254               C255               C256              C257              C258             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C259             C260             C261             C262             C263           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C264            C265          C266            C267             C268            
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C269            C270            C271            C272             C273            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C274            C275             C276             C277              C278             
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
 C279              C280               C281               C282               C283              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C284              C285              C286              C287             C288           
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.0  
 C289             C290             C291            C292            C293            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C294            C295            C296             C297             C298           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C299            C300             C301             C302             C303            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C304             C305              C306              C307               C308              
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C309              C310               C311               C312              C313             
 Min.   : 0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C314              C315          C316             C317             C318            
 Min.   :  0.000   Min.   :  0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C319            C320             C321             C322             C323            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C324            C325             C326            C327            C328            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C329             C330             C331             C332             C333             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C334               C335               C336               C337          C338              
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0.0000  
 C339               C340               C341              C342              C343           
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0  
 C344             C345             C346             C347            C348            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
 C349             C350             C351             C352            C353           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C354            C355          C356            C357             C358            
 Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C359             C360          C361             C362               C363             
 Min.   :  0.00   Min.   :  0   Min.   :  0.00   Min.   :  0.0000   Min.   : 0.0000  
 C364          C365          C366               C367               C368              
 Min.   :  0   Min.   :  0   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C369              C370             C371             C372             C373            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C374             C375          C376             C377             C378            
 Min.   :  0.00   Min.   :  0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C379            C380            C381            C382          C383          C384            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0   Min.   :  0.00  
 C385             C386             C387             C388             C389             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C390               C391               C392          C393          C394         
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0   Min.   :  0  
 C395              C396               C397              C398             C399            
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C400             C401            C402             C403            C404            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
 C405             C406            C407            C408            C409           
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C410            C411            C412          C413             C414            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.00   Min.   :  0.00  
 C415             C416             C417              C418               C419              
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C420          C421          C422          C423               C424            
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0.0000   Min.   :  0.00  
 C425              C426             C427             C428             C429            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C430             C431             C432             C433            C434           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
 C435            C436            C437            C438            C439           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C440            C441             C442             C443             C444            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C445              C446               C447               C448              C449         
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   : 0.0000   Min.   :  0  
 C450              C451               C452               C453             C454            
 Min.   : 0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.00  
 C455            C456             C457             C458             C459            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C460             C461            C462            C463            C464         
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0  
 C465            C466            C467            C468             C469            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
 C470             C471             C472            C473              C474             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.000   Min.   :  0.000  
 C475               C476              C477          C478          C479              
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0   Min.   :  0   Min.   :  0.0000  
 C480               C481              C482             C483             C484            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C485             C486             C487             C488             C489            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C490            C491            C492            C493            C494           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C495             C496             C497             C498             C499            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C500             C501              C502               C503               C504             
 Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000  
 C505          C506               C507               C508              C509             
 Min.   :  0   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C510             C511             C512             C513             C514            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C515            C516             C517             C518             C519         
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0  
 C520            C521            C522            C523            C524            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C525             C526             C527             C528             C529             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C530              C531               C532               C533          C534              
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0.0000  
 C535               C536              C537              C538             C539            
 Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C540             C541             C542             C543             C544            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C545             C546            C547            C548          C549           
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
 C550            C551             C552          C553             C554            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0   Min.   :  0.00   Min.   :  0.00  
 C555             C556             C557              C558               C559              
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C560            C561          C562              C563               C564             
 Min.   :0e+00   Min.   :  0   Min.   : 0.0000   Min.   :  0.0000   Min.   :  0.000  
 C565              C566             C567             C568             C569            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C570             C571             C572            C573            C574           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C575            C576            C577            C578            C579            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
 C580             C581             C582             C583             C584             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
 C585              C586               C587               C588          C589         
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0  
 C590          C591               C592              C593              C594            
 Min.   :  0   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C595             C596             C597             C598             C599           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
 C600            C601            C602            C603          C604            C605           
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0  
 C606            C607             C608             C609             C610            
 Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C611              C612              C613              C614               C615              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C616          C617          C618          C619               C620             
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0.0000   Min.   :  0.000  
 C621              C622             C623             C624             C625            
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C626             C627             C628            C629            C630           
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 C631            C632            C633             C634             C635            
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C636             C637             C638              C639              C640             
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C641               C642               C643               C644          C645         
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0   Min.   :  0  
 C646              C647               C648               C649              C650             
 Min.   : 0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
 C651             C652             C653             C654             C655            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C656             C657            C658            C659          C660           
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
 C661             C662          C663            C664             C665             
 Min.   :  0.00   Min.   :  0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.000  
 C666              C667              C668               C669              C670              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.0000  
 C671            C672          C673          C674          C675          C676              
 Min.   :0e+00   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0.0000  
 C677              C678              C679              C680              C681            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 C682             C683             C684             C685             C686            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C687             C688            C689             C690             C691            
 Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C692              C693             C694              C695               C696              
 Min.   :  0.000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
 C697               C698            C699          C700          C701          C702         
 Min.   :  0.0000   Min.   :0e+00   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C703          C704              C705               C706               C707             
 Min.   :  0   Min.   : 0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000  
 C708              C709              C710              C711             C712            
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
 C713             C714             C715             C716             C717            
 Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
 C718              C719              C720              C721             C722              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.0000  
 C723               C724               C725               C726              C727         
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   : 0.0000   Min.   :  0  
 C728          C729          C730          C731          C732          C733             
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.0000  
 C734               C735               C736              C737              C738             
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C739              C740              C741              C742              C743             
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
 C744              C745              C746              C747             C748              
 Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.0000  
 C749              C750               C751               C752             C753             
 Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00   Min.   : 0.0000  
 C754          C755          C756          C757          C758          C759         
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C760          C761          C762          C763              C764              
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   : 0.0000   Min.   :  0.0000  
 C765               C766               C767             C768               C769              
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.0000   Min.   :  0.0000  
 C770               C771               C772               C773              
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
 C774               C775               C776               C777               C778           
 Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :0e+00  
 C779          C780          C781          C782          C783          C784         
 Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0   Min.   :  0  
 C785           
 Min.   :0.000  
 [ reached getOption("max.print") -- omitted 5 rows ]

specify response and predictor

y="C785"
x<-setdiff(names(train),y)
x
  [1] "C1"   "C2"   "C3"   "C4"   "C5"   "C6"   "C7"   "C8"   "C9"   "C10"  "C11"  "C12" 
 [13] "C13"  "C14"  "C15"  "C16"  "C17"  "C18"  "C19"  "C20"  "C21"  "C22"  "C23"  "C24" 
 [25] "C25"  "C26"  "C27"  "C28"  "C29"  "C30"  "C31"  "C32"  "C33"  "C34"  "C35"  "C36" 
 [37] "C37"  "C38"  "C39"  "C40"  "C41"  "C42"  "C43"  "C44"  "C45"  "C46"  "C47"  "C48" 
 [49] "C49"  "C50"  "C51"  "C52"  "C53"  "C54"  "C55"  "C56"  "C57"  "C58"  "C59"  "C60" 
 [61] "C61"  "C62"  "C63"  "C64"  "C65"  "C66"  "C67"  "C68"  "C69"  "C70"  "C71"  "C72" 
 [73] "C73"  "C74"  "C75"  "C76"  "C77"  "C78"  "C79"  "C80"  "C81"  "C82"  "C83"  "C84" 
 [85] "C85"  "C86"  "C87"  "C88"  "C89"  "C90"  "C91"  "C92"  "C93"  "C94"  "C95"  "C96" 
 [97] "C97"  "C98"  "C99"  "C100" "C101" "C102" "C103" "C104" "C105" "C106" "C107" "C108"
[109] "C109" "C110" "C111" "C112" "C113" "C114" "C115" "C116" "C117" "C118" "C119" "C120"
[121] "C121" "C122" "C123" "C124" "C125" "C126" "C127" "C128" "C129" "C130" "C131" "C132"
[133] "C133" "C134" "C135" "C136" "C137" "C138" "C139" "C140" "C141" "C142" "C143" "C144"
[145] "C145" "C146" "C147" "C148" "C149" "C150" "C151" "C152" "C153" "C154" "C155" "C156"
[157] "C157" "C158" "C159" "C160" "C161" "C162" "C163" "C164" "C165" "C166" "C167" "C168"
[169] "C169" "C170" "C171" "C172" "C173" "C174" "C175" "C176" "C177" "C178" "C179" "C180"
[181] "C181" "C182" "C183" "C184" "C185" "C186" "C187" "C188" "C189" "C190" "C191" "C192"
[193] "C193" "C194" "C195" "C196" "C197" "C198" "C199" "C200" "C201" "C202" "C203" "C204"
[205] "C205" "C206" "C207" "C208" "C209" "C210" "C211" "C212" "C213" "C214" "C215" "C216"
[217] "C217" "C218" "C219" "C220" "C221" "C222" "C223" "C224" "C225" "C226" "C227" "C228"
[229] "C229" "C230" "C231" "C232" "C233" "C234" "C235" "C236" "C237" "C238" "C239" "C240"
[241] "C241" "C242" "C243" "C244" "C245" "C246" "C247" "C248" "C249" "C250" "C251" "C252"
[253] "C253" "C254" "C255" "C256" "C257" "C258" "C259" "C260" "C261" "C262" "C263" "C264"
[265] "C265" "C266" "C267" "C268" "C269" "C270" "C271" "C272" "C273" "C274" "C275" "C276"
[277] "C277" "C278" "C279" "C280" "C281" "C282" "C283" "C284" "C285" "C286" "C287" "C288"
[289] "C289" "C290" "C291" "C292" "C293" "C294" "C295" "C296" "C297" "C298" "C299" "C300"
[301] "C301" "C302" "C303" "C304" "C305" "C306" "C307" "C308" "C309" "C310" "C311" "C312"
[313] "C313" "C314" "C315" "C316" "C317" "C318" "C319" "C320" "C321" "C322" "C323" "C324"
[325] "C325" "C326" "C327" "C328" "C329" "C330" "C331" "C332" "C333" "C334" "C335" "C336"
[337] "C337" "C338" "C339" "C340" "C341" "C342" "C343" "C344" "C345" "C346" "C347" "C348"
[349] "C349" "C350" "C351" "C352" "C353" "C354" "C355" "C356" "C357" "C358" "C359" "C360"
[361] "C361" "C362" "C363" "C364" "C365" "C366" "C367" "C368" "C369" "C370" "C371" "C372"
[373] "C373" "C374" "C375" "C376" "C377" "C378" "C379" "C380" "C381" "C382" "C383" "C384"
[385] "C385" "C386" "C387" "C388" "C389" "C390" "C391" "C392" "C393" "C394" "C395" "C396"
[397] "C397" "C398" "C399" "C400" "C401" "C402" "C403" "C404" "C405" "C406" "C407" "C408"
[409] "C409" "C410" "C411" "C412" "C413" "C414" "C415" "C416" "C417" "C418" "C419" "C420"
[421] "C421" "C422" "C423" "C424" "C425" "C426" "C427" "C428" "C429" "C430" "C431" "C432"
[433] "C433" "C434" "C435" "C436" "C437" "C438" "C439" "C440" "C441" "C442" "C443" "C444"
[445] "C445" "C446" "C447" "C448" "C449" "C450" "C451" "C452" "C453" "C454" "C455" "C456"
[457] "C457" "C458" "C459" "C460" "C461" "C462" "C463" "C464" "C465" "C466" "C467" "C468"
[469] "C469" "C470" "C471" "C472" "C473" "C474" "C475" "C476" "C477" "C478" "C479" "C480"
[481] "C481" "C482" "C483" "C484" "C485" "C486" "C487" "C488" "C489" "C490" "C491" "C492"
[493] "C493" "C494" "C495" "C496" "C497" "C498" "C499" "C500" "C501" "C502" "C503" "C504"
[505] "C505" "C506" "C507" "C508" "C509" "C510" "C511" "C512" "C513" "C514" "C515" "C516"
[517] "C517" "C518" "C519" "C520" "C521" "C522" "C523" "C524" "C525" "C526" "C527" "C528"
[529] "C529" "C530" "C531" "C532" "C533" "C534" "C535" "C536" "C537" "C538" "C539" "C540"
[541] "C541" "C542" "C543" "C544" "C545" "C546" "C547" "C548" "C549" "C550" "C551" "C552"
[553] "C553" "C554" "C555" "C556" "C557" "C558" "C559" "C560" "C561" "C562" "C563" "C564"
[565] "C565" "C566" "C567" "C568" "C569" "C570" "C571" "C572" "C573" "C574" "C575" "C576"
[577] "C577" "C578" "C579" "C580" "C581" "C582" "C583" "C584" "C585" "C586" "C587" "C588"
[589] "C589" "C590" "C591" "C592" "C593" "C594" "C595" "C596" "C597" "C598" "C599" "C600"
[601] "C601" "C602" "C603" "C604" "C605" "C606" "C607" "C608" "C609" "C610" "C611" "C612"
[613] "C613" "C614" "C615" "C616" "C617" "C618" "C619" "C620" "C621" "C622" "C623" "C624"
[625] "C625" "C626" "C627" "C628" "C629" "C630" "C631" "C632" "C633" "C634" "C635" "C636"
[637] "C637" "C638" "C639" "C640" "C641" "C642" "C643" "C644" "C645" "C646" "C647" "C648"
[649] "C649" "C650" "C651" "C652" "C653" "C654" "C655" "C656" "C657" "C658" "C659" "C660"
[661] "C661" "C662" "C663" "C664" "C665" "C666" "C667" "C668" "C669" "C670" "C671" "C672"
[673] "C673" "C674" "C675" "C676" "C677" "C678" "C679" "C680" "C681" "C682" "C683" "C684"
[685] "C685" "C686" "C687" "C688" "C689" "C690" "C691" "C692" "C693" "C694" "C695" "C696"
[697] "C697" "C698" "C699" "C700" "C701" "C702" "C703" "C704" "C705" "C706" "C707" "C708"
[709] "C709" "C710" "C711" "C712" "C713" "C714" "C715" "C716" "C717" "C718" "C719" "C720"
[721] "C721" "C722" "C723" "C724" "C725" "C726" "C727" "C728" "C729" "C730" "C731" "C732"
[733] "C733" "C734" "C735" "C736" "C737" "C738" "C739" "C740" "C741" "C742" "C743" "C744"
[745] "C745" "C746" "C747" "C748" "C749" "C750" "C751" "C752" "C753" "C754" "C755" "C756"
[757] "C757" "C758" "C759" "C760" "C761" "C762" "C763" "C764" "C765" "C766" "C767" "C768"
[769] "C769" "C770" "C771" "C772" "C773" "C774" "C775" "C776" "C777" "C778" "C779" "C780"
[781] "C781" "C782" "C783" "C784"

set y as factor

model_cv<-h2o.deeplearning(x=x,y=y, training_frame = train,  distribution = "multinomial", activation="RectifierWithDropout", hidden=c(32,32,32), input_dropout_ratio=0.2, sparse=TRUE, l1=1e-5, epochs = 10, nfolds=5)
Dropping bad and constant columns: [C86, C85, C729, C728, C646, C645, C169, C760, C561, C53, C11, C55, C10, C54, C57, C12, C56, C58, C17, C19, C18, C731, C730, C20, C22, C21, C24, C23, C26, C25, C28, C27, C702, C701, C29, C700, C1, C2, C784, C3, C783, C4, C782, C5, C781, C6, C142, C7, C141, C8, C9, C31, C30, C32, C759, C758, C757, C756, C755, C477, C113, C674, C112, C673, C672, C84, C83].

  |                                                                                           
  |                                                                                     |   0%
  |                                                                                           
  |=====                                                                                |   5%
  |                                                                                           
  |==========                                                                           |  12%
  |                                                                                           
  |=============                                                                        |  15%
  |                                                                                           
  |===============                                                                      |  17%
  |                                                                                           
  |================                                                                     |  19%
  |                                                                                           
  |======================                                                               |  25%
  |                                                                                           
  |===========================                                                          |  32%
  |                                                                                           
  |==============================                                                       |  35%
  |                                                                                           
  |================================                                                     |  37%
  |                                                                                           
  |=====================================                                                |  44%
  |                                                                                           
  |==========================================                                           |  49%
  |                                                                                           
  |============================================                                         |  52%
  |                                                                                           
  |=============================================                                        |  53%
  |                                                                                           
  |==================================================                                   |  59%
  |                                                                                           
  |=========================================================                            |  67%
  |                                                                                           
  |============================================================                         |  71%
  |                                                                                           
  |=============================================================                        |  72%
  |                                                                                           
  |==================================================================                   |  77%
  |                                                                                           
  |=======================================================================              |  84%
  |                                                                                           
  |===========================================================================          |  88%
  |                                                                                           
  |=============================================================================        |  91%
  |                                                                                           
  |=================================================================================    |  96%
  |                                                                                           
  |=====================================================================================| 100%
model_cv
Model Details:
==============

H2OMultinomialModel: deeplearning
Model ID:  DeepLearning_model_R_1507322206419_4 
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 374.8 KB, 686,260 training samples, mini-batch size 1
  layer units             type dropout       l1       l2 mean_rate rate_rms momentum
1     1   717            Input 20.00 %                                              
2     2    32 RectifierDropout 50.00 % 0.000010 0.000000  0.032148 0.182078 0.000000
3     3    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000316 0.000184 0.000000
4     4    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000575 0.000316 0.000000
5     5    10          Softmax         0.000010 0.000000  0.002882 0.002806 0.000000
  mean_weight weight_rms mean_bias bias_rms
1                                          
2   -0.010521   0.067818  0.534664 0.228609
3   -0.036404   0.206775  0.633899 0.321838
4   -0.041562   0.222377  0.561128 0.422619
5   -0.503300   1.103185 -2.239528 1.251503


H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 10017 samples **

Training Set Metrics: 
=====================

MSE: (Extract with `h2o.mse`) 0.14834
RMSE: (Extract with `h2o.rmse`) 0.3851493
Logloss: (Extract with `h2o.logloss`) 0.4727512
Mean Per-Class Error: 0.1157331
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1   2    3   4   5   6   7    8   9  Error             Rate
0      918    0   6    2   4   7   4   0   33   2 0.0594 =       58 / 976
1        0 1131   3   14   0   0   1   2   27   2 0.0415 =     49 / 1,180
2        4    6 855   88  10   4  13   9   24   1 0.1568 =    159 / 1,014
3        0    1  11  985   0   9   0   5    9   3 0.0371 =     38 / 1,023
4        0    2   3    5 901   3   7   1   19  85 0.1218 =    125 / 1,026
5        5    1  10  193   2 560   4   0   63   6 0.3365 =      284 / 844
6        8    3   8    1   7  24 881   0   29   1 0.0842 =       81 / 962
7        3    1   9   38   3   0   0 940    3  29 0.0838 =     86 / 1,026
8        0    9   6   46   0   6   0   0  925   2 0.0694 =       69 / 994
9        2    1   0   97  19   1   0  21   21 810 0.1667 =      162 / 972
Totals 940 1155 911 1469 946 614 910 978 1153 941 0.1109 = 1,111 / 10,017

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.889089
2   2  0.948488
3   3  0.968853
4   4  0.980134
5   5  0.988020
6   6  0.993910
7   7  0.996606
8   8  0.998602
9   9  0.999601
10 10  1.000000



H2OMultinomialMetrics: deeplearning
** Reported on cross-validation data. **
** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **

Cross-Validation Set Metrics: 
=====================

Extract cross-validation frame with `h2o.getFrame("RTMP_sid_b48f_157")`
MSE: (Extract with `h2o.mse`) 0.1273986
RMSE: (Extract with `h2o.rmse`) 0.3569295
Logloss: (Extract with `h2o.logloss`) 0.4228517
Mean Per-Class Error: 0.09928181
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,xval = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.902633
2   2  0.953600
3   3  0.972850
4   4  0.982050
5   5  0.989433
6   6  0.994167
7   7  0.996483
8   8  0.998033
9   9  0.999283
10 10  1.000000


Cross-Validation Metrics Summary: 
                               mean           sd  cv_1_valid  cv_2_valid  cv_3_valid
accuracy                  0.9026182 0.0040974915  0.90128064   0.9097332   0.8924319
err                     0.097381756 0.0040974915 0.098719366  0.09026681  0.10756806
err_count                    1168.4    47.763165      1164.0      1086.0      1292.0
logloss                   0.4229333  0.020707238   0.4337107  0.39469606  0.47525612
max_per_class_error       0.2157862  0.015042614  0.21295474  0.22273567  0.21661238
mean_per_class_accuracy   0.9006914 0.0039779264  0.89941067  0.90786743  0.89104694
mean_per_class_error     0.09930864 0.0039779264  0.10058931 0.092132546 0.108953066
mse                      0.12742995  0.008456517  0.13102913  0.11791809  0.14929952
r2                       0.98473376 0.0010199259   0.9843297  0.98585975  0.98209006
rmse                      0.3565962  0.011599256  0.36197945  0.34339204  0.38639295
                         cv_4_valid  cv_5_valid
accuracy                  0.9038221  0.90582335
err                      0.09617787  0.09417667
err_count                    1155.0      1145.0
logloss                  0.40169317  0.40931046
max_per_class_error      0.24643198  0.18019626
mean_per_class_accuracy   0.9009753  0.90415645
mean_per_class_error     0.09902473  0.09584354
mse                     0.117703974 0.121199004
r2                         0.985955   0.9854344
rmse                     0.34308013  0.34813648
# View specified parameters of the deep learning model
 dl1@parameters
$model_id
[1] "DeepLearning_model_R_1507322206419_3"

$training_frame
[1] "RTMP_sid_b48f_157"

$validation_frame
[1] "RTMP_sid_b48f_158"

$activation
[1] "RectifierWithDropout"

$hidden
[1] 32 32 32

$seed
[1] -5.165887e+17

$input_dropout_ratio
[1] 0.2

$l1
[1] 1e-05

$distribution
[1] "multinomial"

$sparse
[1] TRUE

$x
  [1] "C13"  "C14"  "C15"  "C16"  "C33"  "C34"  "C35"  "C36"  "C37"  "C38"  "C39"  "C40" 
 [13] "C41"  "C42"  "C43"  "C44"  "C45"  "C46"  "C47"  "C48"  "C49"  "C50"  "C51"  "C52" 
 [25] "C59"  "C60"  "C61"  "C62"  "C63"  "C64"  "C65"  "C66"  "C67"  "C68"  "C69"  "C70" 
 [37] "C71"  "C72"  "C73"  "C74"  "C75"  "C76"  "C77"  "C78"  "C79"  "C80"  "C81"  "C82" 
 [49] "C87"  "C88"  "C89"  "C90"  "C91"  "C92"  "C93"  "C94"  "C95"  "C96"  "C97"  "C98" 
 [61] "C99"  "C100" "C101" "C102" "C103" "C104" "C105" "C106" "C107" "C108" "C109" "C110"
 [73] "C111" "C114" "C115" "C116" "C117" "C118" "C119" "C120" "C121" "C122" "C123" "C124"
 [85] "C125" "C126" "C127" "C128" "C129" "C130" "C131" "C132" "C133" "C134" "C135" "C136"
 [97] "C137" "C138" "C139" "C140" "C143" "C144" "C145" "C146" "C147" "C148" "C149" "C150"
[109] "C151" "C152" "C153" "C154" "C155" "C156" "C157" "C158" "C159" "C160" "C161" "C162"
[121] "C163" "C164" "C165" "C166" "C167" "C168" "C170" "C171" "C172" "C173" "C174" "C175"
[133] "C176" "C177" "C178" "C179" "C180" "C181" "C182" "C183" "C184" "C185" "C186" "C187"
[145] "C188" "C189" "C190" "C191" "C192" "C193" "C194" "C195" "C196" "C197" "C198" "C199"
[157] "C200" "C201" "C202" "C203" "C204" "C205" "C206" "C207" "C208" "C209" "C210" "C211"
[169] "C212" "C213" "C214" "C215" "C216" "C217" "C218" "C219" "C220" "C221" "C222" "C223"
[181] "C224" "C225" "C226" "C227" "C228" "C229" "C230" "C231" "C232" "C233" "C234" "C235"
[193] "C236" "C237" "C238" "C239" "C240" "C241" "C242" "C243" "C244" "C245" "C246" "C247"
[205] "C248" "C249" "C250" "C251" "C252" "C253" "C254" "C255" "C256" "C257" "C258" "C259"
[217] "C260" "C261" "C262" "C263" "C264" "C265" "C266" "C267" "C268" "C269" "C270" "C271"
[229] "C272" "C273" "C274" "C275" "C276" "C277" "C278" "C279" "C280" "C281" "C282" "C283"
[241] "C284" "C285" "C286" "C287" "C288" "C289" "C290" "C291" "C292" "C293" "C294" "C295"
[253] "C296" "C297" "C298" "C299" "C300" "C301" "C302" "C303" "C304" "C305" "C306" "C307"
[265] "C308" "C309" "C310" "C311" "C312" "C313" "C314" "C315" "C316" "C317" "C318" "C319"
[277] "C320" "C321" "C322" "C323" "C324" "C325" "C326" "C327" "C328" "C329" "C330" "C331"
[289] "C332" "C333" "C334" "C335" "C336" "C337" "C338" "C339" "C340" "C341" "C342" "C343"
[301] "C344" "C345" "C346" "C347" "C348" "C349" "C350" "C351" "C352" "C353" "C354" "C355"
[313] "C356" "C357" "C358" "C359" "C360" "C361" "C362" "C363" "C364" "C365" "C366" "C367"
[325] "C368" "C369" "C370" "C371" "C372" "C373" "C374" "C375" "C376" "C377" "C378" "C379"
[337] "C380" "C381" "C382" "C383" "C384" "C385" "C386" "C387" "C388" "C389" "C390" "C391"
[349] "C392" "C393" "C394" "C395" "C396" "C397" "C398" "C399" "C400" "C401" "C402" "C403"
[361] "C404" "C405" "C406" "C407" "C408" "C409" "C410" "C411" "C412" "C413" "C414" "C415"
[373] "C416" "C417" "C418" "C419" "C420" "C421" "C422" "C423" "C424" "C425" "C426" "C427"
[385] "C428" "C429" "C430" "C431" "C432" "C433" "C434" "C435" "C436" "C437" "C438" "C439"
[397] "C440" "C441" "C442" "C443" "C444" "C445" "C446" "C447" "C448" "C449" "C450" "C451"
[409] "C452" "C453" "C454" "C455" "C456" "C457" "C458" "C459" "C460" "C461" "C462" "C463"
[421] "C464" "C465" "C466" "C467" "C468" "C469" "C470" "C471" "C472" "C473" "C474" "C475"
[433] "C476" "C478" "C479" "C480" "C481" "C482" "C483" "C484" "C485" "C486" "C487" "C488"
[445] "C489" "C490" "C491" "C492" "C493" "C494" "C495" "C496" "C497" "C498" "C499" "C500"
[457] "C501" "C502" "C503" "C504" "C505" "C506" "C507" "C508" "C509" "C510" "C511" "C512"
[469] "C513" "C514" "C515" "C516" "C517" "C518" "C519" "C520" "C521" "C522" "C523" "C524"
[481] "C525" "C526" "C527" "C528" "C529" "C530" "C531" "C532" "C533" "C534" "C535" "C536"
[493] "C537" "C538" "C539" "C540" "C541" "C542" "C543" "C544" "C545" "C546" "C547" "C548"
[505] "C549" "C550" "C551" "C552" "C553" "C554" "C555" "C556" "C557" "C558" "C559" "C560"
[517] "C562" "C563" "C564" "C565" "C566" "C567" "C568" "C569" "C570" "C571" "C572" "C573"
[529] "C574" "C575" "C576" "C577" "C578" "C579" "C580" "C581" "C582" "C583" "C584" "C585"
[541] "C586" "C587" "C588" "C589" "C590" "C591" "C592" "C593" "C594" "C595" "C596" "C597"
[553] "C598" "C599" "C600" "C601" "C602" "C603" "C604" "C605" "C606" "C607" "C608" "C609"
[565] "C610" "C611" "C612" "C613" "C614" "C615" "C616" "C617" "C618" "C619" "C620" "C621"
[577] "C622" "C623" "C624" "C625" "C626" "C627" "C628" "C629" "C630" "C631" "C632" "C633"
[589] "C634" "C635" "C636" "C637" "C638" "C639" "C640" "C641" "C642" "C643" "C644" "C647"
[601] "C648" "C649" "C650" "C651" "C652" "C653" "C654" "C655" "C656" "C657" "C658" "C659"
[613] "C660" "C661" "C662" "C663" "C664" "C665" "C666" "C667" "C668" "C669" "C670" "C671"
[625] "C675" "C676" "C677" "C678" "C679" "C680" "C681" "C682" "C683" "C684" "C685" "C686"
[637] "C687" "C688" "C689" "C690" "C691" "C692" "C693" "C694" "C695" "C696" "C697" "C698"
[649] "C699" "C703" "C704" "C705" "C706" "C707" "C708" "C709" "C710" "C711" "C712" "C713"
[661] "C714" "C715" "C716" "C717" "C718" "C719" "C720" "C721" "C722" "C723" "C724" "C725"
[673] "C726" "C727" "C732" "C733" "C734" "C735" "C736" "C737" "C738" "C739" "C740" "C741"
[685] "C742" "C743" "C744" "C745" "C746" "C747" "C748" "C749" "C750" "C751" "C752" "C753"
[697] "C754" "C761" "C762" "C763" "C764" "C765" "C766" "C767" "C768" "C769" "C770" "C771"
[709] "C772" "C773" "C774" "C775" "C776" "C777" "C778" "C779" "C780"

$y
[1] "C785"
 # Examine the performance of the trained model
dl1 # display all performance metrics
Model Details:
==============

H2OMultinomialModel: deeplearning
Model ID:  DeepLearning_model_R_1507322206419_3 
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 409.8 KB, 600,000 training samples, mini-batch size 1
  layer units             type dropout       l1       l2 mean_rate rate_rms momentum
1     1   717            Input 20.00 %                                              
2     2    32 RectifierDropout 50.00 % 0.000010 0.000000  0.033193 0.184886 0.000000
3     3    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000381 0.000238 0.000000
4     4    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000562 0.000300 0.000000
5     5    10          Softmax         0.000010 0.000000  0.002876 0.002770 0.000000
  mean_weight weight_rms mean_bias bias_rms
1                                          
2   -0.012797   0.068251  0.489545 0.154301
3   -0.016404   0.211795  0.786406 0.364354
4   -0.047360   0.210892  0.593834 0.442483
5   -0.451849   1.028717 -2.187110 1.001856


H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 9896 samples **

Training Set Metrics: 
=====================

MSE: (Extract with `h2o.mse`) 0.1733473
RMSE: (Extract with `h2o.rmse`) 0.41635
Logloss: (Extract with `h2o.logloss`) 0.5235443
Mean Per-Class Error: 0.1105624
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4   5   6   7    8   9  Error            Rate
0      906    0   31    0   1   6   9   1    6   0 0.0563 =      54 / 960
1        0 1042   14    6   0   1   3   0   27   0 0.0467 =    51 / 1,093
2        4    2  948    6   1   2  18   8   21   0 0.0614 =    62 / 1,010
3        0    2   33  883   0  25   2   3   23   3 0.0934 =      91 / 974
4        3    0   14    1 726 103   9   1   39  66 0.2453 =     236 / 962
5        4    1   20   68   1 742   6   1   39   3 0.1616 =     143 / 885
6        3    2   30    0   2  11 911   0    6   0 0.0560 =      54 / 965
7        3    4   19   37   4   5   0 937   14  17 0.0990 =   103 / 1,040
8        6   10   24   29   0  27   6   0  889   0 0.1029 =     102 / 991
9        3    2    3   34   7  65   2  32   38 830 0.1831 =   186 / 1,016
Totals 932 1065 1136 1064 742 987 966 983 1102 919 0.1093 = 1,082 / 9,896

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.890663
2   2  0.939875
3   3  0.960085
4   4  0.976960
5   5  0.984640
6   6  0.990097
7   7  0.993836
8   8  0.997373
9   9  0.999293
10 10  1.000000


H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **

Validation Set Metrics: 
=====================

Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1692767
RMSE: (Extract with `h2o.rmse`) 0.4114325
Logloss: (Extract with `h2o.logloss`) 0.5244263
Mean Per-Class Error: 0.1055435
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4   5   6   7    8   9  Error             Rate
0      944    0   21    1   0   4   5   3    2   0 0.0367 =       36 / 980
1        0 1092    9    3   0   1   4   0   26   0 0.0379 =     43 / 1,135
2        3    0  966    6   3   3  10  10   30   1 0.0640 =     66 / 1,032
3        2    0   33  930   0  14   1   7   21   2 0.0792 =     80 / 1,010
4        1    0   10    2 731 106  18   1   39  74 0.2556 =      251 / 982
5        7    1    8   68   0 751   7   4   46   0 0.1581 =      141 / 892
6       16    3   34    1   2  13 884   0    5   0 0.0772 =       74 / 958
7        0    5   33   28   1   2   0 936    6  17 0.0895 =     92 / 1,028
8        7    3   20   17   2  28  10   5  875   7 0.1016 =       99 / 974
9        6    3    3   30   4  56   2  21   32 852 0.1556 =    157 / 1,009
Totals 986 1107 1137 1086 743 978 941 987 1082 953 0.1039 = 1,039 / 10,000

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.896100
2   2  0.940300
3   3  0.960000
4   4  0.975000
5   5  0.982500
6   6  0.988000
7   7  0.993300
8   8  0.996600
9   9  0.999600
10 10  1.000000
 h2o.performance(dl1) # training metrics
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 9896 samples **

Training Set Metrics: 
=====================

MSE: (Extract with `h2o.mse`) 0.1733473
RMSE: (Extract with `h2o.rmse`) 0.41635
Logloss: (Extract with `h2o.logloss`) 0.5235443
Mean Per-Class Error: 0.1105624
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4   5   6   7    8   9  Error            Rate
0      906    0   31    0   1   6   9   1    6   0 0.0563 =      54 / 960
1        0 1042   14    6   0   1   3   0   27   0 0.0467 =    51 / 1,093
2        4    2  948    6   1   2  18   8   21   0 0.0614 =    62 / 1,010
3        0    2   33  883   0  25   2   3   23   3 0.0934 =      91 / 974
4        3    0   14    1 726 103   9   1   39  66 0.2453 =     236 / 962
5        4    1   20   68   1 742   6   1   39   3 0.1616 =     143 / 885
6        3    2   30    0   2  11 911   0    6   0 0.0560 =      54 / 965
7        3    4   19   37   4   5   0 937   14  17 0.0990 =   103 / 1,040
8        6   10   24   29   0  27   6   0  889   0 0.1029 =     102 / 991
9        3    2    3   34   7  65   2  32   38 830 0.1831 =   186 / 1,016
Totals 932 1065 1136 1064 742 987 966 983 1102 919 0.1093 = 1,082 / 9,896

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.890663
2   2  0.939875
3   3  0.960085
4   4  0.976960
5   5  0.984640
6   6  0.990097
7   7  0.993836
8   8  0.997373
9   9  0.999293
10 10  1.000000
 h2o.performance(dl1, valid = TRUE) # validation metrics
H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **

Validation Set Metrics: 
=====================

Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1692767
RMSE: (Extract with `h2o.rmse`) 0.4114325
Logloss: (Extract with `h2o.logloss`) 0.5244263
Mean Per-Class Error: 0.1055435
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4   5   6   7    8   9  Error             Rate
0      944    0   21    1   0   4   5   3    2   0 0.0367 =       36 / 980
1        0 1092    9    3   0   1   4   0   26   0 0.0379 =     43 / 1,135
2        3    0  966    6   3   3  10  10   30   1 0.0640 =     66 / 1,032
3        2    0   33  930   0  14   1   7   21   2 0.0792 =     80 / 1,010
4        1    0   10    2 731 106  18   1   39  74 0.2556 =      251 / 982
5        7    1    8   68   0 751   7   4   46   0 0.1581 =      141 / 892
6       16    3   34    1   2  13 884   0    5   0 0.0772 =       74 / 958
7        0    5   33   28   1   2   0 936    6  17 0.0895 =     92 / 1,028
8        7    3   20   17   2  28  10   5  875   7 0.1016 =       99 / 974
9        6    3    3   30   4  56   2  21   32 852 0.1556 =    157 / 1,009
Totals 986 1107 1137 1086 743 978 941 987 1082 953 0.1039 = 1,039 / 10,000

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.896100
2   2  0.940300
3   3  0.960000
4   4  0.975000
5   5  0.982500
6   6  0.988000
7   7  0.993300
8   8  0.996600
9   9  0.999600
10 10  1.000000
 # Get MSE only
 h2o.mse(dl1, valid = TRUE)
[1] 0.1692767
 # Cross-validated MSE
 h2o.mse(model_cv, xval = TRUE)
[1] 0.1273986

apply predication to test data

checkpint model

model_chkp
Model Details:
==============

H2OMultinomialModel: deeplearning
Model ID:  DeepLearning_model_R_1507322206419_5 
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 386.8 KB, 1,299,513 training samples, mini-batch size 1
  layer units             type dropout       l1       l2 mean_rate rate_rms momentum
1     1   717            Input 20.00 %                                              
2     2    32 RectifierDropout 50.00 % 0.000010 0.000000  0.030488 0.175945 0.000000
3     3    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000350 0.000289 0.000000
4     4    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000523 0.000361 0.000000
5     5    10          Softmax         0.000010 0.000000  0.003678 0.003975 0.000000
  mean_weight weight_rms mean_bias bias_rms
1                                          
2   -0.015660   0.072580  0.532219 0.247582
3   -0.010307   0.215607  0.707758 0.400854
4   -0.042087   0.220341  0.552796 0.537820
5   -0.921071   1.392229 -4.404200 1.106735


H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 10081 samples **

Training Set Metrics: 
=====================

MSE: (Extract with `h2o.mse`) 0.1690245
RMSE: (Extract with `h2o.rmse`) 0.4111259
Logloss: (Extract with `h2o.logloss`) 0.5166035
Mean Per-Class Error: 0.1141356
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4    5    6   7    8   9  Error             Rate
0      885    0  104    0   1   13    5   0    5   1 0.1272 =    129 / 1,014
1        0 1110   15    7   1    5    2   0   37   0 0.0569 =     67 / 1,177
2        2    0  926    3   3    3    9   0   17   2 0.0404 =       39 / 965
3        0    2   65  909   0   14    3   0   10   1 0.0946 =     95 / 1,004
4        0    1   17    1 829   55   14   1    7  33 0.1347 =      129 / 958
5        1    1   25   51   2  767   15   0   31   2 0.1430 =      128 / 895
6        5    0   23    0   1   11  971   0    1   0 0.0405 =     41 / 1,012
7        0    4   71   16   1   13    2 930    4  32 0.1333 =    143 / 1,073
8        0   10   38   15   0   23   10   1  891   1 0.0991 =       98 / 989
9        0    1    8   31   8  189    2   9   22 724 0.2716 =      270 / 994
Totals 893 1129 1292 1033 846 1093 1033 941 1025 796 0.1130 = 1,139 / 10,081

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.887015
2   2  0.943656
3   3  0.962305
4   4  0.976193
5   5  0.983037
6   6  0.990477
7   7  0.995338
8   8  0.997421
9   9  0.999008
10 10  1.000000


H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **

Validation Set Metrics: 
=====================

Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1686103
RMSE: (Extract with `h2o.rmse`) 0.4106219
Logloss: (Extract with `h2o.logloss`) 0.5216791
Mean Per-Class Error: 0.1149102
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4    5   6   7   8   9  Error             Rate
0      844    0  109    1   0   14   8   2   2   0 0.1388 =      136 / 980
1        0 1097   11    2   0    1   4   0  20   0 0.0335 =     38 / 1,135
2        1    0  986    4   4    3   9   3  21   1 0.0446 =     46 / 1,032
3        0    0   48  921   0   16   2   5  17   1 0.0881 =     89 / 1,010
4        0    0   13    0 814   64  23   0   8  60 0.1711 =      168 / 982
5        1    1   18   59   0  766  13   2  31   1 0.1413 =      126 / 892
6        3    2   30    1   0   15 907   0   0   0 0.0532 =       51 / 958
7        0    4   84   20   3    7   2 872   4  32 0.1518 =    156 / 1,028
8        0    2   36   14   2   29  16   2 869   4 0.1078 =      105 / 974
9        2    3    7   17   8  158   2   5  19 788 0.2190 =    221 / 1,009
Totals 851 1109 1342 1039 831 1073 986 891 991 887 0.1136 = 1,136 / 10,000

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.886400
2   2  0.945300
3   3  0.965300
4   4  0.976100
5   5  0.981800
6   6  0.989000
7   7  0.994500
8   8  0.997500
9   9  0.999300
10 10  1.000000

save model

model_path<-h2o.saveModel(object=dl1,path=getwd(), force=TRUE)
print(model_path)
[1] "C:\\Users\\r631758\\Desktop\\r631758\\R codes\\H2O\\exercise\\DeepLearning_model_R_1507322206419_3"

retrieve model by h2o key

model
Model Details:
==============

H2OMultinomialModel: deeplearning
Model ID:  DeepLearning_model_R_1507322206419_5 
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 25,418 weights/biases, 386.8 KB, 1,299,513 training samples, mini-batch size 1
  layer units             type dropout       l1       l2 mean_rate rate_rms momentum
1     1   717            Input 20.00 %                                              
2     2    32 RectifierDropout 50.00 % 0.000010 0.000000  0.030488 0.175945 0.000000
3     3    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000350 0.000289 0.000000
4     4    32 RectifierDropout 50.00 % 0.000010 0.000000  0.000523 0.000361 0.000000
5     5    10          Softmax         0.000010 0.000000  0.003678 0.003975 0.000000
  mean_weight weight_rms mean_bias bias_rms
1                                          
2   -0.015660   0.072580  0.532219 0.247582
3   -0.010307   0.215607  0.707758 0.400854
4   -0.042087   0.220341  0.552796 0.537820
5   -0.921071   1.392229 -4.404200 1.106735


H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 10081 samples **

Training Set Metrics: 
=====================

MSE: (Extract with `h2o.mse`) 0.1690245
RMSE: (Extract with `h2o.rmse`) 0.4111259
Logloss: (Extract with `h2o.logloss`) 0.5166035
Mean Per-Class Error: 0.1141356
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4    5    6   7    8   9  Error             Rate
0      885    0  104    0   1   13    5   0    5   1 0.1272 =    129 / 1,014
1        0 1110   15    7   1    5    2   0   37   0 0.0569 =     67 / 1,177
2        2    0  926    3   3    3    9   0   17   2 0.0404 =       39 / 965
3        0    2   65  909   0   14    3   0   10   1 0.0946 =     95 / 1,004
4        0    1   17    1 829   55   14   1    7  33 0.1347 =      129 / 958
5        1    1   25   51   2  767   15   0   31   2 0.1430 =      128 / 895
6        5    0   23    0   1   11  971   0    1   0 0.0405 =     41 / 1,012
7        0    4   71   16   1   13    2 930    4  32 0.1333 =    143 / 1,073
8        0   10   38   15   0   23   10   1  891   1 0.0991 =       98 / 989
9        0    1    8   31   8  189    2   9   22 724 0.2716 =      270 / 994
Totals 893 1129 1292 1033 846 1093 1033 941 1025 796 0.1130 = 1,139 / 10,081

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.887015
2   2  0.943656
3   3  0.962305
4   4  0.976193
5   5  0.983037
6   6  0.990477
7   7  0.995338
8   8  0.997421
9   9  0.999008
10 10  1.000000


H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **

Validation Set Metrics: 
=====================

Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.1686103
RMSE: (Extract with `h2o.rmse`) 0.4106219
Logloss: (Extract with `h2o.logloss`) 0.5216791
Mean Per-Class Error: 0.1149102
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4    5   6   7   8   9  Error             Rate
0      844    0  109    1   0   14   8   2   2   0 0.1388 =      136 / 980
1        0 1097   11    2   0    1   4   0  20   0 0.0335 =     38 / 1,135
2        1    0  986    4   4    3   9   3  21   1 0.0446 =     46 / 1,032
3        0    0   48  921   0   16   2   5  17   1 0.0881 =     89 / 1,010
4        0    0   13    0 814   64  23   0   8  60 0.1711 =      168 / 982
5        1    1   18   59   0  766  13   2  31   1 0.1413 =      126 / 892
6        3    2   30    1   0   15 907   0   0   0 0.0532 =       51 / 958
7        0    4   84   20   3    7   2 872   4  32 0.1518 =    156 / 1,028
8        0    2   36   14   2   29  16   2 869   4 0.1078 =      105 / 974
9        2    3    7   17   8  158   2   5  19 788 0.2190 =    221 / 1,009
Totals 851 1109 1342 1039 831 1073 986 891 991 887 0.1136 = 1,136 / 10,000

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.886400
2   2  0.945300
3   3  0.965300
4   4  0.976100
5   5  0.981800
6   6  0.989000
7   7  0.994500
8   8  0.997500
9   9  0.999300
10 10  1.000000

world record run used epochs=8000

saved_model
Model Details:
==============

H2OMultinomialModel: deeplearning
Model ID:  DeepLearning_model_R_1507322206419_6 
Status of Neuron Layers: predicting C785, 10-class classification, multinomial distribution, CrossEntropy loss, 3,904,522 weights/biases, 44.8 MB, 600,000 training samples, mini-batch size 1
  layer units             type dropout       l1       l2 mean_rate rate_rms momentum
1     1   717            Input 20.00 %                                              
2     2  1024 RectifierDropout 50.00 % 0.000010 0.000000  0.191445 0.298210 0.000000
3     3  1024 RectifierDropout 50.00 % 0.000010 0.000000  0.006911 0.006140 0.000000
4     4  2048 RectifierDropout 50.00 % 0.000010 0.000000  0.028010 0.024994 0.000000
5     5    10          Softmax         0.000010 0.000000  0.016443 0.055269 0.000000
  mean_weight weight_rms mean_bias bias_rms
1                                          
2    0.005567   0.045159  0.232284 0.075551
3   -0.007659   0.038646  0.963923 0.035513
4   -0.005470   0.029926  0.786008 0.092608
5   -0.052810   0.046578 -1.113460 0.090975


H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on temporary training frame with 9949 samples **

Training Set Metrics: 
=====================

MSE: (Extract with `h2o.mse`) 0.007523151
RMSE: (Extract with `h2o.rmse`) 0.0867361
Logloss: (Extract with `h2o.logloss`) 0.02923425
Mean Per-Class Error: 0.008487407
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2   3   4   5   6    7   8    9  Error         Rate
0      980    0    0   1   1   0   1    0   0    1 0.0041 =    4 / 984
1        0 1097    3   0   0   0   0    1   0    0 0.0036 =  4 / 1,101
2        0    0  996   3   0   0   0    2   0    1 0.0060 =  6 / 1,002
3        0    0    3 977   0   3   0    1   2    0 0.0091 =    9 / 986
4        0    0    1   0 983   0   1    3   0    7 0.0121 =   12 / 995
5        1    1    1   2   0 844   2    1   1    0 0.0106 =    9 / 853
6        3    0    1   0   0   1 965    0   0    0 0.0052 =    5 / 970
7        0    3    6   0   0   0   0 1036   0    3 0.0115 = 12 / 1,048
8        2    0    1   3   0   2   1    1 979    0 0.0101 =   10 / 989
9        0    1    0   0   1   3   0    7   1 1008 0.0127 = 13 / 1,021
Totals 986 1102 1012 986 985 853 970 1052 983 1020 0.0084 = 84 / 9,949

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.991557
2   2  0.998291
3   3  0.999095
4   4  0.999699
5   5  1.000000
6   6  1.000000
7   7  1.000000
8   8  1.000000
9   9  1.000000
10 10  1.000000


H2OMultinomialMetrics: deeplearning
** Reported on validation data. **
** Metrics reported on full validation frame **

Validation Set Metrics: 
=====================

Extract validation frame with `h2o.getFrame("RTMP_sid_b48f_158")`
MSE: (Extract with `h2o.mse`) 0.01601349
RMSE: (Extract with `h2o.rmse`) 0.1265444
Logloss: (Extract with `h2o.logloss`) 0.06764258
Mean Per-Class Error: 0.01966306
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,valid = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
         0    1    2    3   4   5   6    7   8    9  Error           Rate
0      971    0    0    1   0   1   4    1   2    0 0.0092 =      9 / 980
1        0 1126    3    2   0   0   2    0   2    0 0.0079 =    9 / 1,135
2        5    0 1014    3   1   0   2    5   2    0 0.0174 =   18 / 1,032
3        0    0    1  996   0   3   0    5   3    2 0.0139 =   14 / 1,010
4        3    0    3    0 959   0   4    2   1   10 0.0234 =     23 / 982
5        2    0    0   10   1 874   2    1   1    1 0.0202 =     18 / 892
6        5    2    0    1   3   3 940    0   4    0 0.0188 =     18 / 958
7        1    5   10    3   0   0   0 1000   1    8 0.0272 =   28 / 1,028
8        4    1    3    6   1   8   1    3 943    4 0.0318 =     31 / 974
9        4    2    0    7   7   1   0    4   2  982 0.0268 =   27 / 1,009
Totals 995 1136 1034 1029 972 890 955 1021 961 1007 0.0195 = 195 / 10,000

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,valid = TRUE)`
=======================================================================
Top-10 Hit Ratios: 
    k hit_ratio
1   1  0.980500
2   2  0.994700
3   3  0.998200
4   4  0.999500
5   5  0.999600
6   6  0.999900
7   7  1.000000
8   8  1.000000
9   9  1.000000
10 10  1.000000
LS0tDQp0aXRsZTogIkRlZXAgTGVhcm5pbmcgaDJvIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KI2xvYWQgbGlicmFyeSBzdGFydCBoMm8NCmBgYHtyfQ0KbGlicmFyeShoMm8pDQpoMm8uaW5pdCgpDQpoMm8ucmVtb3ZlQWxsKCkNCmBgYA0KDQpgYGB7cn0NCmV4YW1wbGUoaDJvLmRlZXBsZWFybmluZykNCmRlbW8oaDJvLmRlZXBsZWFybmluZykNCmBgYA0KDQojbG9hZCBzYW1wbGUgZGF0YQ0KYGBge3J9DQpzcGlyYWw8LWgyby5pbXBvcnRGaWxlKHBhdGg9Ilo6XFxIZWFsdGhDYXJlIEluZm9ybWF0aWNzXFxyNjMxNzU4XFxSIGNvZGVzXFxIMk9cXGV4ZXJjaXNlXFxzcGlyYWwuY3N2IikNCmdyaWQ8LWgyby5pbXBvcnRGaWxlKHBhdGg9Ilo6XFxIZWFsdGhDYXJlIEluZm9ybWF0aWNzXFxyNjMxNzU4XFxSIGNvZGVzXFxIMk9cXGV4ZXJjaXNlXFxncmlkLmNzdiIpDQpgYGANCg0KI0RlZmluZSBoZWxwZXIgdG8gcGxvdCBjb250b3Vycw0KYGBge3J9DQpwbG90QzwtZnVuY3Rpb24obmFtZSwgbW9kZWwsIGRhdGE9c3BpcmFsLCBnPWdyaWQpew0KICBkYXRhPC1hcy5kYXRhLmZyYW1lKGRhdGEpDQogIHByZWQ8LWFzLmRhdGEuZnJhbWUoaDJvLnByZWRpY3QobW9kZWwsZykpDQogIG49MC41KihzcXJ0KG5yb3coZykpLTEpOyBkPC0xLjU7IGg8LWQqKC1uOm4pL24NCiAgcGxvdChkYXRhWywtM10scGNoPTE5LGNvbD1kYXRhWywzXSxjZXg9MC41LHhsaW09YygtZCxkKSwgeWxpbT1jKC1kLGQpLCBtYWluPW5hbWUpDQogIGNvbnRvdXIoaCxoLHo9YXJyYXkoaWZlbHNlKHByZWRbLDFdPT0iUmVkIiwwLDEpLGRpbT1jKDIqbisxLDIqbisxKSksY29sPSJibHVlIiwgbHdkPTIsIGFkZD1UKQ0KfQ0KYGBgDQoNCiNkZXYubmV3KG5vUlN0dWRpb0dEPUZBTFNFKSAjZGlyZWN0IHBsb3R0aW5nIG91dHB1dCB0byBhIG5ldyB3aW5kb3cNCmBgYHtyfQ0KcGFyKG1mcm93PWMoMiwyKSkgI3NldCB1cCB0aGUgY2FudmFzIGZvciAyeDIgcGxvdHMNCnBsb3RDKCAiREwiLCBoMm8uZGVlcGxlYXJuaW5nKDE6MiwzLHNwaXJhbCxlcG9jaHM9MWUzKSkNCnBsb3RDKCJHQk0iLCBoMm8uZ2JtICAgICAgICAgKDE6MiwzLHNwaXJhbCkpDQpwbG90QygiRFJGIiwgaDJvLnJhbmRvbUZvcmVzdCgxOjIsMyxzcGlyYWwpKQ0KcGxvdEMoIkdMTSIsIGgyby5nbG0gICAgICAgICAoMToyLDMsc3BpcmFsLGZhbWlseT0iYmlub21pYWwiKSkNCmBgYA0KDQojZGV2Lm5ldyhub1JTdHVkaW9HRD1GQUxTRSkgI2RpcmVjdCBwbG90dGluZyBvdXRwdXQgdG8gYSBuZXcgd2luZG93DQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpICNzZXQgdXAgdGhlIGNhbnZhcyBmb3IgMngyIHBsb3RzDQplcCA8LSBjKDEsMjUwLDUwMCw3NTApDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbMV0sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFsxXSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2lkPSJkbF8xIikpDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbMl0sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFsyXSwNCiAgICAgICAgICAgIGNoZWNrcG9pbnQ9ImRsXzEiLG1vZGVsX2lkPSJkbF8yIikpDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbM10sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFszXSwNCiAgICAgICAgICAgIGNoZWNrcG9pbnQ9ImRsXzIiLG1vZGVsX2lkPSJkbF8zIikpDQpwbG90QyhwYXN0ZTAoIkRMICIsZXBbNF0sIiBlcG9jaHMiKSwNCiAgICAgIGgyby5kZWVwbGVhcm5pbmcoMToyLDMsc3BpcmFsLGVwb2Nocz1lcFs0XSwNCiAgICAgICAgICAgIGNoZWNrcG9pbnQ9ImRsXzMiLG1vZGVsX2lkPSJkbF80IikpDQpgYGANCg0KI1lvdSBjYW4gc2VlIGhvdyB0aGUgbmV0d29yayBsZWFybnMgdGhlIHN0cnVjdHVyZSBvZiB0aGUgc3BpcmFscyB3aXRoIGVub3VnaCB0cmFpbmluZyB0aW1lLiBXZSBleHBsb3JlIGRpZmZlcmVudCBuZXR3b3JrIGFyY2hpdGVjdHVyZXMgbmV4dDoNCiMjZGV2Lm5ldyhub1JTdHVkaW9HRD1GQUxTRSkgI2RpcmVjdCBwbG90dGluZyBvdXRwdXQgdG8gYSBuZXcgd2luZG93DQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpICNzZXQgdXAgdGhlIGNhbnZhcyBmb3IgMngyIHBsb3RzDQpmb3IgKGhpZGRlbiBpbiBsaXN0KGMoMTEsMTMsMTcsMTkpLGMoNDIsNDIsNDIpLGMoMjAwLDIwMCksYygxMDAwKSkpIHsNCiAgcGxvdEMocGFzdGUwKCJETCBoaWRkZW49IixwYXN0ZTAoaGlkZGVuLCBjb2xsYXBzZT0ieCIpKSwNCiAgICAgICAgaDJvLmRlZXBsZWFybmluZygxOjIsMyxzcGlyYWwsaGlkZGVuPWhpZGRlbixlcG9jaHM9NTAwKSkNCn0NCmBgYA0KDQojSXQgaXMgY2xlYXIgdGhhdCBkaWZmZXJlbnQgY29uZmlndXJhdGlvbnMgY2FuIGFjaGlldmUgc2ltaWxhciBwZXJmb3JtYW5jZSwgYW5kIHRoYXQgdHVuaW5nIHdpbGwgYmUgcmVxdWlyZWQgZm9yIG9wdGltYWwgcGVyZm9ybWFuY2UuIE5leHQsIHdlIGNvbXBhcmUgYmV0d2VlbiBkaWZmZXJlbnQgYWN0aXZhdGlvbiBmdW5jdGlvbnMsIGluY2x1ZGluZyBvbmUgd2l0aCA1MCUgZHJvcG91dCByZWd1bGFyaXphdGlvbiBpbiB0aGUgaGlkZGVuIGxheWVyczoNCg0KI2Rldi5uZXcobm9SU3R1ZGlvR0Q9RkFMU0UpICNkaXJlY3QgcGxvdHRpbmcgb3V0cHV0IHRvIGEgbmV3IHdpbmRvdw0KDQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpICNzZXQgdXAgdGhlIGNhbnZhcyBmb3IgMngyIHBsb3RzDQpmb3IgKGFjdCBpbiBjKCJUYW5oIiwiTWF4b3V0IiwiUmVjdGlmaWVyIiwiUmVjdGlmaWVyV2l0aERyb3BvdXQiKSkgew0KICBwbG90QyhwYXN0ZTAoIkRMICIsYWN0LCIgYWN0aXZhdGlvbiIpLCANCiAgICAgICAgaDJvLmRlZXBsZWFybmluZygxOjIsMyxzcGlyYWwsDQogICAgICAgICAgICAgIGFjdGl2YXRpb249YWN0LGhpZGRlbj1jKDEwMCwxMDApLGVwb2Nocz0xMDAwKSkNCn0NCg0KYGBgDQojQ2xlYXJseSwgdGhlIGRyb3BvdXQgcmF0ZSB3YXMgdG9vIGhpZ2ggb3IgdGhlIG51bWJlciBvZiBlcG9jaHMgd2FzIHRvbyBsb3cgZm9yIHRoZSBsYXN0IGNvbmZpZ3VyYXRpb24sIHdoaWNoIG9mdGVuIGVuZHMgdXAgcGVyZm9ybWluZyB0aGUgYmVzdCBvbiBsYXJnZXIgZGF0YXNldHMgd2hlcmUgZ2VuZXJhbGl6YXRpb24gaXMgaW1wb3J0YW50Lg0KDQpgYGB7cn0NCmgyby5zaHV0ZG93bigpDQpgYGANCg0KDQojVG8gcHJlZGljdCB0aGUgODAtdGggcGVyY2VudGlsZSBvZiB0aGUgcGV0YWwgbGVuZ3RoIG9mIHRoZSBJcmlzIGRhdGFzZXQgaW4gUg0KYGBge3J9DQppcmlzUGF0aCA8LSBzeXN0ZW0uZmlsZSgiZXh0ZGF0YSIsICJpcmlzX3doZWFkZXIuY3N2IiwgcGFja2FnZSA9ICJoMm8iKQ0KaXJpcy5oZXggPC0gaDJvLnVwbG9hZEZpbGUocGF0aCA9IGlyaXNQYXRoKQ0KaXJpcy5SPC1hcy5kYXRhLmZyYW1lKGlyaXMuaGV4KQ0Kc3BsaXRzPC1oMm8uc3BsaXRGcmFtZShpcmlzLmhleCwgcmF0aW89MC43LCBzZWVkPTEyMzQgKQ0KZGwxPC1oMm8uZGVlcGxlYXJuaW5nKHg9MToyLCB5PSJwZXRhbF9sZW4iLCB0cmFpbmluZ19mcmFtZSA9IHNwbGl0c1tbMV1dLCBkaXN0cmlidXRpb24gPSAicXVhbnRpbGUiLHF1YW50aWxlX2FscGhhID0gMC44KQ0KZGwxDQpgYGANCg0KI2hhbmR3cml0aW5nIGV4YW1wbGUNCmBgYHtyfQ0KdHJhaW48LWgyby5pbXBvcnRGaWxlKHBhdGg9Imh0dHBzOi8vaDJvLXB1YmxpYy10ZXN0LWRhdGEuczMuYW1hem9uYXdzLmNvbS9iaWdkYXRhL2xhcHRvcC9tbmlzdC90cmFpbi5jc3YuZ3oiKQ0KdGVzdDwtaDJvLmltcG9ydEZpbGUocGF0aD0iaHR0cHM6Ly9oMm8tcHVibGljLXRlc3QtZGF0YS5zMy5hbWF6b25hd3MuY29tL2JpZ2RhdGEvbGFwdG9wL21uaXN0L3Rlc3QuY3N2Lmd6IikNCiMgc3VtbWFyeSh0cmFpbikNCiMgc3VtbWFyeSh0ZXN0KQ0KYGBgDQoNCiNzcGVjaWZ5IHJlc3BvbnNlIGFuZCBwcmVkaWN0b3INCmBgYHtyfQ0KeT0iQzc4NSINCng8LXNldGRpZmYobmFtZXModHJhaW4pLHkpDQp4DQpgYGANCg0KI3NldCB5IGFzIGZhY3Rvcg0KYGBge3J9DQp0cmFpblsseV09YXMuZmFjdG9yKHRyYWluWyx5XSkNCnRlc3RbLHldPWFzLmZhY3Rvcih0ZXN0Wyx5XSkNCmRsMTwtaDJvLmRlZXBsZWFybmluZyh4PXgseT15LCB0cmFpbmluZ19mcmFtZSA9IHRyYWluLCB2YWxpZGF0aW9uX2ZyYW1lID0gdGVzdCwgZGlzdHJpYnV0aW9uID0gIm11bHRpbm9taWFsIiwgYWN0aXZhdGlvbj0iUmVjdGlmaWVyV2l0aERyb3BvdXQiLCBoaWRkZW49YygzMiwzMiwzMiksIGlucHV0X2Ryb3BvdXRfcmF0aW89MC4yLCBzcGFyc2U9VFJVRSwgbDE9MWUtNSwgZXBvY2hzID0gMTApDQpkbDENCg0KbW9kZWxfY3Y8LWgyby5kZWVwbGVhcm5pbmcoeD14LHk9eSwgdHJhaW5pbmdfZnJhbWUgPSB0cmFpbiwgIGRpc3RyaWJ1dGlvbiA9ICJtdWx0aW5vbWlhbCIsIGFjdGl2YXRpb249IlJlY3RpZmllcldpdGhEcm9wb3V0IiwgaGlkZGVuPWMoMzIsMzIsMzIpLCBpbnB1dF9kcm9wb3V0X3JhdGlvPTAuMiwgc3BhcnNlPVRSVUUsIGwxPTFlLTUsIGVwb2NocyA9IDEwLCBuZm9sZHM9NSkNCm1vZGVsX2N2DQpgYGANCg0KYGBge3J9DQojIFZpZXcgc3BlY2lmaWVkIHBhcmFtZXRlcnMgb2YgdGhlIGRlZXAgbGVhcm5pbmcgbW9kZWwNCiBkbDFAcGFyYW1ldGVycw0KDQogIyBFeGFtaW5lIHRoZSBwZXJmb3JtYW5jZSBvZiB0aGUgdHJhaW5lZCBtb2RlbA0KZGwxICMgZGlzcGxheSBhbGwgcGVyZm9ybWFuY2UgbWV0cmljcw0KDQogaDJvLnBlcmZvcm1hbmNlKGRsMSkgIyB0cmFpbmluZyBtZXRyaWNzDQogaDJvLnBlcmZvcm1hbmNlKGRsMSwgdmFsaWQgPSBUUlVFKSAjIHZhbGlkYXRpb24gbWV0cmljcw0KDQogIyBHZXQgTVNFIG9ubHkNCiBoMm8ubXNlKGRsMSwgdmFsaWQgPSBUUlVFKQ0KDQogIyBDcm9zcy12YWxpZGF0ZWQgTVNFDQogaDJvLm1zZShtb2RlbF9jdiwgeHZhbCA9IFRSVUUpDQpgYGANCg0KI2FwcGx5IHByZWRpY2F0aW9uIHRvIHRlc3QgZGF0YQ0KYGBge3J9DQpwcmVkPC1oMm8ucHJlZGljdChkbDEsbmV3ZGF0YT10ZXN0KQ0KaGVhZChwcmVkKQ0KYGBgDQoNCiNjaGVja3BpbnQgbW9kZWwNCmBgYHtyfQ0KIyBSZS1zdGFydCB0aGUgdHJhaW5pbmcgcHJvY2VzcyBvbiBhIHNhdmVkIERMIG1vZGVsDQogIyB1c2luZyB0aGUg4oCYY2hlY2twb2ludOKAmCBhcmd1bWVudA0KIG1vZGVsX2Noa3AgPC0gaDJvLmRlZXBsZWFybmluZygNCiB4ID0geCwNCiB5ID0geSwNCiB0cmFpbmluZ19mcmFtZSA9IHRyYWluLA0KIHZhbGlkYXRpb25fZnJhbWUgPSB0ZXN0LA0KIGRpc3RyaWJ1dGlvbiA9ICJtdWx0aW5vbWlhbCIsDQogY2hlY2twb2ludCA9IGRsMUBtb2RlbF9pZCwNCiBhY3RpdmF0aW9uID0gIlJlY3RpZmllcldpdGhEcm9wb3V0IiwNCiBoaWRkZW4gPSBjKDMyLDMyLDMyKSwNCiBpbnB1dF9kcm9wb3V0X3JhdGlvID0gMC4yLA0KIHNwYXJzZSA9IFRSVUUsDQogbDEgPSAxZS01LA0KIGVwb2NocyA9IDIwKQ0KbW9kZWxfY2hrcA0KDQpgYGANCiNzYXZlIG1vZGVsDQpgYGB7cn0NCm1vZGVsX3BhdGg8LWgyby5zYXZlTW9kZWwob2JqZWN0PWRsMSxwYXRoPWdldHdkKCksIGZvcmNlPVRSVUUpDQpwcmludChtb2RlbF9wYXRoKQ0Kc2F2ZWRfbW9kZWw8LWgyby5sb2FkTW9kZWwobW9kZWxfcGF0aCkNCmBgYA0KDQojcmV0cmlldmUgbW9kZWwgYnkgaDJvIGtleQ0KYGBge3J9DQptb2RlbCA8LSBoMm8uZ2V0TW9kZWwobW9kZWxfaWQgPSBtb2RlbF9jaGtwQG1vZGVsX2lkKQ0KbW9kZWwNCmBgYA0KI3dvcmxkIHJlY29yZCBydW4gdXNlZCBlcG9jaHM9ODAwMA0KYGBge3J9DQpTdGFydHRpbWU9U3lzLnRpbWUoKQ0KIyBtb2RlbCA8LSBoMm8uZGVlcGxlYXJuaW5nKHg9eCwgeT15LA0KIyAgdHJhaW5pbmdfZnJhbWU9dHJhaW4sIHZhbGlkYXRpb25fZnJhbWU9dGVzdCwNCiMgIGFjdGl2YXRpb249IlJlY3RpZmllcldpdGhEcm9wb3V0IiwNCiMgIGhpZGRlbj1jKDEwMjQsMTAyNCwyMDQ4KSwgZXBvY2hzPTEwLA0KIyAgaW5wdXRfZHJvcG91dF9yYXRpbz0wLjIsIGwxPTFlLTUsIG1heF93Mj0xMCwNCiMgIHRyYWluX3NhbXBsZXNfcGVyX2l0ZXJhdGlvbj0tMSwNCiMgIGNsYXNzaWZpY2F0aW9uX3N0b3A9LTEsIHN0b3BwaW5nX3JvdW5kcz0wKQ0KbW9kZWxfdGltZT1TeXMudGltZSgpLVN0YXJ0dGltZQ0KcHJpbnQocGFzdGUoIlRvb2siLCByb3VuZChtb2RlbF90aW1lLCBkaWdpdHM9MiksIHVuaXRzKG1vZGVsX3RpbWUpLCAidG8gYnVpbGQgRGVlcExlYXJuaW5nIG1vZGVsLiIpKQ0KbW9kZWxAcGFyYW1ldGVycw0KDQojIHdvcmxkTW9kZWw8LWgyby5zYXZlTW9kZWwob2JqZWN0PW1vZGVsLHBhdGg9Ii4vV29ybGRNb2RlbCIsIGZvcmNlPVRSVUUpDQojcHJpbnQod29ybGRNb2RlbCkNCnNhdmVkX21vZGVsPC1oMm8ubG9hZE1vZGVsKCJDOlxcVXNlcnNcXHI2MzE3NThcXERlc2t0b3BcXHI2MzE3NThcXFIgY29kZXNcXEgyT1xcZXhlcmNpc2VcXFdvcmxkTW9kZWxcXERlZXBMZWFybmluZ19tb2RlbF9SXzE1MDczMjIyMDY0MTlfNiIpDQpzYXZlZF9tb2RlbA0KYGBgDQo=