About

The focus of this lab is on data outliers, data preparation, and data modeling. This lab requires the use of Microsoft Excel, R, and ERDplus.

Setup

Remember to always set your working directory to the source file location. Go to ‘Session’, scroll down to ‘Set Working Directory’, and click ‘To Source File Location’. Read carefully the below and follow the instructions to complete the tasks and answer any questions. Submit your work to RPubs as detailed in previous notes.

Important Note

For your assignment you may be using different data sets than what is included in this worksheet demo. Make sure to read carefully the instructions on Sakai.


Task 1: Data Outliers

First, we must calculate the mean, standard deviation, maximum, and minimum for the Age column using R.

In R, we must read in the file again, extract the column and find the values that are asked for.

#Read File
mydata = read.csv(file="data/creditrisk.csv") 

#Name the extracted variable
age = mydata$Age 
mydata1 = read.csv(file="data/Scoring.csv") 
age1 = mydata1$Age
#Calculate the average age below. Refer to Worksheet 2 for the correct command.
MeanAge=mean(age1)
#Calculate standard deviation of age below. Refer to Worksheet 2 for the correct command.
SDage=sd(age1)
#Calculate the maximum of age below. The command to find the maximum is max(variable) where variable is the extracted variable.  
MaxA=max(age1)
#Calculate the minimum of age below. The command to find the minimum is min(variable) where variable is the extracted variable.  
MinA=min(age1)

Next, use the formula from class to detect any outliers. An outlier is value that “lies outside” most of the other values in a set of data. A common way to estimate the upper and lower threshold is to take the mean (+ or -) 3 * standard deviation. Try using this formula to find the upper and lower limit for age.

#Use the formula above to calculate the upper and lower threshold

AgeLower= MeanAge - 3 * SDage
AgeUpper= MeanAge + 3 * SDage

Another similar method to find the upper and lower thresholds discussed in introductory statistics courses involves finding the interquartile range. Follow along below to see how we first calculate the interquartile range..

quantile(age1) 
##   0%  25%  50%  75% 100% 
##   18   28   36   45   68
lowerq = quantile(age1)[2]
upperq = quantile(age1)[4]
iqr = upperq - lowerq

The formula below calculates the threshold. The threshold is the boundaries that determine if a value is an outlier. If the value falls above the upper threshold or below the lower threshold, it is an outlier.

Below is the upper threshold:

upperthreshold = (iqr * 1.5) + upperq 
upperthreshold
##  75% 
## 70.5

Below is the lower threshold:

lowerthreshold = lowerq - (iqr * 1.5)
lowerthreshold
## 25% 
## 2.5

Are there any outliers? How many? It can also be useful to visualize the data using a box and whisker plot. The boxplot below supports the IQR we found of 15 and upper and lower threshold.

boxplot(age) 


Task 2: Data Preparation

Next, we must read the ‘creditriskorg.csv’ file into R. This is the original dataset and contains missing values.

newdata = read.csv(file="data/creditriskorg.csv")
head(newdata)
##                 X       X.1         X.2             X.3             X.4
## 1    Loan Purpose Checking      Savings Months Customer Months Employed
## 2 Small Appliance     $-       $739.00               13              12
## 3       Furniture     $-     $1,230.00               25               0
## 4         New Car     $-       $389.00               19             119
## 5       Furniture  $638.00     $347.00               13              14
## 6       Education  $963.00   $4,754.00               40              45
##      X.5            X.6 X.7     X.8   X.9       X.10        X.11
## 1 Gender Marital Status Age Housing Years        Job Credit Risk
## 2      M         Single  23     Own     3  Unskilled         Low
## 3      M       Divorced  32     Own     1    Skilled        High
## 4      M         Single  38     Own     4 Management        High
## 5      M         Single  36     Own     2  Unskilled        High
## 6      M         Single  31    Rent     3    Skilled         Low
newdata1 = read.csv(file="data/scoring_original.csv")
head(newdata1)
##   Status Seniority  Home Time Age Marital Records       Job Expenses
## 1   good         9  rent   60  30 married  no_rec freelance     $73K
## 2   good        17  rent   60  58   widow  no_rec     fixed     $48K
## 3    bad        10 owner   36  46 married yes_rec freelance     $90K
## 4   good         0  rent   60  24  single  no_rec     fixed     $63K
## 5   good         0  rent   36  26  single  no_rec     fixed     $46K
## 6   good         1 owner   60  36 married  no_rec     fixed     $75K
##   Income Assets Debt     Amount      Price   Finrat   Savings
## 1  $129K      0    0   $800.00    $846.00  94.56265  4.200000
## 2  $131K      0    0 $1,000.00  $1,658.00  60.31363  4.980000
## 3  $200K   3000    0 $2,000.00  $2,985.00  67.00168  1.980000
## 4  $182K   2500    0   $900.00  $1,325.00  67.92453  7.933333
## 5  $107K      0    0   $310.00    $910.00  34.06593  7.083871
## 6  $214K   3500    0   $650.00  $1,645.00  39.51368 12.830769

We observe that the column names are shifted down below because of the empty line. So, we must make sure to use the command skip and set the header to true.

newdata1 = read.csv(file="data/scoring_original.csv",skip=0,header=TRUE,sep=",") 
head(newdata1)
##   Status Seniority  Home Time Age Marital Records       Job Expenses
## 1   good         9  rent   60  30 married  no_rec freelance     $73K
## 2   good        17  rent   60  58   widow  no_rec     fixed     $48K
## 3    bad        10 owner   36  46 married yes_rec freelance     $90K
## 4   good         0  rent   60  24  single  no_rec     fixed     $63K
## 5   good         0  rent   36  26  single  no_rec     fixed     $46K
## 6   good         1 owner   60  36 married  no_rec     fixed     $75K
##   Income Assets Debt     Amount      Price   Finrat   Savings
## 1  $129K      0    0   $800.00    $846.00  94.56265  4.200000
## 2  $131K      0    0 $1,000.00  $1,658.00  60.31363  4.980000
## 3  $200K   3000    0 $2,000.00  $2,985.00  67.00168  1.980000
## 4  $182K   2500    0   $900.00  $1,325.00  67.92453  7.933333
## 5  $107K      0    0   $310.00    $910.00  34.06593  7.083871
## 6  $214K   3500    0   $650.00  $1,645.00  39.51368 12.830769
newdata = read.csv(file="data/creditriskorg.csv",skip=1,header=TRUE,sep=",") 
head(newdata)
##      Loan.Purpose    Checking     Savings Months.Customer Months.Employed
## 1 Small Appliance       $-       $739.00               13              12
## 2       Furniture       $-     $1,230.00               25               0
## 3         New Car       $-       $389.00               19             119
## 4       Furniture    $638.00     $347.00               13              14
## 5       Education    $963.00   $4,754.00               40              45
## 6       Furniture  $2,827.00        $-                 11              13
##   Gender Marital.Status Age Housing Years        Job Credit.Risk
## 1      M         Single  23     Own     3  Unskilled         Low
## 2      M       Divorced  32     Own     1    Skilled        High
## 3      M         Single  38     Own     4 Management        High
## 4      M         Single  36     Own     2  Unskilled        High
## 5      M         Single  31    Rent     3    Skilled         Low
## 6      M        Married  25     Own     1    Skilled         Low

To calculate the mean for Checking in R, follow Worksheet 2. Extract the Checking column first and then find the average using the function built in R. What happens when we try to use the function?

checking = newdata$Checking 
price = newdata1$Price

To resolve the error, we must understand where it is coming from and correct for. There are missing values in the csv file, which is quite common as most datasets are not perfect. Additionally, there are commas within the excel spreadsheet, and R does not recognize that ‘1,234’ is equivalent to ‘1234’. Lastly, there are ‘$’ symbols throughout the file which is not a numerical symbol either.

The sub function replaces these symbols with something else. So, in order to remove the comma in the number “1,234”, we must substitute it with just an empty space.

As shown on the worksheet, type and copy the exact commands to find the mean with the NA values removed.

#substitute comma with blank in all of checking.  Below are examples using a hypothetical variable name 'new'.
# Example new = sub(",","",new)
price = sub(",","",price)
#substitute dollar sign with blank in all of checking 
# Example new = sub("\\$","",new)
price = sub("\\$","",price)
#Convert values to numeric to remove any NA
# Example new = as.numeric(new)
price = as.numeric(price)
## Warning: NAs introduced by coercion
#Calculate mean of checking with NA removed 
# Example: it is better to do soemthing like this
# MeanNew = mean(new, na.rm = TRUE)
MeanPrice = mean(price, na.rm = TRUE)
MeanPrice
## [1] 1462.48

What are some other ways to clean this data? How about Excel? How does Excel treat the missing values and the “$” symbols?


Task 3: Data Modeling

Now, we will look at Chicago taxi data. Go and explore the interactive dashboard and read the description of the data.

Chicago Taxi Dashboard: https://data.cityofchicago.org/Transportation/Taxi-Trips-Dashboard/spcw-brbq

Chicago Taxi Data Description: http://digital.cityofchicago.org/index.php/chicago-taxi-data-released/

– Open in RStudio or Excel the taxi trips sample csv file located in the data folder. Note the size of the file, the number of columns and of rows here. Identify the unique entities, and fields in the data.

TaxiTripsData = read.csv(file="data/Taxi_Trips_Sample.csv")
head(TaxiTripsData)
##                                    Trip.ID
## 1 3e7d6d8ccf1425ae1dcd584f5c3ca303cf6362ed
## 2 3e7d6e5c4e87f01a475c8200b33777e85497da89
## 3 3e7d6e69c1d6755d9e7484a453cd93a3ee9fed4c
## 4 3e7d6efe43222b0ebc698583916674c648dd4520
## 5 3e7d6f001e9bcda8478a489cb53293d26328ac85
## 6 3e7d6f2a03527d63dc01b95e829fdfdd706102da
##                                                                                                                            Taxi.ID
## 1 b47c583b142d75b42882975eaab19c6cb98d82686016576cce6e305b1b99eb16aacfb9a21ff61c84873a6c3dde282756c162c538c8b69554fd8f811f3a8f60a2
## 2 bc1c0381e3bca623e6c04f3410f7b67201a9fc85c6b66d0f420a88099d38448f9b9874e246da49cf2ef32ea3d027eec9c5b484fe77dbfc033c389b5576ac66bd
## 3 f529487ccf3a5d538cd246342379d54314e90dc6c573f94a72f5c2238189c5131e12c1e493c71ccdaed6751d13f53fa1d8b51a1591c48891dc6beb3f9df3a18f
## 4 0f831bff43d83f396f2e4950126c6137dcdb60fb4c8580ffe860203747a83a789b22f2f9e4fbdd0dd8ed8c310366d8935228ddbcadf708fb9691ca5dd1b6c802
## 5 e5274d6c103515af3ce705182d0bbbea7ca077a6f23b1736254f2de8ba3e1687dd77f5fb541b7f00b1ebc24cfde54caf5a9562f046a0559acbfe1e7159e17c1a
## 6 329d9f0b72ce0fea6c2cc7ea3347924c11d98702e5cc39eacf6252038304bb019457c905f38066a2f9aa4b8732ac30ea22d8740e177a314ef7b0327ad5766cee
##   Trip.Start.Timestamp Trip.End.Timestamp Trip.Seconds Trip.Miles
## 1        8/19/14 14:45      8/19/14 14:45          480       0.15
## 2        9/23/13 17:15      9/23/13 17:15          420       0.00
## 3        2/16/14 22:15      2/16/14 22:30          420       1.70
## 4        5/10/13 20:00      5/10/13 20:45         2340      13.80
## 5        2/21/16 19:15      2/21/16 19:15          300       0.70
## 6       12/10/15 17:30     12/10/15 18:00         1020       1.40
##   Pickup.Census.Tract Dropoff.Census.Tract Pickup.Community.Area
## 1         17031280100          17031839100                    28
## 2         17031081800          17031281900                     8
## 3                  NA                   NA                     6
## 4         17031980000          17031060400                    76
## 5         17031081500          17031081500                     8
## 6                  NA                   NA                    NA
##   Dropoff.Community.Area   Fare  Tips Tolls Extras Trip.Total Payment.Type
## 1                     32  $7.05 $0.00 $0.00  $1.50      $8.55         Cash
## 2                     28  $6.05 $0.00 $0.00  $0.00      $6.05         Cash
## 3                      4  $7.05 $0.00 $0.00  $0.00      $7.05         Cash
## 4                      6 $31.25 $0.00 $0.00  $3.00     $34.25         Cash
## 5                      8  $5.50 $0.00 $0.00  $0.00      $5.50         Cash
## 6                     NA  $9.25 $0.00 $0.00  $1.00     $10.25         Cash
##                     Company Pickup.Centroid.Latitude
## 1                                           41.88530
## 2 Taxi Affiliation Services                 41.89322
## 3 Taxi Affiliation Services                 41.94423
## 4                                           41.97907
## 5                                           41.89251
## 6                                                 NA
##   Pickup.Centroid.Longitude     Pickup.Centroid.Location
## 1                 -87.64281   POINT (-87.642808 41.8853)
## 2                 -87.63784 POINT (-87.637844 41.893216)
## 3                 -87.65600 POINT (-87.655998 41.944227)
## 4                 -87.90304  POINT (-87.90304 41.979071)
## 5                 -87.62621 POINT (-87.626215 41.892508)
## 6                        NA                             
##   Dropoff.Centroid.Latitude Dropoff.Centroid.Longitude
## 1                  41.88099                  -87.63275
## 2                  41.87926                  -87.64265
## 3                  41.97517                  -87.68752
## 4                  41.95067                  -87.66654
## 5                  41.89251                  -87.62621
## 6                        NA                         NA
##     Dropoff.Centroid..Location Community.Areas  X X.1 X.2 X.3
## 1 POINT (-87.632746 41.880994)              29 NA  NA  NA    
## 2 POINT (-87.642649 41.879255)              37 NA  NA  NA    
## 3 POINT (-87.687516 41.975171)              57 NA  NA  NA    
## 4 POINT (-87.666536 41.950673)              75 NA  NA  NA    
## 5 POINT (-87.626215 41.892508)              37 NA  NA  NA    
## 6                                           NA NA  NA  NA
summary(TaxiTripsData)
##                                      Trip.ID     
##  3e7d6d8ccf1425ae1dcd584f5c3ca303cf6362ed:    1  
##  3e7d6e5c4e87f01a475c8200b33777e85497da89:    1  
##  3e7d6e69c1d6755d9e7484a453cd93a3ee9fed4c:    1  
##  3e7d6efe43222b0ebc698583916674c648dd4520:    1  
##  3e7d6f001e9bcda8478a489cb53293d26328ac85:    1  
##  3e7d6f2a03527d63dc01b95e829fdfdd706102da:    1  
##  (Other)                                 :99993  
##                                                                                                                              Taxi.ID     
##  aebf720288b80a8ee36860541db64951c696c749f1a392d312fa4d2a8cd3f95dfb0be580fda7eb63455f809a1be9b3acad19a3ca167073126d0350b50f30741a:   58  
##  4f189764b8d9b6f71f7936ab414cac07634be0a00790ca179f9460521b7c9c3e5e102f5ba4e1c9cd18cdd9856dbf4f66ae8f13d8c82f8d2d4872f74b96938a24:   57  
##  f737a9a31b07650672910268d7cceb9c06a379c0e75070c0dc0366db8132b06ba2800c5e63c5e56f821a591fc78a92c1c60fb5f48e01aa02e62ff10d18ececd0:   55  
##  1158f25979ad78fd3dafc867a540ad761b65922c312e6170ccee63c3f14adea37317d3cf4e2053d2bdb1531d17670872e0411e496905ef9cb4821e0e96056139:   53  
##  0861cb74337c620cb9ec639af7dc3aa99173b768caf750a2fd1ff17a8d9db86cad36772c7ff6ddaf2fda48de41bc82981145fe46693ed147d86ae194ee15c703:   52  
##  (Other)                                                                                                                         :99720  
##  NA's                                                                                                                            :    4  
##      Trip.Start.Timestamp     Trip.End.Timestamp  Trip.Seconds    
##  7/25/14 18:45 :    9                  :   16    Min.   :    0.0  
##  2/27/15 8:45  :    8     2/10/14 10:30:    9    1st Qu.:  300.0  
##  2/5/15 19:15  :    8     2/5/15 19:45 :    8    Median :  540.0  
##  4/25/14 18:45 :    8     3/22/14 20:15:    8    Mean   :  739.2  
##  9/18/13 19:30 :    8     3/24/16 19:30:    8    3rd Qu.:  900.0  
##  10/10/14 17:30:    7     3/3/14 18:45 :    8    Max.   :74340.0  
##  (Other)       :99951     (Other)      :99942    NA's   :1327     
##    Trip.Miles       Pickup.Census.Tract Dropoff.Census.Tract
##  Min.   :   0.000   Min.   :1.703e+10   Min.   :1.703e+10   
##  1st Qu.:   0.000   1st Qu.:1.703e+10   1st Qu.:1.703e+10   
##  Median :   0.900   Median :1.703e+10   Median :1.703e+10   
##  Mean   :   2.686   Mean   :1.703e+10   Mean   :1.703e+10   
##  3rd Qu.:   2.400   3rd Qu.:1.703e+10   3rd Qu.:1.703e+10   
##  Max.   :1830.000   Max.   :1.703e+10   Max.   :1.703e+10   
##  NA's   :1          NA's   :38042       NA's   :38775       
##  Pickup.Community.Area Dropoff.Community.Area      Fare      
##  Min.   : 1.00         Min.   : 1.00          $6.25  : 2892  
##  1st Qu.: 8.00         1st Qu.: 8.00          $5.25  : 2699  
##  Median : 8.00         Median :14.00          $3.25  : 2629  
##  Mean   :22.04         Mean   :21.14          $5.85  : 2390  
##  3rd Qu.:32.00         3rd Qu.:32.00          $5.65  : 2389  
##  Max.   :77.00         Max.   :77.00          $6.05  : 2367  
##  NA's   :15534         NA's   :17532          (Other):84633  
##       Tips           Tolls           Extras        Trip.Total   
##  $0.00  :63911   $0.00  :99932   $0.00  :62102   $7.25  : 2010  
##  $2.00  :10382   $1.90  :   13   $1.00  :18344   $6.25  : 1908  
##  $3.00  : 3769   $1.50  :   12   $2.00  : 8888   $3.25  : 1889  
##  $1.00  : 3162   $50.00 :    8   $1.50  : 4635   $6.65  : 1762  
##  $5.00  : 1004   $3.00  :    7   $3.00  : 2052   $8.25  : 1729  
##  $4.00  :  991   $2.00  :    5   $4.00  : 1134   $7.05  : 1658  
##  (Other):16780   (Other):   22   (Other): 2844   (Other):89043  
##       Payment.Type                                       Company     
##  Cash       :60760                                           :35411  
##  Credit Card:38322   Taxi Affiliation Services               :29911  
##  Dispute    :   58   Dispatch Taxi Affiliation               : 9417  
##  No Charge  :  622   Blue Ribbon Taxi Association Inc.       : 6766  
##  Pcard      :   18   Choice Taxi Association                 : 5185  
##  Prcard     :    6   Chicago Elite Cab Corp. (Chicago Carriag: 5091  
##  Unknown    :  213   (Other)                                 : 8218  
##  Pickup.Centroid.Latitude Pickup.Centroid.Longitude
##  Min.   :41.66            Min.   :-87.91           
##  1st Qu.:41.88            1st Qu.:-87.66           
##  Median :41.89            Median :-87.63           
##  Mean   :41.90            Mean   :-87.66           
##  3rd Qu.:41.92            3rd Qu.:-87.63           
##  Max.   :42.02            Max.   :-87.54           
##  NA's   :15533            NA's   :15533            
##                  Pickup.Centroid.Location Dropoff.Centroid.Latitude
##                              :15533       Min.   :41.67            
##  POINT (-87.632746 41.880994): 8572       1st Qu.:41.88            
##  POINT (-87.620993 41.884987): 5034       Median :41.89            
##  POINT (-87.633308 41.899602): 3850       Mean   :41.90            
##  POINT (-87.626215 41.892508): 3832       3rd Qu.:41.92            
##  POINT (-87.631864 41.892042): 3692       Max.   :42.02            
##  (Other)                     :59486       NA's   :17376            
##  Dropoff.Centroid.Longitude                Dropoff.Centroid..Location
##  Min.   :-87.91                                         :17376       
##  1st Qu.:-87.66             POINT (-87.632746 41.880994): 7644       
##  Median :-87.63             POINT (-87.620993 41.884987): 4412       
##  Mean   :-87.66             POINT (-87.626215 41.892508): 3073       
##  3rd Qu.:-87.63             POINT (-87.631864 41.892042): 3072       
##  Max.   :-87.53             POINT (-87.655998 41.944227): 2850       
##  NA's   :17376              (Other)                     :61572       
##  Community.Areas    X             X.1            X.2         
##  Min.   : 1.00   Mode:logical   Mode:logical   Mode:logical  
##  1st Qu.:37.00   NA's:99999     NA's:99999     NA's:99999    
##  Median :37.00                                               
##  Mean   :41.18                                               
##  3rd Qu.:38.00                                               
##  Max.   :77.00                                               
##  NA's   :15533                                               
##                                                         X.3       
##                                                           :99998  
##  fare can be dollar sold as transalsion in the fact table :    1  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
## 
str(TaxiTripsData)
## 'data.frame':    99999 obs. of  28 variables:
##  $ Trip.ID                   : Factor w/ 99999 levels "3e7d6d8ccf1425ae1dcd584f5c3ca303cf6362ed",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Taxi.ID                   : Factor w/ 6164 levels "0008de7a146802839c9e6059f482d292ebdae13c5c31dd6e5983a80882e2a5dbcd6ea098c2fcd56f34ce02645eb94c6b39512e9304837746d4e289b6236c2c5"| __truncated__,..: 4264 4466 5890 335 5491 1199 207 2234 639 1106 ...
##  $ Trip.Start.Timestamp      : Factor w/ 64107 levels "1/1/13 0:00",..: 54999 61512 19542 35388 20760 14370 47940 29083 49559 47158 ...
##  $ Trip.End.Timestamp        : Factor w/ 64181 levels "","1/1/13 0:15",..: 55098 61614 19569 35464 20791 14388 48006 29154 49637 47204 ...
##  $ Trip.Seconds              : int  480 420 420 2340 300 1020 360 2220 1020 780 ...
##  $ Trip.Miles                : num  0.15 0 1.7 13.8 0.7 1.4 0.1 13.3 8 7.7 ...
##  $ Pickup.Census.Tract       : num  1.7e+10 1.7e+10 NA 1.7e+10 1.7e+10 ...
##  $ Dropoff.Census.Tract      : num  1.7e+10 1.7e+10 NA 1.7e+10 1.7e+10 ...
##  $ Pickup.Community.Area     : int  28 8 6 76 8 NA 7 56 NA 11 ...
##  $ Dropoff.Community.Area    : int  32 28 4 6 8 NA 8 24 NA 76 ...
##  $ Fare                      : Factor w/ 892 levels "","$0.00","$0.01",..: 735 643 735 329 554 861 858 321 175 162 ...
##  $ Tips                      : Factor w/ 1081 levels "","$0.00","$0.01",..: 2 2 2 2 2 2 50 839 2 756 ...
##  $ Tolls                     : Factor w/ 25 levels "","$0.00","$0.60",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Extras                    : Factor w/ 183 levels "","$0.00","$0.01",..: 19 2 2 100 2 12 2 55 12 21 ...
##  $ Trip.Total                : Factor w/ 2702 levels "","$0.00","$0.01",..: 2472 2031 2281 1106 1704 30 19 1265 548 1056 ...
##  $ Payment.Type              : Factor w/ 7 levels "Cash","Credit Card",..: 1 1 1 1 1 1 2 2 1 2 ...
##  $ Company                   : Factor w/ 98 levels "","0118 - 42111 Godfrey S.Awir",..: 1 97 97 1 1 1 97 1 1 1 ...
##  $ Pickup.Centroid.Latitude  : num  41.9 41.9 41.9 42 41.9 ...
##  $ Pickup.Centroid.Longitude : num  -87.6 -87.6 -87.7 -87.9 -87.6 ...
##  $ Pickup.Centroid.Location  : Factor w/ 309 levels "","POINT (-87.540936 41.663671)",..: 80 66 119 308 44 1 98 292 1 301 ...
##  $ Dropoff.Centroid.Latitude : num  41.9 41.9 42 42 41.9 ...
##  $ Dropoff.Centroid.Longitude: num  -87.6 -87.6 -87.7 -87.7 -87.6 ...
##  $ Dropoff.Centroid..Location: Factor w/ 357 levels "","POINT (-87.534903 41.707311)",..: 65 88 256 178 51 1 67 227 1 357 ...
##  $ Community.Areas           : int  29 37 57 75 37 NA 68 53 NA 11 ...
##  $ X                         : logi  NA NA NA NA NA NA ...
##  $ X.1                       : logi  NA NA NA NA NA NA ...
##  $ X.2                       : logi  NA NA NA NA NA NA ...
##  $ X.3                       : Factor w/ 2 levels "","fare can be dollar sold as transalsion in the fact table ": 1 1 1 1 1 1 1 1 1 1 ...

– Define a relational business logic integrity check for the column field ‘Trip Seconds’.

– Using https://erdplus.com/#/standalone draw a star like schema using at least the following tables: