cars <- c(1, 3, 6, 4, 9)
trucks <- c(2, 5, 4, 5, 12)
#Line graph
plot(cars)

plot(cars, type="o", col="blue")
title(main="Autos", col.main="red", font.main=4)

#Line graph with two lines
plot(cars, type="o", col="blue", ylim=c(0,12))
lines(trucks, type="o", pch=22, lty=2, col="red")
title(main="Autos", col.main="red", font.main=4)

#Graph with legend
g_range <- range(0, cars, trucks)
plot(cars, type="o", col="blue", ylim=g_range, 
     axes=FALSE, ann=FALSE)
axis(1, at=1:5, lab=c("Mon","Tue","Wed","Thu","Fri"))
axis(2, las=1, at=4*0:g_range[2])
box()
lines(trucks, type="o", pch=25, lty=2, col="red")
title(main="Autos", col.main="red", font.main=4)
title(xlab="Days", col.lab=rgb(0,0.5,0))
title(ylab="Total", col.lab=rgb(0,0.5,0))
legend(1, g_range[2], c("cars","trucks"), cex=0.8, 
       col=c("blue","red"), pch=21:22, lty=1:2);
#Graph plotting data from autos.dat
autos_data <- read.table("C:/Users/stud/Documents/autos.dat", header=T, sep="\t") 
max_y <- max(autos_data)
plot_colors <- c("blue","red","forestgreen")
png(filename="C:/Users/stud/Documents/f.png", height=295, width=300, 
    bg="white")
plot(autos_data$cars, type="o", col=plot_colors[1], 
     ylim=c(0,max_y), axes=FALSE, ann=FALSE)
axis(1, at=1:5, lab=c("Mon", "Tue", "Wed", "Thu", "Fri"))
axis(2, las=1, at=4*0:max_y)
box()
lines(autos_data$trucks, type="o", pch=22, lty=2, 
      col=plot_colors[2])
lines(autos_data$suvs, type="o", pch=23, lty=3, 
      col=plot_colors[3])
title(main="Autos", col.main="red", font.main=4)
title(xlab= "Days", col.lab=rgb(0,0.5,0))
title(ylab= "Total", col.lab=rgb(0,0.5,0))
legend(1, max_y, names(autos_data), cex=0.8, col=plot_colors, 
       pch=21:23, lty=1:3);
dev.off()
png 
  2 
plot_colors <- c(rgb(r=0.0,g=0.0,b=0.9), "red", "forestgreen")
pdf(file="C:/Users/stud/Documents/figure.pdf", height=3.5, width=5)
par(mar=c(4.2, 3.8, 0.2, 0.2))
plot(autos_data$cars, type="l", col=plot_colors[1], 
     ylim=range(autos_data), axes=F, ann=T, xlab="Days",
     ylab="Total", cex.lab=0.8, lwd=2)
axis(1, lab=F)
text(axTicks(1), par("usr")[3] - 2, srt=45, adj=1,
     labels=c("Mon", "Tue", "Wed", "Thu", "Fri"),
     xpd=T, cex=0.8)
axis(2, las=1, cex.axis=0.8)
box()
lines(autos_data$trucks, type="l", lty=2, lwd=2, 
      col=plot_colors[2])
lines(autos_data$suvs, type="l", lty=3, lwd=2, 
      col=plot_colors[3])
legend("topleft", names(autos_data), cex=0.8, col=plot_colors, 
       lty=1:3, lwd=2, bty="n");
par(mar=c(5, 4, 4, 2) + 0.1)
dev.off()
png 
  2 

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KYGBge3J9DQpjYXJzIDwtIGMoMSwgMywgNiwgNCwgOSkNCnRydWNrcyA8LSBjKDIsIDUsIDQsIDUsIDEyKQ0KDQojTGluZSBncmFwaA0KcGxvdChjYXJzKQ0KcGxvdChjYXJzLCB0eXBlPSJvIiwgY29sPSJibHVlIikNCnRpdGxlKG1haW49IkF1dG9zIiwgY29sLm1haW49InJlZCIsIGZvbnQubWFpbj00KQ0KDQojTGluZSBncmFwaCB3aXRoIHR3byBsaW5lcw0KcGxvdChjYXJzLCB0eXBlPSJvIiwgY29sPSJibHVlIiwgeWxpbT1jKDAsMTIpKQ0KbGluZXModHJ1Y2tzLCB0eXBlPSJvIiwgcGNoPTIyLCBsdHk9MiwgY29sPSJyZWQiKQ0KdGl0bGUobWFpbj0iQXV0b3MiLCBjb2wubWFpbj0icmVkIiwgZm9udC5tYWluPTQpDQoNCiNHcmFwaCB3aXRoIGxlZ2VuZA0KZ19yYW5nZSA8LSByYW5nZSgwLCBjYXJzLCB0cnVja3MpDQpwbG90KGNhcnMsIHR5cGU9Im8iLCBjb2w9ImJsdWUiLCB5bGltPWdfcmFuZ2UsIA0KICAgICBheGVzPUZBTFNFLCBhbm49RkFMU0UpDQpheGlzKDEsIGF0PTE6NSwgbGFiPWMoIk1vbiIsIlR1ZSIsIldlZCIsIlRodSIsIkZyaSIpKQ0KYXhpcygyLCBsYXM9MSwgYXQ9NCowOmdfcmFuZ2VbMl0pDQpib3goKQ0KbGluZXModHJ1Y2tzLCB0eXBlPSJvIiwgcGNoPTI1LCBsdHk9MiwgY29sPSJyZWQiKQ0KdGl0bGUobWFpbj0iQXV0b3MiLCBjb2wubWFpbj0icmVkIiwgZm9udC5tYWluPTQpDQoNCg0KdGl0bGUoeGxhYj0iRGF5cyIsIGNvbC5sYWI9cmdiKDAsMC41LDApKQ0KdGl0bGUoeWxhYj0iVG90YWwiLCBjb2wubGFiPXJnYigwLDAuNSwwKSkNCg0KbGVnZW5kKDEsIGdfcmFuZ2VbMl0sIGMoImNhcnMiLCJ0cnVja3MiKSwgY2V4PTAuOCwgDQogICAgICAgY29sPWMoImJsdWUiLCJyZWQiKSwgcGNoPTIxOjIyLCBsdHk9MToyKTsNCg0KDQojR3JhcGggcGxvdHRpbmcgZGF0YSBmcm9tIGF1dG9zLmRhdA0KYXV0b3NfZGF0YSA8LSByZWFkLnRhYmxlKCJDOi9Vc2Vycy9zdHVkL0RvY3VtZW50cy9hdXRvcy5kYXQiLCBoZWFkZXI9VCwgc2VwPSJcdCIpIA0KbWF4X3kgPC0gbWF4KGF1dG9zX2RhdGEpDQpwbG90X2NvbG9ycyA8LSBjKCJibHVlIiwicmVkIiwiZm9yZXN0Z3JlZW4iKQ0KcG5nKGZpbGVuYW1lPSJDOi9Vc2Vycy9zdHVkL0RvY3VtZW50cy9mLnBuZyIsIGhlaWdodD0yOTUsIHdpZHRoPTMwMCwgDQogICAgYmc9IndoaXRlIikNCnBsb3QoYXV0b3NfZGF0YSRjYXJzLCB0eXBlPSJvIiwgY29sPXBsb3RfY29sb3JzWzFdLCANCiAgICAgeWxpbT1jKDAsbWF4X3kpLCBheGVzPUZBTFNFLCBhbm49RkFMU0UpDQpheGlzKDEsIGF0PTE6NSwgbGFiPWMoIk1vbiIsICJUdWUiLCAiV2VkIiwgIlRodSIsICJGcmkiKSkNCmF4aXMoMiwgbGFzPTEsIGF0PTQqMDptYXhfeSkNCmJveCgpDQpsaW5lcyhhdXRvc19kYXRhJHRydWNrcywgdHlwZT0ibyIsIHBjaD0yMiwgbHR5PTIsIA0KICAgICAgY29sPXBsb3RfY29sb3JzWzJdKQ0KbGluZXMoYXV0b3NfZGF0YSRzdXZzLCB0eXBlPSJvIiwgcGNoPTIzLCBsdHk9MywgDQogICAgICBjb2w9cGxvdF9jb2xvcnNbM10pDQp0aXRsZShtYWluPSJBdXRvcyIsIGNvbC5tYWluPSJyZWQiLCBmb250Lm1haW49NCkNCnRpdGxlKHhsYWI9ICJEYXlzIiwgY29sLmxhYj1yZ2IoMCwwLjUsMCkpDQp0aXRsZSh5bGFiPSAiVG90YWwiLCBjb2wubGFiPXJnYigwLDAuNSwwKSkNCmxlZ2VuZCgxLCBtYXhfeSwgbmFtZXMoYXV0b3NfZGF0YSksIGNleD0wLjgsIGNvbD1wbG90X2NvbG9ycywgDQogICAgICAgcGNoPTIxOjIzLCBsdHk9MTozKTsNCmRldi5vZmYoKQ0KDQpwbG90X2NvbG9ycyA8LSBjKHJnYihyPTAuMCxnPTAuMCxiPTAuOSksICJyZWQiLCAiZm9yZXN0Z3JlZW4iKQ0KcGRmKGZpbGU9IkM6L1VzZXJzL3N0dWQvRG9jdW1lbnRzL2ZpZ3VyZS5wZGYiLCBoZWlnaHQ9My41LCB3aWR0aD01KQ0KcGFyKG1hcj1jKDQuMiwgMy44LCAwLjIsIDAuMikpDQpwbG90KGF1dG9zX2RhdGEkY2FycywgdHlwZT0ibCIsIGNvbD1wbG90X2NvbG9yc1sxXSwgDQogICAgIHlsaW09cmFuZ2UoYXV0b3NfZGF0YSksIGF4ZXM9RiwgYW5uPVQsIHhsYWI9IkRheXMiLA0KICAgICB5bGFiPSJUb3RhbCIsIGNleC5sYWI9MC44LCBsd2Q9MikNCg0KYXhpcygxLCBsYWI9RikNCnRleHQoYXhUaWNrcygxKSwgcGFyKCJ1c3IiKVszXSAtIDIsIHNydD00NSwgYWRqPTEsDQogICAgIGxhYmVscz1jKCJNb24iLCAiVHVlIiwgIldlZCIsICJUaHUiLCAiRnJpIiksDQogICAgIHhwZD1ULCBjZXg9MC44KQ0KYXhpcygyLCBsYXM9MSwgY2V4LmF4aXM9MC44KQ0KYm94KCkNCmxpbmVzKGF1dG9zX2RhdGEkdHJ1Y2tzLCB0eXBlPSJsIiwgbHR5PTIsIGx3ZD0yLCANCiAgICAgIGNvbD1wbG90X2NvbG9yc1syXSkNCmxpbmVzKGF1dG9zX2RhdGEkc3V2cywgdHlwZT0ibCIsIGx0eT0zLCBsd2Q9MiwgDQogICAgICBjb2w9cGxvdF9jb2xvcnNbM10pDQpsZWdlbmQoInRvcGxlZnQiLCBuYW1lcyhhdXRvc19kYXRhKSwgY2V4PTAuOCwgY29sPXBsb3RfY29sb3JzLCANCiAgICAgICBsdHk9MTozLCBsd2Q9MiwgYnR5PSJuIik7DQpwYXIobWFyPWMoNSwgNCwgNCwgMikgKyAwLjEpDQpkZXYub2ZmKCkNCg0KYGBgDQoNClRoaXMgaXMgYW4gW1IgTWFya2Rvd25dKGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20pIE5vdGVib29rLiBXaGVuIHlvdSBleGVjdXRlIGNvZGUgd2l0aGluIHRoZSBub3RlYm9vaywgdGhlIHJlc3VsdHMgYXBwZWFyIGJlbmVhdGggdGhlIGNvZGUuIA0KDQpUcnkgZXhlY3V0aW5nIHRoaXMgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ3RybCtTaGlmdCtFbnRlciouIA0KDQpgYGB7cn0NCnBsb3QoY2FycykNCmBgYA0KDQpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouDQoNCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ3RybCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLg0K