Choose independently two numbers \(B\) and \(C\) at random from the interval \([0, 1]\) with uniform density. Prove that \(B\) and \(C\) are proper probability distributions.
Find the probability that
Since \(B\) and \(C\) are selected with uniform density, let us define the density function as \(f(x) = \begin{cases} 1, & \mbox{if } 0\leq x\leq 1, \\ 0, & \mbox{otherwise. }\end{cases}\)
Then \(P(0\leq X\leq 1) = \int_{0}^{1}{f(x)dx} = 1\).
The value of \(f(x)\) is greater than or equal to \(0\) for all \(x\) and total area under the density function is equal to \(1\). As such this is a proper probability distribution that satisfies both \(B\) and \(C\).
Now, consider a unit square with a randomly chosen point \((B,C)\).
library(ggplot2)
ggplot()+
geom_rect(aes(xmin=0, xmax=1, ymin=0,ymax=1), fill="grey", alpha=0.4, color="black")+
geom_point(aes(c(1,0,0,1,runif(1,0,1)),c(1,0,1,0,runif(1,0,1))))+
xlim(0,1)+ylim(0,1)+coord_fixed()+
xlab("B")+ylab("C")+
theme(axis.title.y = element_text(angle = 0, vjust=0.5))
Consider \(x+y=0.5\), where \(x\) represents \(B\) and \(y\) represents \(C\). Then \(y = 0.5-x\). If we plot this line in the unit square, then the area under the line will be all values of \(B\) and \(C\) such that \(B+C<0.5\) and the area will equal the probability \(P(B+C<0.5)\).
x <- seq(from=0,to=0.5,length.out=1000)
y <- 0.5-x
# Define polygon for under the curve shading
shade <- rbind(c(0,0), data.frame(x,y))
ggplot()+
geom_rect(aes(xmin=0, xmax=1, ymin=0,ymax=1), fill="grey", alpha=0.4, color="black")+
geom_point(aes(c(1,0,0,1),c(1,0,1,0)))+
xlim(0,1)+ylim(0,1)+coord_fixed()+
xlab("B")+ylab("C")+
theme(axis.title.y = element_text(angle = 0, vjust=0.5))+
geom_line(aes(x,y))+
geom_polygon(aes(shade$x,shade$y), fill="black", alpha=0.3)+
geom_text(aes(0.125,0.125), label="B+C < 0.5", size=4, color="white", fontface="italic")
\(P(B+C<0.5) = \frac{0.5^2}{2} = \frac{0.25}{2} = 0.125\)
Consider \(xy=0.5\), where \(x\) represents \(B\) and \(y\) represents \(C\). Then \(y = \frac{0.5}{x} = \frac{1}{2x}\). If we plot this line in the unit square, then the area under the line will be all values of \(B\) and \(C\) such that \(BC<0.5\) and the area will equal the probability \(P(BC<0.5)\).
x <- seq(from=0.5,to=1,length.out=1000)
y <- 1/(2*x)
# Define polygon for under the curve shading
shade <- rbind(c(0,0), c(0,1), c(0.5,1), data.frame(x,y), c(1, 0))
ggplot()+
geom_rect(aes(xmin=0, xmax=1, ymin=0,ymax=1), fill="grey", alpha=0.4, color="black")+
geom_point(aes(c(1,0,0,1),c(1,0,1,0)))+
xlim(0,1)+ylim(0,1)+coord_fixed()+
xlab("B")+ylab("C")+
theme(axis.title.y = element_text(angle = 0, vjust=0.5))+
geom_line(aes(x,y))+
geom_polygon(aes(shade$x,shade$y), fill="black", alpha=0.3)+
geom_text(aes(0.375,0.375), label="BC < 0.5", size=8, color="white", fontface="italic")
We can integrate to get the area under the curve and add \(0.5\) of the left half of the unit square.
\(P(BC<0.5) = 0.5 + \int_{0.5}^{1}{\frac{1}{2x}dx} = 0.5+0.346574 = 0.846574\)
Similarly to the above consider two lines - \(x-y=0.5\) and \(x-y=-0.5\).
x1 <- seq(from=0.5,to=1,length.out=2)
x2 <- seq(from=0,to=0.5,length.out=2)
y1 <- x1-0.5
y2 <- x2+0.5
# Define polygon for under the curve shading
shade <- cbind(c(0,0,0.5,1,1,0.5), c(0,0.5,1,1,0.5,0))
ggplot()+
geom_rect(aes(xmin=0, xmax=1, ymin=0,ymax=1), fill="grey", alpha=0.4, color="black")+
geom_point(aes(c(1,0,0,1),c(1,0,1,0)))+
xlim(0,1)+ylim(0,1)+coord_fixed()+
xlab("B")+ylab("C")+
theme(axis.title.y = element_text(angle = 0, vjust=0.5))+
geom_line(aes(x1,y1))+
geom_line(aes(x2,y2))+
geom_polygon(aes(shade[,1],shade[,2]), fill="black", alpha=0.3)+
geom_text(aes(0.5,0.5), label="|B-C| < 0.5", size=8, color="white", fontface="italic")
We can easily see that the probability of the event is \(1\) minus two triangles similar to part (a).
\(P(|B-C|<0.5) = 1 - 2\times 0.125 = 0.75\)
Any combination of \(B\) and \(C\) such that \(B<0.5\) and \(C<0.5\), will satisfy \(max\{B,C\}<0.5\). If \(B>0.5\), then either \(B>C\) and \(max\{B,C\}=B>0.5\) or \(0.5<B<C\) and \(max\{B,C\}=C>0.5\). Similarly for \(C>0.5\).
# Define polygon for under the curve shading
shade <- cbind(c(0,0,0.5,0.5), c(0,0.5,0.5,0))
ggplot()+
geom_rect(aes(xmin=0, xmax=1, ymin=0,ymax=1), fill="grey", alpha=0.4, color="black")+
geom_point(aes(c(1,0,0,1),c(1,0,1,0)))+
xlim(0,1)+ylim(0,1)+coord_fixed()+
xlab("B")+ylab("C")+
geom_line(aes(c(0,0.5),c(0.5,0.5)))+
geom_line(aes(c(0.5,0.5),c(0,0.5)))+
theme(axis.title.y = element_text(angle = 0, vjust=0.5))+
geom_polygon(aes(shade[,1],shade[,2]), fill="black", alpha=0.3)+
geom_text(aes(0.25,0.25), label="max{B,C} < 0.5", size=4, color="white", fontface="italic")
\(P(max\{B,C\} < 0.5) = 0.25\)
Any combination of \(B\) and \(C\) such that \(B<0.5\) or \(C<0.5\), will satisfy \(min\{B,C\}<0.5\). It is only if both \(B\) and \(C\) are greater than \(0.5\), then \(min\{B,C\}>0.5\).
# Define polygon for under the curve shading
shade <- cbind(c(0,0,0.5,0.5,1,1), c(0,1,1,0.5,0.5,0))
ggplot()+
geom_rect(aes(xmin=0, xmax=1, ymin=0,ymax=1), fill="grey", alpha=0.4, color="black")+
geom_point(aes(c(1,0,0,1),c(1,0,1,0)))+
xlim(0,1)+ylim(0,1)+coord_fixed()+
xlab("B")+ylab("C")+
geom_line(aes(c(0.5,0.5),c(0.5,1)))+
geom_line(aes(c(0.5,1),c(0.5,0.5)))+
theme(axis.title.y = element_text(angle = 0, vjust=0.5))+
geom_polygon(aes(shade[,1],shade[,2]), fill="black", alpha=0.3)+
geom_text(aes(0.5,0.25), label="min{B,C} < 0.5", size=8, color="white", fontface="italic")
\(P(min\{B,C\} < 0.5) = 0.75\)
Double-check results via simulation. Modified from code posted on BlackBoard.
n<-1000000
B<-runif(n,0,1)
C<-runif(n,0,1)
partA<-((B+C)<0.5)
partB<-((B*C)<0.5)
partC<-(abs(B-C)<0.5)
partD<-rep(0, n)
partE<-rep(0, n)
for (i in 1:n) {
partD[i]<-max(B[i],C[i])
partE[i]<-min(B[i],C[i])
}
partD<-(partD<0.5)
partE<-(partE<0.5)
simulation <- cbind(c("B+C<0.5", "BC<0.5", "|B-C|<0.5", "max(B,C)<0.5", "min(B,C)<0.5"),
c(sum(partA)/n,sum(partB)/n,sum(partC)/n,sum(partD)/n,sum(partE)/n)
)
colnames(simulation) <- c("Event", "Probability")
rownames(simulation) <- c("a","b","c","d","e")
simulation
## Event Probability
## a "B+C<0.5" "0.124853"
## b "BC<0.5" "0.846577"
## c "|B-C|<0.5" "0.750314"
## d "max(B,C)<0.5" "0.250505"
## e "min(B,C)<0.5" "0.750257"