Paquetes

library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
Conflicts with tidy packages ------------------------------------------------------------------------
filter(): dplyr, stats
lag():    dplyr, stats

abro mi df, denomino df12

df12 <- read.csv("campamentos 12 a<U+00F1>os.csv", header = TRUE, sep=",")
str(df12)
'data.frame':   21 obs. of  13 variables:
 $ n         : int  1 2 3 4 5 6 7 8 9 10 ...
 $ campamento: Factor w/ 5 levels "Futura Esperanza",..: 1 1 1 4 4 4 4 2 2 2 ...
 $ sexo      : Factor w/ 2 levels "F","M": 2 1 1 2 1 1 1 2 1 1 ...
 $ edad      : int  12 12 12 12 12 12 12 12 12 12 ...
 $ C         : int  1 4 2 0 0 1 0 0 0 0 ...
 $ P         : int  0 0 0 0 0 0 0 0 0 0 ...
 $ O         : int  0 0 0 0 0 0 2 2 2 0 ...
 $ COPD      : int  1 4 2 0 0 1 2 2 2 0 ...
 $ c         : int  NA NA NA NA NA 2 NA NA NA NA ...
 $ e         : int  NA NA NA NA NA 0 NA NA NA NA ...
 $ o         : int  NA NA NA NA NA 0 NA NA NA NA ...
 $ ceod      : int  NA NA NA NA NA 2 NA NA NA NA ...
 $ tto       : Factor w/ 3 levels "NO","SI","Si": 1 2 1 2 1 1 2 2 2 3 ...
summary(df12)
       n                 campamento sexo        edad          C                P    
 Min.   : 1   Futura Esperanza:3    F:11   Min.   :12   Min.   :0.0000   Min.   :0  
 1st Qu.: 6   Laderas         :4    M:10   1st Qu.:12   1st Qu.:0.0000   1st Qu.:0  
 Median :11   Mediaguas       :3           Median :12   Median :0.0000   Median :0  
 Mean   :11   Nuevo Amanecer  :4           Mean   :12   Mean   :0.8095   Mean   :0  
 3rd Qu.:16   Pelluhuin       :7           3rd Qu.:12   3rd Qu.:1.0000   3rd Qu.:0  
 Max.   :21                                Max.   :12   Max.   :4.0000   Max.   :0  
                                                                                    
       O               COPD             c             e            o            ceod    tto    
 Min.   :0.0000   Min.   :0.000   Min.   :0.0   Min.   :0    Min.   :0.0   Min.   :1    NO: 6  
 1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0   1st Qu.:0    1st Qu.:0.0   1st Qu.:2    SI:14  
 Median :0.0000   Median :2.000   Median :2.0   Median :0    Median :0.0   Median :2    Si: 1  
 Mean   :0.8095   Mean   :1.619   Mean   :1.4   Mean   :0    Mean   :0.6   Mean   :2           
 3rd Qu.:2.0000   3rd Qu.:2.000   3rd Qu.:2.0   3rd Qu.:0    3rd Qu.:1.0   3rd Qu.:2           
 Max.   :3.0000   Max.   :6.000   Max.   :3.0   Max.   :0    Max.   :2.0   Max.   :3           
                                  NA's   :16    NA's   :16   NA's   :16    NA's   :16          

Agrupo por campamento para nios de 12 aos y calculo media,de y mediana de COPD

agrupo por sexo en nios de 12 aos.

existe diferencia de ceod entre campamentos????

diferenciacampamentos
Call:
   aov(formula = df12$ceod ~ df12$campamento)

Terms:
                df12$campamento Residuals
Sum of Squares                0         2
Deg. of Freedom               1         3

Residual standard error: 0.8164966
Estimated effects may be unbalanced
16 observations deleted due to missingness
summary(diferenciacampamentos)
                Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento  1      0  0.0000       0      1
Residuals        3      2  0.6667               
16 observations deleted due to missingness

lo mismo para COPD

diferenciacampamentos1 <- aov(df12$COPD~df12$campamento)
diferenciacampamentos1
summary(diferenciacampamentos1)
                Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento  4   8.44   2.110   0.794  0.546
Residuals       16  42.51   2.657               

analizar entre tto por campamentos, existe diferencia ????

chisq.test(df12$tto,df12$campamento)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df12$tto and df12$campamento
X-squared = 9.6488, df = 8, p-value = 0.2905

existe diferencia para el componente C del COPD entre campamentos????

diferenciacampamentosparacomp_c <- aov(df12$C~df12$campamento)
diferenciacampamentosparacomp_c 
summary(diferenciacampamentosparacomp_c)
                Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento  4  8.976   2.244   1.613  0.219
Residuals       16 22.262   1.391               

Visualizo mis datos en grafico componente ceod segun sexo

Visualizo mis datos en grafico componente C del COPD segun sexo

grafico boxplot, para campamentos y COPD

grafico boxplot con ggplot2, para campamentos y componte c de ceod

Existe diferencia entre sexo para COPD

t.test(df12$COPD~df12$sexo)

    Welch Two Sample t-test

data:  df12$COPD by df12$sexo
t = -1.6346, df = 16.543, p-value = 0.121
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.5436554  0.3254736
sample estimates:
mean in group F mean in group M 
       1.090909        2.200000 

Existe diferencia entre sexo y componente c del COPD

t.test(df12$C~df12$sexo)

    Welch Two Sample t-test

data:  df12$C by df12$sexo
t = -0.6574, df = 18.909, p-value = 0.5188
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.5217600  0.7944873
sample estimates:
mean in group F mean in group M 
      0.6363636       1.0000000 

ahora hago analisis para COPD, existe diferencia en COPD por campamentos en nios de 12 aos?

diferenciacampamentoscopd <- aov(df12$COPD~df12$campamento)
diferenciacampamentoscopd
summary(diferenciacampamentoscopd)
                Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento  4   8.44   2.110   0.794  0.546
Residuals       16  42.51   2.657               

diferencia para el componente C del COPD por campamento

diferenciacampamentosC<- aov(df12$C~df12$campamento)
diferenciacampamentosC
summary(diferenciacampamentosC)
                Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento  4  8.976   2.244   1.613  0.219
Residuals       16 22.262   1.391               

LS0tCnRpdGxlOiAiQ2FtcGFtZW50b3MgMTIgYW5vc18yMDE3IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiMgUGFxdWV0ZXMKYGBge3J9CmxpYnJhcnkoInRpZHl2ZXJzZSIpCmxpYnJhcnkoImdndGhlbWVzIikKbGlicmFyeSgiZ2dwbG90MiIpCmBgYAojIGFicm8gbWkgZGYsIGRlbm9taW5vIGRmMTIKYGBge3J9CmRmMTIgPC0gcmVhZC5jc3YoImNhbXBhbWVudG9zIDEyIGHDsW9zLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcD0iLCIpCnN0cihkZjEyKQpzdW1tYXJ5KGRmMTIpCmBgYAojIEFncnVwbyBwb3IgY2FtcGFtZW50byBwYXJhIG5pw7FvcyBkZSAxMiBhw7FvcyB5IGNhbGN1bG8gbWVkaWEsZGUgeSBtZWRpYW5hIGRlIENPUEQKYGBge3J9CmRmMTIlPiUgCiAgZ3JvdXBfYnkoY2FtcGFtZW50bykgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgUHJvbWVkaW8gPSBtZWFuKENPUEQpLCBERSA9IHNkKENPUEQpLCBtZWRpYW5hPW1lZGlhbihDT1BEKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKCiNhZ3J1cG8gcG9yIHNleG8gZW4gbmnDsW9zIGRlIDEyIGHDsW9zLiAKYGBge3J9CmRmMTIlPiUgCiAgZ3JvdXBfYnkoc2V4bykgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgUHJvbWVkaW8gPSBtZWFuKENPUEQpLCBERSA9IHNkKENPUEQpLCBtZWRpYW5hPW1lZGlhbihDT1BEKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKI2V4aXN0ZSBkaWZlcmVuY2lhIGRlIGNlb2QgZW50cmUgY2FtcGFtZW50b3M/Pz8/IApgYGB7cn0KZGlmZXJlbmNpYWNhbXBhbWVudG9zIDwtIGFvdihkZjEyJGNlb2R+ZGYxMiRjYW1wYW1lbnRvKQpkaWZlcmVuY2lhY2FtcGFtZW50b3MKYGBgCmBgYHtyfQpzdW1tYXJ5KGRpZmVyZW5jaWFjYW1wYW1lbnRvcykKYGBgCiNsbyBtaXNtbyBwYXJhIENPUEQKYGBge3J9CmRpZmVyZW5jaWFjYW1wYW1lbnRvczEgPC0gYW92KGRmMTIkQ09QRH5kZjEyJGNhbXBhbWVudG8pCmRpZmVyZW5jaWFjYW1wYW1lbnRvczEKYGBgCmBgYHtyfQpzdW1tYXJ5KGRpZmVyZW5jaWFjYW1wYW1lbnRvczEpCmBgYAojYW5hbGl6YXIgZW50cmUgdHRvIHBvciBjYW1wYW1lbnRvcywgZXhpc3RlIGRpZmVyZW5jaWEgPz8/PyAKYGBge3J9CmNoaXNxLnRlc3QoZGYxMiR0dG8sZGYxMiRjYW1wYW1lbnRvKQpgYGAKI2V4aXN0ZSBkaWZlcmVuY2lhIHBhcmEgZWwgY29tcG9uZW50ZSBDIGRlbCBDT1BEIGVudHJlIGNhbXBhbWVudG9zPz8/PyAKYGBge3J9CmRpZmVyZW5jaWFjYW1wYW1lbnRvc3BhcmFjb21wX2MgPC0gYW92KGRmMTIkQ35kZjEyJGNhbXBhbWVudG8pCmRpZmVyZW5jaWFjYW1wYW1lbnRvc3BhcmFjb21wX2MgCmBgYApgYGB7cn0Kc3VtbWFyeShkaWZlcmVuY2lhY2FtcGFtZW50b3NwYXJhY29tcF9jKQpgYGAKCiNWaXN1YWxpem8gbWlzIGRhdG9zIGVuIGdyYWZpY28gY29tcG9uZW50ZSBjZW9kIHNlZ3VuIHNleG8KYGBge3J9CmRmMTIlPiUgCmdncGxvdChhZXMoeD1zZXhvLCB5PUNPUEQpKSArCiAgZ2VvbV9ib3hwbG90KCkgKwp0aGVtZV9lY29ub21pc3QoKSArCiAgZ2d0aXRsZSgiQ09QRCBzZWd1biBzZXhvIHBhcmEgbmnDsW9zIGRlIDEyIGHDsW9zICIpCmBgYAojVmlzdWFsaXpvIG1pcyBkYXRvcyBlbiBncmFmaWNvIGNvbXBvbmVudGUgQyBkZWwgQ09QRCBzZWd1biBzZXhvCmBgYHtyfQpkZjEyJT4lIApnZ3Bsb3QoYWVzKHg9c2V4bywgeT1DKSkgKwogIGdlb21fYm94cGxvdCgpICsKdGhlbWVfZWNvbm9taXN0KCkgKwogIGdndGl0bGUoImFncmVnYXIgdGl0dWxvICIpCmBgYAojZ3JhZmljbyBib3hwbG90LCBwYXJhIGNhbXBhbWVudG9zIHkgQ09QRApgYGB7cn0KZGYxMiU+JSAKZ2dwbG90KGFlcyh4PWNhbXBhbWVudG8sIHk9Q09QRCkpICsKICBnZW9tX2JveHBsb3QoKSArCnRoZW1lX2Vjb25vbWlzdCgpICsKICBnZ3RpdGxlKCJEaXN0cmlidWNpb24gZGVsIGluZGljZSBDT1BEIHBvciBjYW1wYW1lbnRvcyBlbiBuacOxb3MgZGUgMTIgYcOxb3MgIikKYGBgCiNncmFmaWNvIGJveHBsb3QgY29uIGdncGxvdDIsIHBhcmEgY2FtcGFtZW50b3MgeSBjb21wb250ZSBjIGRlIGNlb2QKYGBge3J9CmRmMTIlPiUgCmdncGxvdChhZXMoeD1jYW1wYW1lbnRvLCB5PUMpKSArCiAgZ2VvbV9ib3hwbG90KCkgKwp0aGVtZV9lY29ub21pc3QoKSArCiAgZ2d0aXRsZSgiQ29tcG9tZW50ZSBDIGRlIGluZGljZSBDT1BEIHNlZ3VuIGNhbXBhbWVudG9zIikKYGBgCiNFeGlzdGUgZGlmZXJlbmNpYSBlbnRyZSBzZXhvIHBhcmEgQ09QRApgYGB7cn0KdC50ZXN0KGRmMTIkQ09QRH5kZjEyJHNleG8pCmBgYAojRXhpc3RlIGRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGNvbXBvbmVudGUgYyBkZWwgQ09QRApgYGB7cn0KdC50ZXN0KGRmMTIkQ35kZjEyJHNleG8pCmBgYAoKI2Fob3JhIGhhZ28gYW5hbGlzaXMgcGFyYSBDT1BELCBleGlzdGUgZGlmZXJlbmNpYSBlbiBDT1BEIHBvciBjYW1wYW1lbnRvcyBlbiBuacOxb3MgZGUgMTIgYcOxb3M/IApgYGB7cn0KZGlmZXJlbmNpYWNhbXBhbWVudG9zY29wZCA8LSBhb3YoZGYxMiRDT1BEfmRmMTIkY2FtcGFtZW50bykKZGlmZXJlbmNpYWNhbXBhbWVudG9zY29wZApgYGAKYGBge3J9CnN1bW1hcnkoZGlmZXJlbmNpYWNhbXBhbWVudG9zY29wZCkKYGBgCiNkaWZlcmVuY2lhIHBhcmEgZWwgY29tcG9uZW50ZSBDIGRlbCBDT1BEIHBvciBjYW1wYW1lbnRvCmBgYHtyfQpkaWZlcmVuY2lhY2FtcGFtZW50b3NDPC0gYW92KGRmMTIkQ35kZjEyJGNhbXBhbWVudG8pCmRpZmVyZW5jaWFjYW1wYW1lbnRvc0MKYGBgCmBgYHtyfQpzdW1tYXJ5KGRpZmVyZW5jaWFjYW1wYW1lbnRvc0MpCmBgYAoKYGBge3J9Cm1vc2FpY3Bsb3QoZGYxMiRjYW1wYW1lbnRvfmRmMTIkQ09QRCwgc2hhZGU9VCkKYGBgCgoKCg==