Paquetes
library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
Conflicts with tidy packages ------------------------------------------------------------------------
filter(): dplyr, stats
lag(): dplyr, stats
abro mi df, denomino df12
df12 <- read.csv("campamentos 12 a<U+00F1>os.csv", header = TRUE, sep=",")
str(df12)
'data.frame': 21 obs. of 13 variables:
$ n : int 1 2 3 4 5 6 7 8 9 10 ...
$ campamento: Factor w/ 5 levels "Futura Esperanza",..: 1 1 1 4 4 4 4 2 2 2 ...
$ sexo : Factor w/ 2 levels "F","M": 2 1 1 2 1 1 1 2 1 1 ...
$ edad : int 12 12 12 12 12 12 12 12 12 12 ...
$ C : int 1 4 2 0 0 1 0 0 0 0 ...
$ P : int 0 0 0 0 0 0 0 0 0 0 ...
$ O : int 0 0 0 0 0 0 2 2 2 0 ...
$ COPD : int 1 4 2 0 0 1 2 2 2 0 ...
$ c : int NA NA NA NA NA 2 NA NA NA NA ...
$ e : int NA NA NA NA NA 0 NA NA NA NA ...
$ o : int NA NA NA NA NA 0 NA NA NA NA ...
$ ceod : int NA NA NA NA NA 2 NA NA NA NA ...
$ tto : Factor w/ 3 levels "NO","SI","Si": 1 2 1 2 1 1 2 2 2 3 ...
summary(df12)
n campamento sexo edad C P
Min. : 1 Futura Esperanza:3 F:11 Min. :12 Min. :0.0000 Min. :0
1st Qu.: 6 Laderas :4 M:10 1st Qu.:12 1st Qu.:0.0000 1st Qu.:0
Median :11 Mediaguas :3 Median :12 Median :0.0000 Median :0
Mean :11 Nuevo Amanecer :4 Mean :12 Mean :0.8095 Mean :0
3rd Qu.:16 Pelluhuin :7 3rd Qu.:12 3rd Qu.:1.0000 3rd Qu.:0
Max. :21 Max. :12 Max. :4.0000 Max. :0
O COPD c e o ceod tto
Min. :0.0000 Min. :0.000 Min. :0.0 Min. :0 Min. :0.0 Min. :1 NO: 6
1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0 1st Qu.:0 1st Qu.:0.0 1st Qu.:2 SI:14
Median :0.0000 Median :2.000 Median :2.0 Median :0 Median :0.0 Median :2 Si: 1
Mean :0.8095 Mean :1.619 Mean :1.4 Mean :0 Mean :0.6 Mean :2
3rd Qu.:2.0000 3rd Qu.:2.000 3rd Qu.:2.0 3rd Qu.:0 3rd Qu.:1.0 3rd Qu.:2
Max. :3.0000 Max. :6.000 Max. :3.0 Max. :0 Max. :2.0 Max. :3
NA's :16 NA's :16 NA's :16 NA's :16
agrupo por sexo en nios de 12 aos.
existe diferencia de ceod entre campamentos????
diferenciacampamentos
Call:
aov(formula = df12$ceod ~ df12$campamento)
Terms:
df12$campamento Residuals
Sum of Squares 0 2
Deg. of Freedom 1 3
Residual standard error: 0.8164966
Estimated effects may be unbalanced
16 observations deleted due to missingness
summary(diferenciacampamentos)
Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento 1 0 0.0000 0 1
Residuals 3 2 0.6667
16 observations deleted due to missingness
lo mismo para COPD
diferenciacampamentos1 <- aov(df12$COPD~df12$campamento)
diferenciacampamentos1
summary(diferenciacampamentos1)
Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento 4 8.44 2.110 0.794 0.546
Residuals 16 42.51 2.657
analizar entre tto por campamentos, existe diferencia ????
chisq.test(df12$tto,df12$campamento)
Chi-squared approximation may be incorrect
Pearson's Chi-squared test
data: df12$tto and df12$campamento
X-squared = 9.6488, df = 8, p-value = 0.2905
existe diferencia para el componente C del COPD entre campamentos????
diferenciacampamentosparacomp_c <- aov(df12$C~df12$campamento)
diferenciacampamentosparacomp_c
summary(diferenciacampamentosparacomp_c)
Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento 4 8.976 2.244 1.613 0.219
Residuals 16 22.262 1.391
Visualizo mis datos en grafico componente ceod segun sexo

Visualizo mis datos en grafico componente C del COPD segun sexo

grafico boxplot, para campamentos y COPD

grafico boxplot con ggplot2, para campamentos y componte c de ceod

Existe diferencia entre sexo para COPD
t.test(df12$COPD~df12$sexo)
Welch Two Sample t-test
data: df12$COPD by df12$sexo
t = -1.6346, df = 16.543, p-value = 0.121
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.5436554 0.3254736
sample estimates:
mean in group F mean in group M
1.090909 2.200000
Existe diferencia entre sexo y componente c del COPD
t.test(df12$C~df12$sexo)
Welch Two Sample t-test
data: df12$C by df12$sexo
t = -0.6574, df = 18.909, p-value = 0.5188
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.5217600 0.7944873
sample estimates:
mean in group F mean in group M
0.6363636 1.0000000
ahora hago analisis para COPD, existe diferencia en COPD por campamentos en nios de 12 aos?
diferenciacampamentoscopd <- aov(df12$COPD~df12$campamento)
diferenciacampamentoscopd
summary(diferenciacampamentoscopd)
Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento 4 8.44 2.110 0.794 0.546
Residuals 16 42.51 2.657
diferencia para el componente C del COPD por campamento
diferenciacampamentosC<- aov(df12$C~df12$campamento)
diferenciacampamentosC
summary(diferenciacampamentosC)
Df Sum Sq Mean Sq F value Pr(>F)
df12$campamento 4 8.976 2.244 1.613 0.219
Residuals 16 22.262 1.391

LS0tCnRpdGxlOiAiQ2FtcGFtZW50b3MgMTIgYW5vc18yMDE3IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiMgUGFxdWV0ZXMKYGBge3J9CmxpYnJhcnkoInRpZHl2ZXJzZSIpCmxpYnJhcnkoImdndGhlbWVzIikKbGlicmFyeSgiZ2dwbG90MiIpCmBgYAojIGFicm8gbWkgZGYsIGRlbm9taW5vIGRmMTIKYGBge3J9CmRmMTIgPC0gcmVhZC5jc3YoImNhbXBhbWVudG9zIDEyIGHDsW9zLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcD0iLCIpCnN0cihkZjEyKQpzdW1tYXJ5KGRmMTIpCmBgYAojIEFncnVwbyBwb3IgY2FtcGFtZW50byBwYXJhIG5pw7FvcyBkZSAxMiBhw7FvcyB5IGNhbGN1bG8gbWVkaWEsZGUgeSBtZWRpYW5hIGRlIENPUEQKYGBge3J9CmRmMTIlPiUgCiAgZ3JvdXBfYnkoY2FtcGFtZW50bykgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgUHJvbWVkaW8gPSBtZWFuKENPUEQpLCBERSA9IHNkKENPUEQpLCBtZWRpYW5hPW1lZGlhbihDT1BEKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKCiNhZ3J1cG8gcG9yIHNleG8gZW4gbmnDsW9zIGRlIDEyIGHDsW9zLiAKYGBge3J9CmRmMTIlPiUgCiAgZ3JvdXBfYnkoc2V4bykgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgUHJvbWVkaW8gPSBtZWFuKENPUEQpLCBERSA9IHNkKENPUEQpLCBtZWRpYW5hPW1lZGlhbihDT1BEKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKI2V4aXN0ZSBkaWZlcmVuY2lhIGRlIGNlb2QgZW50cmUgY2FtcGFtZW50b3M/Pz8/IApgYGB7cn0KZGlmZXJlbmNpYWNhbXBhbWVudG9zIDwtIGFvdihkZjEyJGNlb2R+ZGYxMiRjYW1wYW1lbnRvKQpkaWZlcmVuY2lhY2FtcGFtZW50b3MKYGBgCmBgYHtyfQpzdW1tYXJ5KGRpZmVyZW5jaWFjYW1wYW1lbnRvcykKYGBgCiNsbyBtaXNtbyBwYXJhIENPUEQKYGBge3J9CmRpZmVyZW5jaWFjYW1wYW1lbnRvczEgPC0gYW92KGRmMTIkQ09QRH5kZjEyJGNhbXBhbWVudG8pCmRpZmVyZW5jaWFjYW1wYW1lbnRvczEKYGBgCmBgYHtyfQpzdW1tYXJ5KGRpZmVyZW5jaWFjYW1wYW1lbnRvczEpCmBgYAojYW5hbGl6YXIgZW50cmUgdHRvIHBvciBjYW1wYW1lbnRvcywgZXhpc3RlIGRpZmVyZW5jaWEgPz8/PyAKYGBge3J9CmNoaXNxLnRlc3QoZGYxMiR0dG8sZGYxMiRjYW1wYW1lbnRvKQpgYGAKI2V4aXN0ZSBkaWZlcmVuY2lhIHBhcmEgZWwgY29tcG9uZW50ZSBDIGRlbCBDT1BEIGVudHJlIGNhbXBhbWVudG9zPz8/PyAKYGBge3J9CmRpZmVyZW5jaWFjYW1wYW1lbnRvc3BhcmFjb21wX2MgPC0gYW92KGRmMTIkQ35kZjEyJGNhbXBhbWVudG8pCmRpZmVyZW5jaWFjYW1wYW1lbnRvc3BhcmFjb21wX2MgCmBgYApgYGB7cn0Kc3VtbWFyeShkaWZlcmVuY2lhY2FtcGFtZW50b3NwYXJhY29tcF9jKQpgYGAKCiNWaXN1YWxpem8gbWlzIGRhdG9zIGVuIGdyYWZpY28gY29tcG9uZW50ZSBjZW9kIHNlZ3VuIHNleG8KYGBge3J9CmRmMTIlPiUgCmdncGxvdChhZXMoeD1zZXhvLCB5PUNPUEQpKSArCiAgZ2VvbV9ib3hwbG90KCkgKwp0aGVtZV9lY29ub21pc3QoKSArCiAgZ2d0aXRsZSgiQ09QRCBzZWd1biBzZXhvIHBhcmEgbmnDsW9zIGRlIDEyIGHDsW9zICIpCmBgYAojVmlzdWFsaXpvIG1pcyBkYXRvcyBlbiBncmFmaWNvIGNvbXBvbmVudGUgQyBkZWwgQ09QRCBzZWd1biBzZXhvCmBgYHtyfQpkZjEyJT4lIApnZ3Bsb3QoYWVzKHg9c2V4bywgeT1DKSkgKwogIGdlb21fYm94cGxvdCgpICsKdGhlbWVfZWNvbm9taXN0KCkgKwogIGdndGl0bGUoImFncmVnYXIgdGl0dWxvICIpCmBgYAojZ3JhZmljbyBib3hwbG90LCBwYXJhIGNhbXBhbWVudG9zIHkgQ09QRApgYGB7cn0KZGYxMiU+JSAKZ2dwbG90KGFlcyh4PWNhbXBhbWVudG8sIHk9Q09QRCkpICsKICBnZW9tX2JveHBsb3QoKSArCnRoZW1lX2Vjb25vbWlzdCgpICsKICBnZ3RpdGxlKCJEaXN0cmlidWNpb24gZGVsIGluZGljZSBDT1BEIHBvciBjYW1wYW1lbnRvcyBlbiBuacOxb3MgZGUgMTIgYcOxb3MgIikKYGBgCiNncmFmaWNvIGJveHBsb3QgY29uIGdncGxvdDIsIHBhcmEgY2FtcGFtZW50b3MgeSBjb21wb250ZSBjIGRlIGNlb2QKYGBge3J9CmRmMTIlPiUgCmdncGxvdChhZXMoeD1jYW1wYW1lbnRvLCB5PUMpKSArCiAgZ2VvbV9ib3hwbG90KCkgKwp0aGVtZV9lY29ub21pc3QoKSArCiAgZ2d0aXRsZSgiQ29tcG9tZW50ZSBDIGRlIGluZGljZSBDT1BEIHNlZ3VuIGNhbXBhbWVudG9zIikKYGBgCiNFeGlzdGUgZGlmZXJlbmNpYSBlbnRyZSBzZXhvIHBhcmEgQ09QRApgYGB7cn0KdC50ZXN0KGRmMTIkQ09QRH5kZjEyJHNleG8pCmBgYAojRXhpc3RlIGRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGNvbXBvbmVudGUgYyBkZWwgQ09QRApgYGB7cn0KdC50ZXN0KGRmMTIkQ35kZjEyJHNleG8pCmBgYAoKI2Fob3JhIGhhZ28gYW5hbGlzaXMgcGFyYSBDT1BELCBleGlzdGUgZGlmZXJlbmNpYSBlbiBDT1BEIHBvciBjYW1wYW1lbnRvcyBlbiBuacOxb3MgZGUgMTIgYcOxb3M/IApgYGB7cn0KZGlmZXJlbmNpYWNhbXBhbWVudG9zY29wZCA8LSBhb3YoZGYxMiRDT1BEfmRmMTIkY2FtcGFtZW50bykKZGlmZXJlbmNpYWNhbXBhbWVudG9zY29wZApgYGAKYGBge3J9CnN1bW1hcnkoZGlmZXJlbmNpYWNhbXBhbWVudG9zY29wZCkKYGBgCiNkaWZlcmVuY2lhIHBhcmEgZWwgY29tcG9uZW50ZSBDIGRlbCBDT1BEIHBvciBjYW1wYW1lbnRvCmBgYHtyfQpkaWZlcmVuY2lhY2FtcGFtZW50b3NDPC0gYW92KGRmMTIkQ35kZjEyJGNhbXBhbWVudG8pCmRpZmVyZW5jaWFjYW1wYW1lbnRvc0MKYGBgCmBgYHtyfQpzdW1tYXJ5KGRpZmVyZW5jaWFjYW1wYW1lbnRvc0MpCmBgYAoKYGBge3J9Cm1vc2FpY3Bsb3QoZGYxMiRjYW1wYW1lbnRvfmRmMTIkQ09QRCwgc2hhZGU9VCkKYGBgCgoKCg==