library(ggplot2)
library(GGally)
library(scales)
library(memisc)
## Loading required package: lattice
## Loading required package: MASS
## 
## Attaching package: 'memisc'
## The following object is masked from 'package:scales':
## 
##     percent
## The following objects are masked from 'package:stats':
## 
##     contr.sum, contr.treatment, contrasts
## The following object is masked from 'package:base':
## 
##     as.array
library(lattice)
library(MASS)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:memisc':
## 
##     collect, recode, rename
## The following object is masked from 'package:MASS':
## 
##     select
## The following object is masked from 'package:GGally':
## 
##     nasa
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(RColorBrewer)
library(tidyr)
library(data.table)
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
library(knitr)
library(tidyr)
library(gridExtra)
library(lattice)
library(splitstackshape)
library(Rmisc)
## Loading required package: plyr
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following object is masked from 'package:memisc':
## 
##     rename
library(ggthemes)

Lets keep exponenets out of our graphs.

options("scipen"=1000000)

Introduction

This paper will look at the same thing from three different levels: all politcial parties lumped in together , Republicans v Democrats, and the candidates against each other regardless of party.

OVERVIEW

Primarily we ill be working withthe Federal Election Data for NY stat as provided by Udacity. We will suppliment this dataset with dataset (ZipPop2) which provides the population per zip code as per 2010 and lastly with a dataset that provides each candidates political party and that party’s color.

LOAD THE DATA

The Links to the two data sets that I provided. https://drive.google.com/open?id=0B-ygjCols7cANTR3WGFjbUM4UU0

https://drive.google.com/open?id=0B-ygjCols7cAaUZ2ME1RN0tZM1k

The NYS election data is very lasrge so we will be working with a sample of it.

NY2016<-read.csv(“NY2016.csv”)

NYSample<-NY2016[sample(nrow(NY_1), 100000),]

NYSample<-read.csv("NYSample.csv")
ZipPop2<- read.csv("Zip_Pop2.csv")
CandidateParty<-read.csv("CandidateParty.csv")

DATA MANIPULATION

Let us drop unneceassary columns

NY_1<- select(NYSample,cmte_id,contbr_nm,contbr_city,Zip,
              contbr_employer,contbr_occupation,contb_receipt_amt,
              contb_receipt_dt,cand_nm)

The Zip codes of NY2016 are 9 digits long so we will shorten them to 5 digits.

NY_1$Zip<- substr(NY_1$Zip , 0,5)

Some of the zips are only 3 numbers but these three numbers tell us it is a NYS zip.

Lets shorten the candidate’s name to just their last name.

View(NY_1)
NY_1<-cSplit(NY_1 , "cand_nm", sep=",")
View(NY_1)

Lets drop extra the now unneeded cand_nm_2

NY_1$cand_nm_2<-NULL
View(NY_1)

Lets rename cand_nm to Last_Name

setnames(NY_1,"cand_nm_1", "Last_Name")

Now we will join our 3 datasets together. Joining Zip_Pop2 adds population per zip to our dataset. But first lets make sure all of the data types are the matching.

View(ZipPop2)
ZipPop2$Zip<-as.factor(ZipPop2$Zip)
NY_1<- NY_1%>% left_join(ZipPop2, by= c("Zip"="Zip"))
## Warning: Column `Zip` joining character vector and factor, coercing into
## character vector

Now lets join Candidate Party this will bring in the candidates respective political parties and colors.

NY_1<- NY_1%>% left_join(CandidateParty, by= c("Last_Name"="Last_Name"))
## Warning: Column `Last_Name` joining factors with different levels, coercing
## to character vector
str(NY_1)
## 'data.frame':    100000 obs. of  12 variables:
##  $ cmte_id          : Factor w/ 25 levels "C00458844","C00500587",..: 6 6 15 7 7 6 1 6 6 7 ...
##  $ contbr_nm        : Factor w/ 47556 levels " CALVEY, DONNA MORRIS",..: 39537 45251 12870 22387 11418 34406 14763 40339 8413 743 ...
##  $ contbr_city      : Factor w/ 1596 levels "11590 SALLELES D'AUDE",..: 971 1186 304 1186 976 971 619 174 174 174 ...
##  $ Zip              : chr  "10023" "11385" "11725" "11385" ...
##  $ contbr_employer  : Factor w/ 17350 levels "","'SELF'","'TRANSPARENT'",..: 10102 13267 7217 5552 10158 904 7218 10824 13650 12002 ...
##  $ contbr_occupation: Factor w/ 8689 levels "","''RETIRED''",..: 6685 4765 3917 720 852 3428 5638 63 734 2185 ...
##  $ contb_receipt_amt: num  10 50 85.7 10 200 25 -2700 25 19 5 ...
##  $ contb_receipt_dt : Factor w/ 652 levels "1-Apr-15","1-Apr-16",..: 396 63 648 414 285 652 502 306 26 456 ...
##  $ Last_Name        : chr  "Clinton" "Clinton" "Trump" "Sanders" ...
##  $ Population       : int  60998 98592 29150 98592 54447 50984 7823 80018 101572 81677 ...
##  $ Party            : Factor w/ 5 levels "Conservative",..: 2 2 5 2 2 2 5 2 2 2 ...
##  $ Party_Color      : Factor w/ 5 levels "Blue","Green",..: 1 1 4 1 1 1 4 1 1 1 ...

Let us now convert our dataframe to a tbl_df.

dplyr::tbl_df(NY_1)
## # A tibble: 100,000 x 12
##      cmte_id         contbr_nm contbr_city   Zip
##       <fctr>            <fctr>      <fctr> <chr>
##  1 C00575795   SHIMANSKY, REBA    NEW YORK 10023
##  2 C00575795      WEBB, LOYANA   RIDGEWOOD 11385
##  3 C00580100      FELDMAN, ROB     COMMACK 11725
##  4 C00577130     KING, MICHAEL   RIDGEWOOD 11385
##  5 C00577130  DUNLOP, DAVID S.    NEWBURGH 12550
##  6 C00575795   PRIORE, PATRICK    NEW YORK 10011
##  7 C00458844         GANZ, ZEV     HEWLETT 11557
##  8 C00575795 SMAYLOVSKY, BELLA    BROOKLYN 11229
##  9 C00575795    COOPER, ANDREW    BROOKLYN 11226
## 10 C00577130     ALLISON, MATT    BROOKLYN 11206
## # ... with 99,990 more rows, and 8 more variables: contbr_employer <fctr>,
## #   contbr_occupation <fctr>, contb_receipt_amt <dbl>,
## #   contb_receipt_dt <fctr>, Last_Name <chr>, Population <int>,
## #   Party <fctr>, Party_Color <fctr>
str(NY_1)
## 'data.frame':    100000 obs. of  12 variables:
##  $ cmte_id          : Factor w/ 25 levels "C00458844","C00500587",..: 6 6 15 7 7 6 1 6 6 7 ...
##  $ contbr_nm        : Factor w/ 47556 levels " CALVEY, DONNA MORRIS",..: 39537 45251 12870 22387 11418 34406 14763 40339 8413 743 ...
##  $ contbr_city      : Factor w/ 1596 levels "11590 SALLELES D'AUDE",..: 971 1186 304 1186 976 971 619 174 174 174 ...
##  $ Zip              : chr  "10023" "11385" "11725" "11385" ...
##  $ contbr_employer  : Factor w/ 17350 levels "","'SELF'","'TRANSPARENT'",..: 10102 13267 7217 5552 10158 904 7218 10824 13650 12002 ...
##  $ contbr_occupation: Factor w/ 8689 levels "","''RETIRED''",..: 6685 4765 3917 720 852 3428 5638 63 734 2185 ...
##  $ contb_receipt_amt: num  10 50 85.7 10 200 25 -2700 25 19 5 ...
##  $ contb_receipt_dt : Factor w/ 652 levels "1-Apr-15","1-Apr-16",..: 396 63 648 414 285 652 502 306 26 456 ...
##  $ Last_Name        : chr  "Clinton" "Clinton" "Trump" "Sanders" ...
##  $ Population       : int  60998 98592 29150 98592 54447 50984 7823 80018 101572 81677 ...
##  $ Party            : Factor w/ 5 levels "Conservative",..: 2 2 5 2 2 2 5 2 2 2 ...
##  $ Party_Color      : Factor w/ 5 levels "Blue","Green",..: 1 1 4 1 1 1 4 1 1 1 ...

Hmm. I would have thought str would have indicated NY_1’s new structure.

Contrb_name came in as a factor. Needless, but I suppose but will change to character. Zip came back as chr and we specifically do not want that. Will change it to factor. Employer too needlessly came back as factor. Guess I will change that. Occupation cmae back as factor , that is good. Date came back as a factor. . Last_Name is chr. Specifically wanted this as a factor. Party and Party_Color came in as desired. Well that is something, I suppose.

NY_1$Last_Name <- as.factor(NY_1$Last_Name) 
NY_1$Zip <- as.factor(NY_1$Zip) 
NY_1$contbr_nm <- as.character(NY_1$contbr_nm)
NY_1$contbr_employer<-as.character(NY_1$contbr_employer)
NY_1$contbr_city<-as.character(NY_1$contbr_city)

Ok, now let us create Enthusiasm as a variable. Enthusiasm is the percentage of a population that donated to a candidate.

Freq are the number of people who contributed per zip.

Freq<-data.frame(table(NY_1$Zip))
View(Freq)

Let us revise Var1 to Zip as a column heading.

setnames(Freq,"Var1","Zip")

There are some blank observations which is odd since it is only a record of donors and all donors have to give acomplete address. In any event lets drop any rows that contain a blank.

Freq%>%
  filter(Zip !="")
##        Zip Freq
## 1    `1136    1
## 2        0    2
## 3       10    4
## 4    10000    1
## 5    10001  883
## 6    10002  628
## 7    10003 1495
## 8    10004  132
## 9    10005  162
## 10   10006   98
## 11   10007  272
## 12   10008    7
## 13   10009  994
## 14   10010  780
## 15   10011 2350
## 16   10012  687
## 17   10013  708
## 18   10014 1277
## 19   10015    1
## 20   10016  895
## 21   10017  334
## 22   10018  272
## 23   10019 1149
## 24   10020   19
## 25   10021 1081
## 26   10022 1046
## 27   10023 2280
## 28   10024 2341
## 29   10025 2582
## 30   10026  420
## 31   10027  636
## 32   10028 1214
## 33   10029  319
## 34   10030  123
## 35   10031  331
## 36   10032  287
## 37   10033  466
## 38   10034  290
## 39   10035  147
## 40   10036  742
## 41   10037   81
## 42   10038  307
## 43   10039   93
## 44   10040  277
## 45   10041    1
## 46   10044  153
## 47   10055    2
## 48   10065  685
## 49   10069  135
## 50   10075  591
## 51   10090    2
## 52   10101    5
## 53   10103    7
## 54   10104    3
## 55   10105    1
## 56   10106    8
## 57   10107   23
## 58   10108    1
## 59   10110    6
## 60   10111   10
## 61   10112    4
## 62   10113   24
## 63   10115    2
## 64   10116    5
## 65   10118   14
## 66   10119    2
## 67   10120    1
## 68   10121    1
## 69   10122    1
## 70   10128 1380
## 71   10130    1
## 72   10150    5
## 73   10151    2
## 74   10152    2
## 75   10153    5
## 76   10154    3
## 77   10155    4
## 78   10158    1
## 79   10159    4
## 80   10162   27
## 81   10163   19
## 82   10165   15
## 83   10166    6
## 84   10167    1
## 85   10168    5
## 86   10169    1
## 87   10170    8
## 88   10171    1
## 89   10174    3
## 90   10175    1
## 91   10176    5
## 92   10177    2
## 93   10178    4
## 94   10179    2
## 95   10185   21
## 96   10268   17
## 97   10271    1
## 98   10274    3
## 99   10276   14
## 100  10279    6
## 101  10280  218
## 102  10281    2
## 103  10282  122
## 104  10285    1
## 105  10301  158
## 106  10302   18
## 107  10303   24
## 108  10304  109
## 109  10305  113
## 110  10306  144
## 111  10307   45
## 112  10308   62
## 113  10309  105
## 114  10310   83
## 115  10312  139
## 116  10314  183
## 117  10451   43
## 118  10452   66
## 119  10453   47
## 120  10454   17
## 121  10455   30
## 122  10456   30
## 123  10457   49
## 124  10458   54
## 125  10459   29
## 126  10460   16
## 127  10461   88
## 128  10462  164
## 129  10463  588
## 130  10464   46
## 131  10465   63
## 132  10466   49
## 133  10467   87
## 134  10468   54
## 135  10469   93
## 136  10470   61
## 137  10471  404
## 138  10472   38
## 139  10473   48
## 140  10474    4
## 141  10475   40
## 142  10501    1
## 143  10502   64
## 144  10503    4
## 145  10504  121
## 146  10505    2
## 147  10506   98
## 148  10507   67
## 149  10509   73
## 150  10510  149
## 151  10511   30
## 152  10512   87
## 153  10514  321
## 154  10515    1
## 155  10516  134
## 156  10517    4
## 157  10518    9
## 158  10519    8
## 159  10520  182
## 160  10522  179
## 161  10523   18
## 162  10524   86
## 163  10526   35
## 164  10527   17
## 165  10528   83
## 166  10530  174
## 167  10532   34
## 168  10533  147
## 169  10535    1
## 170  10536  161
## 171  10537   20
## 172  10538  410
## 173  10540    3
## 174  10541   83
## 175  10542    1
## 176  10543  210
## 177  10545    4
## 178  10546   49
## 179  10547   23
## 180  10548   24
## 181  10549  238
## 182  10550   15
## 183  10552  150
## 184  10553   10
## 185  10560   42
## 186  10562  268
## 187  10565    1
## 188  10566   99
## 189  10567  105
## 190  10570  139
## 191  10573  121
## 192  10576   92
## 193  10577   75
## 194  10578    2
## 195  10579   61
## 196  10580  239
## 197  10583  557
## 198  10588    4
## 199  10589   71
## 200  10590  105
## 201  10591  307
## 202  10594   15
## 203  10595   27
## 204  10596    1
## 205  10597   15
## 206  10598  182
## 207  10601   81
## 208  10602    1
## 209  10603   98
## 210  10604   26
## 211  10605  191
## 212  10606  116
## 213  10607   49
## 214  10701  119
## 215  10703   44
## 216  10704   70
## 217  10705  105
## 218  10706  271
## 219  10707   65
## 220  10708  300
## 221  10709   48
## 222  10710   80
## 223  10801  154
## 224  10803  178
## 225  10804  204
## 226  10805  126
## 227  10901  118
## 228  10913   19
## 229  10914    1
## 230  10915    1
## 231  10916   15
## 232  10917    2
## 233  10918   38
## 234  10919    9
## 235  10920   35
## 236  10921   17
## 237  10922   11
## 238  10923   38
## 239  10924   48
## 240  10925   47
## 241  10926   12
## 242  10927   30
## 243  10928    8
## 244  10930   22
## 245  10931    2
## 246  10940  121
## 247  10941   16
## 248  10949    8
## 249  10950   92
## 250  10952   68
## 251  10953    4
## 252  10954  101
## 253  10956  166
## 254  10958   10
## 255  10960  300
## 256  10962   21
## 257  10963    4
## 258  10964   32
## 259  10965   62
## 260  10968   37
## 261  10969    1
## 262  10970   88
## 263  10973    3
## 264  10974    8
## 265  10976   13
## 266  10977   72
## 267  10979    8
## 268  10980   38
## 269  10981    4
## 270  10983   39
## 271  10984    5
## 272  10986   14
## 273  10987   20
## 274  10988    1
## 275  10989   48
## 276  10990  111
## 277  10992   21
## 278  10993    6
## 279  10994   43
## 280  10996    6
## 281  10998    7
## 282     11    1
## 283  11001   87
## 284  11002    1
## 285  11003   93
## 286  11004   26
## 287  11005   18
## 288  11010   52
## 289  11020   40
## 290  11021  183
## 291  11022    2
## 292  11023   57
## 293  11024   30
## 294  11030  163
## 295  11040  119
## 296  11042    2
## 297  11050  276
## 298  11096   12
## 299  11101  279
## 300  11102  186
## 301  11103  218
## 302  11104  182
## 303  11105  230
## 304  11106  282
## 305  11109  120
## 306  11201 1960
## 307  11202   15
## 308  11203   96
## 309  11204   48
## 310  11205  370
## 311  11206  279
## 312  11207   90
## 313  11208   39
## 314  11209  378
## 315  11210  147
## 316  11211  636
## 317  11212   34
## 318  11213  121
## 319  11214  125
## 320  11215 1896
## 321  11216  377
## 322  11217  979
## 323  11218  566
## 324  11219   44
## 325   1122    1
## 326  11220  210
## 327  11221  234
## 328  11222  416
## 329  11223  131
## 330  11224   56
## 331  11225  273
## 332  11226  409
## 333  11228   82
## 334  11229  198
## 335  11230  204
## 336  11231  751
## 337  11232  127
## 338  11233  170
## 339  11234  165
## 340  11235  146
## 341  11236  118
## 342  11237  190
## 343  11238 1058
## 344  11239   16
## 345  11242    1
## 346  11243   22
## 347  11247    4
## 348  11249  327
## 349  11281    1
## 350  11339    1
## 351  11352    2
## 352  11354   63
## 353  11355   89
## 354  11356   31
## 355  11357  114
## 356  11358   88
## 357  11360   97
## 358  11361  101
## 359  11362   62
## 360  11363   65
## 361  11364  110
## 362  11365   75
## 363  11366   49
## 364  11367   60
## 365  11368   63
## 366  11369   70
## 367  11370   50
## 368  11372  266
## 369  11373  101
## 370  11374  165
## 371  11375  490
## 372  11377  266
## 373  11378   71
## 374  11379   66
## 375  11380    1
## 376  11385  256
## 377  11411   37
## 378  11412   59
## 379  11413   76
## 380  11414   60
## 381  11415   82
## 382  11416   39
## 383  11417   33
## 384  11418   59
## 385  11419   28
## 386  11420   18
## 387  11421   55
## 388  11422   60
## 389  11423   44
## 390  11426   51
## 391  11427   41
## 392  11428   18
## 393  11429   33
## 394  11432  205
## 395  11433   14
## 396  11434   37
## 397  11435  108
## 398  11436   10
## 399  11442    2
## 400  11501   56
## 401  11507   40
## 402  11509   37
## 403  11510  109
## 404  11514   13
## 405  11516   20
## 406  11518   34
## 407  11520  121
## 408  11530  191
## 409  11542   85
## 410  11545   86
## 411  11547    1
## 412  11548    1
## 413  11550   79
## 414  11552   96
## 415  11553   31
## 416  11554  119
## 417  11557   46
## 418  11558   11
## 419  11559   44
## 420  11560   89
## 421  11561  272
## 422  11563  117
## 423  11565   47
## 424  11566  181
## 425  11568   26
## 426  11569   30
## 427  11570  132
## 428  11572   96
## 429  11575    6
## 430  11576  116
## 431  11577   95
## 432  11579   85
## 433  11580   69
## 434  11581   89
## 435  11582    2
## 436  11590  112
## 437  11596   56
## 438  11598   50
## 439  11691   63
## 440  11692   18
## 441  11693   28
## 442  11694   82
## 443  11697    6
## 444  11701   32
## 445  11702   65
## 446  11703   67
## 447  11704   80
## 448  11705   43
## 449  11706  156
## 450  11707    3
## 451  11709   51
## 452  11710  132
## 453  11713   63
## 454  11714   61
## 455  11715    8
## 456  11716   25
## 457  11717   55
## 458  11718   53
## 459  11719   24
## 460  11720   87
## 461  11721   59
## 462  11722   66
## 463  11724   23
## 464  11725   92
## 465  11726   30
## 466  11727   72
## 467  11729   31
## 468  11730   83
## 469  11731  128
## 470  11732   45
## 471  11733  226
## 472  11735   79
## 473  11738   19
## 474  11740   46
## 475  11741   51
## 476  11742   37
## 477  11743  307
## 478  11746  316
## 479  11747   96
## 480  11749    8
## 481  11751   44
## 482  11752   10
## 483  11753   50
## 484  11754   48
## 485  11755   24
## 486  11756  142
## 487  11757  143
## 488  11758  162
## 489  11762   54
## 490  11763   79
## 491  11764   63
## 492  11765   12
## 493  11766   70
## 494  11767   31
## 495  11768  155
## 496  11769   21
## 497  11770   12
## 498  11771   76
## 499  11772  184
## 500  11776   62
## 501  11777   86
## 502  11778   31
## 503  11779  101
## 504  11780   74
## 505  11782   68
## 506  11783   65
## 507  11784   43
## 508  11786   36
## 509  11787  136
## 510  11788   45
## 511  11789   32
## 512  11790  178
## 513  11791  127
## 514  11792   36
## 515  11793  130
## 516  11795   54
## 517  11796    8
## 518  11797   49
## 519  11798    9
## 520   1180    3
## 521  11801   95
## 522  11803  121
## 523  11804   54
## 524  11901   48
## 525  11930   73
## 526  11931   20
## 527  11932   24
## 528  11933   18
## 529  11934   64
## 530  11935   32
## 531  11937  240
## 532  11939   16
## 533  11940   30
## 534  11941   10
## 535  11942   23
## 536  11944   68
## 537  11946   42
## 538  11947   10
## 539  11948    6
## 540  11949   54
## 541  11950   19
## 542  11951   53
## 543  11952   87
## 544  11953   47
## 545  11954   36
## 546  11955    5
## 547  11956    3
## 548  11957   29
## 549  11958    7
## 550  11959   49
## 551  11960   19
## 552  11961   23
## 553  11962    8
## 554  11963  189
## 555  11964   26
## 556  11965   25
## 557  11967   18
## 558  11968  110
## 559  11969   14
## 560  11970   13
## 561  11971   56
## 562  11972   11
## 563  11973    4
## 564  11975   18
## 565  11976   43
## 566  11977   14
## 567  11978   39
## 568  11980   32
## 569  12008    4
## 570  12009   62
## 571  12010   71
## 572  12015   59
## 573  12017    6
## 574  12018   54
## 575  12019   79
## 576  12020   82
## 577  12023   13
## 578  12025   23
## 579  12027   15
## 580  12028    5
## 581  12029   24
## 582  12031    6
## 583  12032    1
## 584  12033   27
## 585  12035    1
## 586  12037   14
## 587  12040    1
## 588  12041    2
## 589  12042    2
## 590  12043   24
## 591  12045    3
## 592  12046    5
## 593  12047   61
## 594  12051    6
## 595  12052    1
## 596  12053    4
## 597  12054  232
## 598  12056    6
## 599  12057   10
## 600  12058    2
## 601  12059   14
## 602  12060   29
## 603  12061   73
## 604  12062   11
## 605  12063    3
## 606  12064   10
## 607  12065  206
## 608  12066   17
## 609  12067   13
## 610  12068    6
## 611  12069    1
## 612  12070    1
## 613  12071    5
## 614  12072    6
## 615  12074    6
## 616  12075   36
## 617  12076    5
## 618  12077   45
## 619  12078   39
## 620  12082    2
## 621  12083   27
## 622  12084   45
## 623  12086   11
## 624  12087    3
## 625  12090   15
## 626  12092    3
## 627  12093    4
## 628  12094   12
## 629  12095   18
## 630  12106   29
## 631  12110  121
## 632  12115   11
## 633  12116    3
## 634  12117    2
## 635  12118   48
## 636  12120    3
## 637  12121   23
## 638  12122    7
## 639  12123   16
## 640  12124    8
## 641  12125   14
## 642  12130    6
## 643  12131    1
## 644  12132    1
## 645  12134   21
## 646  12136   13
## 647  12137    3
## 648  12138    9
## 649  12139    1
## 650  12140   12
## 651  12143   23
## 652  12144   72
## 653  12147   18
## 654  12148   32
## 655  12149    3
## 656  12150    3
## 657  12151   16
## 658  12153    5
## 659  12154    7
## 660  12155    1
## 661  12156    2
## 662  12157   13
## 663  12158   32
## 664  12159   75
## 665  12164    1
## 666  12165   10
## 667  12166    4
## 668  12167   14
## 669  12168   19
## 670  12169    4
## 671  12170    8
## 672  12173    3
## 673  12174    3
## 674  12175    5
## 675  12176   16
## 676  12180  235
## 677  12181    3
## 678  12182   25
## 679  12183    1
## 680  12184   33
## 681  12185   13
## 682  12186   22
## 683  12187    5
## 684  12188   34
## 685  12189   54
## 686  12192    4
## 687  12193   13
## 688  12196   21
## 689  12198   33
## 690  12201    6
## 691  12202   36
## 692  12203  235
## 693  12204   25
## 694  12205   58
## 695  12206   25
## 696  12207    8
## 697  12208  201
## 698  12209   64
## 699  12210  104
## 700  12211  114
## 701  12212    2
## 702  12220   11
## 703  12234    6
## 704  12301    1
## 705  12302  125
## 706  12303   57
## 707  12304   47
## 708  12305   23
## 709  12306   54
## 710  12307   10
## 711  12308   45
## 712  12309  230
## 713  12345    4
## 714  12401  222
## 715  12402   14
## 716  12404   54
## 717  12405    3
## 718  12406    7
## 719  12407    2
## 720  12409   18
## 721  12410    5
## 722  12411    7
## 723  12412   10
## 724  12413    6
## 725  12414   48
## 726  12416    9
## 727  12418    3
## 728  12419    6
## 729  12422    1
## 730  12423    1
## 731  12427    1
## 732  12428   17
## 733  12429    7
## 734  12430    3
## 735  12431    2
## 736  12433    8
## 737  12436    6
## 738  12439    2
## 739  12440   38
## 740  12441   10
## 741  12442    5
## 742  12443   28
## 743  12444    3
## 744  12446   68
## 745  12448   12
## 746  12449    5
## 747  12451    3
## 748  12454    1
## 749  12455    2
## 750  12456    1
## 751  12457   57
## 752  12458    1
## 753  12459    5
## 754  12461   18
## 755  12463   16
## 756  12464    9
## 757  12465    1
## 758  12466   34
## 759  12468    1
## 760  12470    9
## 761  12471   10
## 762  12472   42
## 763  12473    5
## 764  12474   11
## 765  12475    2
## 766  12477  120
## 767  12480    9
## 768  12481   10
## 769  12483    1
## 770  12484   22
## 771  12485    5
## 772  12486   15
## 773  12487   23
## 774  12490    2
## 775  12491   29
## 776  12492    1
## 777  12493    2
## 778  12494    4
## 779  12495    9
## 780  12496    9
## 781  12498  138
## 782  12501   16
## 783  12502   11
## 784  12503   11
## 785  12504   13
## 786  12506    1
## 787  12507    8
## 788  12508  115
## 789  12510    1
## 790  12513   20
## 791  12514   16
## 792  12515    1
## 793  12516   26
## 794  12517   13
## 795  12518   25
## 796  12520   27
## 797  12521   10
## 798  12522   10
## 799  12523    1
## 800  12524   67
## 801  12525   47
## 802  12526   35
## 803  12527    8
## 804  12528   76
## 805  12529   85
## 806  12531   10
## 807  12533  136
## 808  12534   82
## 809  12538   58
## 810  12540   43
## 811  12541    1
## 812  12542    4
## 813  12545   41
## 814  12546   21
## 815  12547   12
## 816  12548    3
## 817  12549   36
## 818  12550  124
## 819  12551    2
## 820  12553   80
## 821  12561  175
## 822  12563   30
## 823  12564   35
## 824  12565    7
## 825  12566   23
## 826  12567   26
## 827  12568   10
## 828  12569   33
## 829  12570   36
## 830  12571  133
## 831  12572  131
## 832  12574    5
## 833  12575    7
## 834  12577   15
## 835  12578    2
## 836  12580   20
## 837  12581   18
## 838  12582   29
## 839  12583   27
## 840  12584    2
## 841  12585   10
## 842  12586   36
## 843  12589   35
## 844  12590  128
## 845  12592    6
## 846  12594   22
## 847  12601  113
## 848  12602    1
## 849  12603  168
## 850  12604   30
## 851  12701   26
## 852  12719   14
## 853  12720   11
## 854  12721   12
## 855  12723    7
## 856  12724    1
## 857  12725    1
## 858  12726    5
## 859  12729    2
## 860  12732   22
## 861  12734    1
## 862  12736    6
## 863  12737   10
## 864  12740   10
## 865  12746    4
## 866  12747    1
## 867  12748   14
## 868  12749    3
## 869  12752    3
## 870  12754   11
## 871  12758   24
## 872  12760    7
## 873  12762   34
## 874  12764    6
## 875  12765    1
## 876  12768    4
## 877  12770    6
## 878  12771    9
## 879  12775    8
## 880  12777    3
## 881  12778    7
## 882  12779   16
## 883  12781    1
## 884  12785    8
## 885  12787    1
## 886  12788    1
## 887  12789    2
## 888  12790   23
## 889  12791    1
## 890  12792    2
## 891  12801   48
## 892  12803   24
## 893  12804  120
## 894  12808    1
## 895  12809    3
## 896  12810    2
## 897  12812    8
## 898  12814    9
## 899  12815    9
## 900  12816   20
## 901  12822   30
## 902  12824    5
## 903  12827   11
## 904  12828   25
## 905  12831   74
## 906  12832    6
## 907  12833   37
## 908  12834   36
## 909  12835    8
## 910  12836    2
## 911  12837    1
## 912  12839   11
## 913  12841    1
## 914  12842   11
## 915  12843    7
## 916  12845   13
## 917  12846   10
## 918  12847    2
## 919  12849    4
## 920  12850    7
## 921  12852    2
## 922  12853    4
## 923  12856    3
## 924  12857    1
## 925  12859    2
## 926  12860    1
## 927  12861    9
## 928  12863    3
## 929  12864    2
## 930  12865   26
## 931  12866  333
## 932  12870    6
## 933  12871   10
## 934  12873   16
## 935  12878    3
## 936  12883    9
## 937  12885   19
## 938  12887    4
## 939  12901  149
## 940  12903   22
## 941  12914    5
## 942  12915    3
## 943  12916    1
## 944  12917    3
## 945  12918    3
## 946  12919   14
## 947  12920    5
## 948  12921   11
## 949  12923    5
## 950  12926    6
## 951  12927    2
## 952  12928    3
## 953  12932   10
## 954  12935    5
## 955  12936   14
## 956  12937    1
## 957  12939   17
## 958  12941    8
## 959  12942    5
## 960  12943   11
## 961  12944   21
## 962  12945    2
## 963  12946   41
## 964  12950    1
## 965  12952    1
## 966  12953   38
## 967  12957    3
## 968  12958    7
## 969  12959    2
## 970  12960    5
## 971  12962   31
## 972  12965    7
## 973  12970    1
## 974  12972   26
## 975  12974    1
## 976  12975    4
## 977  12976    1
## 978  12978    2
## 979  12979    3
## 980  12980   11
## 981  12983   39
## 982  12986    7
## 983  12989    5
## 984  12992   14
## 985  12993   22
## 986  12995    1
## 987  12996    8
## 988  12997    3
## 989  13020    1
## 990  13021   69
## 991  13026   13
## 992  13027   56
## 993  13028    1
## 994  13029   25
## 995  13030    2
## 996  13031   39
## 997  13032   15
## 998  13033    6
## 999  13034    7
## 1000 13035   71
## 1001 13036   10
## 1002 13037   11
## 1003 13039   26
## 1004 13040    3
## 1005 13041   15
## 1006 13042    3
## 1007 13044   10
## 1008 13045   70
## 1009 13052    4
## 1010 13053   37
## 1011 13054    1
## 1012 13057   57
## 1013 13060    1
## 1014 13061    4
## 1015 13062    3
## 1016 13063    4
## 1017 13066  104
## 1018 13068   56
## 1019 13069   27
## 1020 13071   13
## 1021 13072    2
## 1022 13073   14
## 1023 13074    4
## 1024 13076    1
## 1025 13077   33
## 1026 13078   72
## 1027 13080    2
## 1028 13081    4
## 1029 13082   18
## 1030 13084   26
## 1031 13088   65
## 1032 13089    2
## 1033 13090   76
## 1034 13092    5
## 1035 13101    3
## 1036 13104  109
## 1037 13108   17
## 1038 13110    7
## 1039 13111    8
## 1040 13112    6
## 1041 13113    2
## 1042 13114   11
## 1043 13116    2
## 1044 13118   14
## 1045 13120   14
## 1046 13121    1
## 1047 13122    4
## 1048 13123    3
## 1049 13126   87
## 1050 13131    6
## 1051 13132   11
## 1052 13135   15
## 1053 13138    2
## 1054 13140    8
## 1055 13141    1
## 1056 13142   14
## 1057 13143    4
## 1058 13144    4
## 1059 13146    3
## 1060 13147    2
## 1061 13148   35
## 1062 13152   49
## 1063 13155    5
## 1064 13156    4
## 1065 13157    1
## 1066 13158    4
## 1067 13159   28
## 1068 13160    7
## 1069 13164    8
## 1070 13165   17
## 1071 13166   13
## 1072 13167    3
## 1073 13202   10
## 1074 13203   46
## 1075 13204   29
## 1076 13205   12
## 1077 13206   70
## 1078 13207   38
## 1079 13208   26
## 1080 13209   12
## 1081 13210  117
## 1082 13211    3
## 1083 13212   29
## 1084 13214   69
## 1085 13215   43
## 1086 13217    1
## 1087 13218    7
## 1088 13219   43
## 1089 13224   87
## 1090 13235    2
## 1091 13303    2
## 1092 13304   19
## 1093 13308    1
## 1094 13309   14
## 1095 13310    2
## 1096 13315   10
## 1097 13316   11
## 1098 13317    2
## 1099 13320   13
## 1100 13321    1
## 1101 13323   99
## 1102 13326   75
## 1103 13327    5
## 1104 13328    2
## 1105 13329    8
## 1106 13332   12
## 1107 13334    9
## 1108 13335    4
## 1109 13337   10
## 1110 13339    7
## 1111 13340    9
## 1112 13343    1
## 1113 13346   58
## 1114 13348   18
## 1115 13350   29
## 1116 13354    4
## 1117 13355   10
## 1118 13357    4
## 1119 13363   13
## 1120 13365    8
## 1121 13367   18
## 1122 13402    1
## 1123 13403    7
## 1124 13406    1
## 1125 13407    2
## 1126 13408    6
## 1127 13409    9
## 1128 13411    4
## 1129 13413   65
## 1130 13415    1
## 1131 13416    2
## 1132 13417    2
## 1133 13418    1
## 1134 13420    9
## 1135 13421   30
## 1136 13424    5
## 1137 13431    4
## 1138 13433    4
## 1139 13435    1
## 1140 13438   16
## 1141 13439   17
## 1142 13440   93
## 1143 13442    8
## 1144 13450   11
## 1145 13454    3
## 1146 13459   11
## 1147 13460    4
## 1148 13461    2
## 1149 13464    3
## 1150 13468    2
## 1151 13471    5
## 1152 13473    1
## 1153 13475    1
## 1154 13476    9
## 1155 13478    3
## 1156 13479    6
## 1157 13485    2
## 1158 13488    3
## 1159 13489    6
## 1160 13490    1
## 1161 13491    7
## 1162 13492   28
## 1163 13495    3
## 1164 13501   36
## 1165 13502   31
## 1166 13503    1
## 1167 13601   44
## 1168 13605    4
## 1169 13606    2
## 1170 13607    2
## 1171 13608    7
## 1172 13612    3
## 1173 13616    1
## 1174 13617   40
## 1175 13618    4
## 1176 13619    5
## 1177 13620    3
## 1178 13622    1
## 1179 13624   10
## 1180 13625   24
## 1181 13632    1
## 1182 13634    6
## 1183 13637    2
## 1184 13638    6
## 1185 13640    1
## 1186 13642   23
## 1187 13646   10
## 1188 13648   13
## 1189 13650    1
## 1190 13651    1
## 1191 13652    1
## 1192 13654    4
## 1193 13655    4
## 1194 13662   25
## 1195 13664    1
## 1196 13667    4
## 1197 13668    5
## 1198 13669   21
## 1199 13673    5
## 1200 13676   50
## 1201 13679    3
## 1202 13681    1
## 1203 13682    4
## 1204 13683    3
## 1205 13684    2
## 1206 13685    6
## 1207 13690    1
## 1208 13691    1
## 1209 13693    3
## 1210 13694    1
## 1211 13695    3
## 1212 13697    2
## 1213 13730    9
## 1214 13731   18
## 1215 13732   44
## 1216 13733   12
## 1217 13734   10
## 1218 13736   13
## 1219 13739    5
## 1220 13740    4
## 1221 13743    9
## 1222 13744    1
## 1223 13746    2
## 1224 13748    3
## 1225 13750    1
## 1226 13752    5
## 1227 13753   16
## 1228 13754    9
## 1229 13755    2
## 1230 13756    1
## 1231 13757   10
## 1232 13760  148
## 1233 13762    1
## 1234 13763    1
## 1235 13776    6
## 1236 13777    1
## 1237 13778   10
## 1238 13780    4
## 1239 13782   13
## 1240 13783    1
## 1241 13784    1
## 1242 13787    9
## 1243 13788   10
## 1244 13790   32
## 1245 13795   14
## 1246 13796    3
## 1247 13797   12
## 1248 13802    1
## 1249 13803    4
## 1250 13807    1
## 1251 13808    2
## 1252 13810    2
## 1253 13811    4
## 1254 13812    4
## 1255 13814    2
## 1256 13815   27
## 1257 13820   95
## 1258 13825   19
## 1259 13827   42
## 1260 13830    9
## 1261 13833    3
## 1262 13835    1
## 1263 13838   10
## 1264 13839   16
## 1265 13841    2
## 1266 13842    3
## 1267 13843    1
## 1268 13844    1
## 1269 13846   10
## 1270 13848    1
## 1271 13849   11
## 1272 13850  160
## 1273 13851    2
## 1274 13856   11
## 1275 13862    4
## 1276 13863    2
## 1277 13864   11
## 1278 13865   24
## 1279 13901   30
## 1280 13903   37
## 1281 13904   19
## 1282 13905  141
## 1283 14001    3
## 1284 14004   34
## 1285 14005    4
## 1286 14006   14
## 1287 14009   14
## 1288 14011   11
## 1289 14012    2
## 1290 14020   26
## 1291 14024    1
## 1292 14025   13
## 1293 14026    3
## 1294 14028    9
## 1295 14030    1
## 1296 14031   31
## 1297 14032   28
## 1298 14033    4
## 1299 14034    7
## 1300 14036    5
## 1301 14042    5
## 1302 14043   31
## 1303 14047   17
## 1304 14048   30
## 1305 14051   76
## 1306 14052   84
## 1307 14054    3
## 1308 14055    2
## 1309 14056    1
## 1310 14057   20
## 1311 14059   22
## 1312 14062    5
## 1313 14063   33
## 1314 14067    8
## 1315 14068   20
## 1316 14069    3
## 1317 14070   13
## 1318 14072   86
## 1319 14075  123
## 1320 14080   11
## 1321 14081    3
## 1322 14085   19
## 1323 14086   56
## 1324 14092   44
## 1325 14094   57
## 1326 14095    1
## 1327 14098    6
## 1328 14102    2
## 1329 14103   12
## 1330 14105    6
## 1331 14111    6
## 1332 14120   64
## 1333 14125    1
## 1334 14126    1
## 1335 14127   78
## 1336 14129    8
## 1337 14130    6
## 1338 14131   13
## 1339 14132    6
## 1340 14136   20
## 1341 14138    4
## 1342 14139    9
## 1343 14141    9
## 1344 14143    5
## 1345 14145    1
## 1346 14150   57
## 1347 14167    5
## 1348 14170    5
## 1349 14171    1
## 1350 14172   12
## 1351 14173    1
## 1352 14174   40
## 1353 14200    1
## 1354 14201   56
## 1355 14202   52
## 1356 14203    6
## 1357 14204    8
## 1358 14205    1
## 1359 14206   20
## 1360 14207   23
## 1361 14208    1
## 1362 14209   72
## 1363 14210   20
## 1364 14211   11
## 1365 14212   11
## 1366 14213   48
## 1367 14214  105
## 1368 14215   27
## 1369 14216  109
## 1370 14217   47
## 1371 14218   15
## 1372 14219   11
## 1373 14220   38
## 1374 14221  210
## 1375 14222  113
## 1376 14223   45
## 1377 14224   47
## 1378 14225   84
## 1379 14226  119
## 1380 14227   17
## 1381 14228   55
## 1382 14231    3
## 1383 14260    1
## 1384 14301   11
## 1385 14303    4
## 1386 14304   54
## 1387 14305   22
## 1388 14411   15
## 1389 14414   10
## 1390 14416    6
## 1391 14418   14
## 1392 14420   42
## 1393 14422    7
## 1394 14423    9
## 1395 14424  105
## 1396 14425   20
## 1397 14427    7
## 1398 14428   30
## 1399 14432    4
## 1400 14433    3
## 1401 14435    3
## 1402 14437    4
## 1403 14445   19
## 1404 14450  163
## 1405 14454   30
## 1406 14456   91
## 1407 14462    1
## 1408 14464    1
## 1409 14466    4
## 1410 14467   45
## 1411 14468   55
## 1412 14469    8
## 1413 14470   14
## 1414 14471    6
## 1415 14472   58
## 1416 14476    3
## 1417 14477    2
## 1418 14478   15
## 1419 14480    1
## 1420 14481    3
## 1421 14482   18
## 1422 14485   12
## 1423 14486    1
## 1424 14487   15
## 1425 14489    8
## 1426 14502   16
## 1427 14505    7
## 1428 14506    3
## 1429 14507    7
## 1430 14510   19
## 1431 14512   21
## 1432 14513   17
## 1433 14514   10
## 1434 14516    7
## 1435 14517    6
## 1436 14519   31
## 1437 14521   17
## 1438 14522    7
## 1439 14525    2
## 1440 14526   38
## 1441 14527   26
## 1442 14530    7
## 1443 14532    8
## 1444 14533    5
## 1445 14534  261
## 1446 14535    1
## 1447 14539    1
## 1448 14541   12
## 1449 14543   20
## 1450 14544    1
## 1451 14546   19
## 1452 14548   18
## 1453 14549    1
## 1454 14550    7
## 1455 14551   11
## 1456 14555    5
## 1457 14559   33
## 1458 14560   10
## 1459 14561    7
## 1460 14564   78
## 1461 14568   15
## 1462 14569   21
## 1463 14571    1
## 1464 14572    8
## 1465 14580  139
## 1466 14585    1
## 1467 14586   40
## 1468 14589   23
## 1469 14590   45
## 1470 14591    6
## 1471 14592    2
## 1472 14604   28
## 1473 14605    9
## 1474 14606   25
## 1475 14607  181
## 1476 14608   37
## 1477 14609  107
## 1478 14610  153
## 1479 14611   10
## 1480 14612   68
## 1481 14613   33
## 1482 14614    1
## 1483 14615   23
## 1484 14616   38
## 1485 14617   58
## 1486 14618  219
## 1487 14619   52
## 1488 14620  186
## 1489 14621   24
## 1490 14622   42
## 1491 14623   46
## 1492 14624  106
## 1493 14625  118
## 1494 14626   54
## 1495 14687    3
## 1496 14701   54
## 1497 14706   12
## 1498 14709   15
## 1499 14710   10
## 1500 14711    4
## 1501 14712    4
## 1502 14715    1
## 1503 14717    2
## 1504 14718    3
## 1505 14722    5
## 1506 14723    2
## 1507 14724    1
## 1508 14727   18
## 1509 14728    4
## 1510 14729    1
## 1511 14731    5
## 1512 14733    2
## 1513 14735    4
## 1514 14737    7
## 1515 14738    4
## 1516 14740    3
## 1517 14741    4
## 1518 14742    7
## 1519 14743    1
## 1520 14744    3
## 1521 14747    1
## 1522 14748    1
## 1523 14750   15
## 1524 14752    1
## 1525 14753    6
## 1526 14755    4
## 1527 14757   23
## 1528 14760   32
## 1529 14770    3
## 1530 14772    4
## 1531 14775   11
## 1532 14779    7
## 1533 14781    1
## 1534 14782    2
## 1535 14784    3
## 1536 14787   42
## 1537 14801    5
## 1538 14802   13
## 1539 14803    3
## 1540 14804   19
## 1541 14805    4
## 1542 14806    6
## 1543 14807    3
## 1544 14810   17
## 1545 14812    5
## 1546 14813    5
## 1547 14814   10
## 1548 14817   48
## 1549 14818   14
## 1550 14821    9
## 1551 14823    6
## 1552 14824    3
## 1553 14825    1
## 1554 14826    3
## 1555 14830   88
## 1556 14836    5
## 1557 14837   13
## 1558 14838    1
## 1559 14840   16
## 1560 14841    5
## 1561 14842    5
## 1562 14843   45
## 1563 14845   53
## 1564 14847   23
## 1565 14850  880
## 1566 14851   15
## 1567 14852    9
## 1568 14853    8
## 1569 14858    6
## 1570 14860    3
## 1571 14864    1
## 1572 14865   14
## 1573 14867   52
## 1574 14869    1
## 1575 14870   28
## 1576 14871    1
## 1577 14873   14
## 1578 14874    5
## 1579 14877    2
## 1580 14879    2
## 1581 14880    3
## 1582 14881    7
## 1583 14882   32
## 1584 14883   34
## 1585 14884    5
## 1586 14885    3
## 1587 14886   95
## 1588 14889    5
## 1589 14891   12
## 1590 14892   21
## 1591 14894    1
## 1592 14895   23
## 1593 14897    1
## 1594 14898    1
## 1595 14901   13
## 1596 14903   16
## 1597 14904   12
## 1598 14905   44
## 1599 14912    2
## 1600 19895    1
## 1601     2    1
## 1602 20017    2
## 1603 20803    2
## 1604  2138    1
## 1605  2586    3
## 1606 27312    1
## 1607 30022    3
## 1608 34135    1
## 1609 34145    1
## 1610 34146    2
## 1611     4    1
## 1612 40767    2
## 1613     5    1
## 1614 61397    1
## 1615  6390    1
## 1616 63900    6
## 1617 63907   13
## 1618 63909    1
## 1619  6820    1
## 1620  6840    1
## 1621  7030    2
## 1622  7087    4
## 1623 75016   12
## 1624 75018    1
## 1625 76391    2
## 1626 81260    8
## 1627  8701    1
## 1628  9131    1
## 1629  9309    4
## 1630  9464    1
## 1631 99999   31

OVERVIEW OF DATA

Candidate_List$Last_Name<- NY_1[!duplicated(NY_1[,c(‘Last_Name’)]) ,

NY_1<- NY_1 %>% left_join(Freq, 
by = c("Zip"="Zip"))
View(NY_1)