library(ggplot2)
library(GGally)
library(scales)
library(memisc)
## Loading required package: lattice
## Loading required package: MASS
##
## Attaching package: 'memisc'
## The following object is masked from 'package:scales':
##
## percent
## The following objects are masked from 'package:stats':
##
## contr.sum, contr.treatment, contrasts
## The following object is masked from 'package:base':
##
## as.array
library(lattice)
library(MASS)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:memisc':
##
## collect, recode, rename
## The following object is masked from 'package:MASS':
##
## select
## The following object is masked from 'package:GGally':
##
## nasa
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(RColorBrewer)
library(tidyr)
library(data.table)
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
## between, first, last
library(knitr)
library(tidyr)
library(gridExtra)
library(lattice)
library(splitstackshape)
library(Rmisc)
## Loading required package: plyr
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following object is masked from 'package:memisc':
##
## rename
library(ggthemes)
Lets keep exponenets out of our graphs.
options("scipen"=1000000)
This paper will look at the same thing from three different levels: all politcial parties lumped in together , Republicans v Democrats, and the candidates against each other regardless of party.
Primarily we ill be working withthe Federal Election Data for NY stat as provided by Udacity. We will suppliment this dataset with dataset (ZipPop2) which provides the population per zip code as per 2010 and lastly with a dataset that provides each candidates political party and that party’s color.
The Links to the two data sets that I provided. https://drive.google.com/open?id=0B-ygjCols7cANTR3WGFjbUM4UU0
https://drive.google.com/open?id=0B-ygjCols7cAaUZ2ME1RN0tZM1k
The NYS election data is very lasrge so we will be working with a sample of it.
NY2016<-read.csv(“NY2016.csv”)
NYSample<-NY2016[sample(nrow(NY_1), 100000),]
NYSample<-read.csv("NYSample.csv")
ZipPop2<- read.csv("Zip_Pop2.csv")
CandidateParty<-read.csv("CandidateParty.csv")
Let us drop unneceassary columns
NY_1<- select(NYSample,cmte_id,contbr_nm,contbr_city,Zip,
contbr_employer,contbr_occupation,contb_receipt_amt,
contb_receipt_dt,cand_nm)
The Zip codes of NY2016 are 9 digits long so we will shorten them to 5 digits.
NY_1$Zip<- substr(NY_1$Zip , 0,5)
Some of the zips are only 3 numbers but these three numbers tell us it is a NYS zip.
Lets shorten the candidate’s name to just their last name.
View(NY_1)
NY_1<-cSplit(NY_1 , "cand_nm", sep=",")
View(NY_1)
Lets drop extra the now unneeded cand_nm_2
NY_1$cand_nm_2<-NULL
View(NY_1)
Lets rename cand_nm to Last_Name
setnames(NY_1,"cand_nm_1", "Last_Name")
Now we will join our 3 datasets together. Joining Zip_Pop2 adds population per zip to our dataset. But first lets make sure all of the data types are the matching.
View(ZipPop2)
ZipPop2$Zip<-as.factor(ZipPop2$Zip)
NY_1<- NY_1%>% left_join(ZipPop2, by= c("Zip"="Zip"))
## Warning: Column `Zip` joining character vector and factor, coercing into
## character vector
Now lets join Candidate Party this will bring in the candidates respective political parties and colors.
NY_1<- NY_1%>% left_join(CandidateParty, by= c("Last_Name"="Last_Name"))
## Warning: Column `Last_Name` joining factors with different levels, coercing
## to character vector
str(NY_1)
## 'data.frame': 100000 obs. of 12 variables:
## $ cmte_id : Factor w/ 25 levels "C00458844","C00500587",..: 6 6 15 7 7 6 1 6 6 7 ...
## $ contbr_nm : Factor w/ 47556 levels " CALVEY, DONNA MORRIS",..: 39537 45251 12870 22387 11418 34406 14763 40339 8413 743 ...
## $ contbr_city : Factor w/ 1596 levels "11590 SALLELES D'AUDE",..: 971 1186 304 1186 976 971 619 174 174 174 ...
## $ Zip : chr "10023" "11385" "11725" "11385" ...
## $ contbr_employer : Factor w/ 17350 levels "","'SELF'","'TRANSPARENT'",..: 10102 13267 7217 5552 10158 904 7218 10824 13650 12002 ...
## $ contbr_occupation: Factor w/ 8689 levels "","''RETIRED''",..: 6685 4765 3917 720 852 3428 5638 63 734 2185 ...
## $ contb_receipt_amt: num 10 50 85.7 10 200 25 -2700 25 19 5 ...
## $ contb_receipt_dt : Factor w/ 652 levels "1-Apr-15","1-Apr-16",..: 396 63 648 414 285 652 502 306 26 456 ...
## $ Last_Name : chr "Clinton" "Clinton" "Trump" "Sanders" ...
## $ Population : int 60998 98592 29150 98592 54447 50984 7823 80018 101572 81677 ...
## $ Party : Factor w/ 5 levels "Conservative",..: 2 2 5 2 2 2 5 2 2 2 ...
## $ Party_Color : Factor w/ 5 levels "Blue","Green",..: 1 1 4 1 1 1 4 1 1 1 ...
Let us now convert our dataframe to a tbl_df.
dplyr::tbl_df(NY_1)
## # A tibble: 100,000 x 12
## cmte_id contbr_nm contbr_city Zip
## <fctr> <fctr> <fctr> <chr>
## 1 C00575795 SHIMANSKY, REBA NEW YORK 10023
## 2 C00575795 WEBB, LOYANA RIDGEWOOD 11385
## 3 C00580100 FELDMAN, ROB COMMACK 11725
## 4 C00577130 KING, MICHAEL RIDGEWOOD 11385
## 5 C00577130 DUNLOP, DAVID S. NEWBURGH 12550
## 6 C00575795 PRIORE, PATRICK NEW YORK 10011
## 7 C00458844 GANZ, ZEV HEWLETT 11557
## 8 C00575795 SMAYLOVSKY, BELLA BROOKLYN 11229
## 9 C00575795 COOPER, ANDREW BROOKLYN 11226
## 10 C00577130 ALLISON, MATT BROOKLYN 11206
## # ... with 99,990 more rows, and 8 more variables: contbr_employer <fctr>,
## # contbr_occupation <fctr>, contb_receipt_amt <dbl>,
## # contb_receipt_dt <fctr>, Last_Name <chr>, Population <int>,
## # Party <fctr>, Party_Color <fctr>
str(NY_1)
## 'data.frame': 100000 obs. of 12 variables:
## $ cmte_id : Factor w/ 25 levels "C00458844","C00500587",..: 6 6 15 7 7 6 1 6 6 7 ...
## $ contbr_nm : Factor w/ 47556 levels " CALVEY, DONNA MORRIS",..: 39537 45251 12870 22387 11418 34406 14763 40339 8413 743 ...
## $ contbr_city : Factor w/ 1596 levels "11590 SALLELES D'AUDE",..: 971 1186 304 1186 976 971 619 174 174 174 ...
## $ Zip : chr "10023" "11385" "11725" "11385" ...
## $ contbr_employer : Factor w/ 17350 levels "","'SELF'","'TRANSPARENT'",..: 10102 13267 7217 5552 10158 904 7218 10824 13650 12002 ...
## $ contbr_occupation: Factor w/ 8689 levels "","''RETIRED''",..: 6685 4765 3917 720 852 3428 5638 63 734 2185 ...
## $ contb_receipt_amt: num 10 50 85.7 10 200 25 -2700 25 19 5 ...
## $ contb_receipt_dt : Factor w/ 652 levels "1-Apr-15","1-Apr-16",..: 396 63 648 414 285 652 502 306 26 456 ...
## $ Last_Name : chr "Clinton" "Clinton" "Trump" "Sanders" ...
## $ Population : int 60998 98592 29150 98592 54447 50984 7823 80018 101572 81677 ...
## $ Party : Factor w/ 5 levels "Conservative",..: 2 2 5 2 2 2 5 2 2 2 ...
## $ Party_Color : Factor w/ 5 levels "Blue","Green",..: 1 1 4 1 1 1 4 1 1 1 ...
Hmm. I would have thought str would have indicated NY_1’s new structure.
Contrb_name came in as a factor. Needless, but I suppose but will change to character. Zip came back as chr and we specifically do not want that. Will change it to factor. Employer too needlessly came back as factor. Guess I will change that. Occupation cmae back as factor , that is good. Date came back as a factor. . Last_Name is chr. Specifically wanted this as a factor. Party and Party_Color came in as desired. Well that is something, I suppose.
NY_1$Last_Name <- as.factor(NY_1$Last_Name)
NY_1$Zip <- as.factor(NY_1$Zip)
NY_1$contbr_nm <- as.character(NY_1$contbr_nm)
NY_1$contbr_employer<-as.character(NY_1$contbr_employer)
NY_1$contbr_city<-as.character(NY_1$contbr_city)
Ok, now let us create Enthusiasm as a variable. Enthusiasm is the percentage of a population that donated to a candidate.
Freq are the number of people who contributed per zip.
Freq<-data.frame(table(NY_1$Zip))
View(Freq)
Let us revise Var1 to Zip as a column heading.
setnames(Freq,"Var1","Zip")
There are some blank observations which is odd since it is only a record of donors and all donors have to give acomplete address. In any event lets drop any rows that contain a blank.
Freq%>%
filter(Zip !="")
## Zip Freq
## 1 `1136 1
## 2 0 2
## 3 10 4
## 4 10000 1
## 5 10001 883
## 6 10002 628
## 7 10003 1495
## 8 10004 132
## 9 10005 162
## 10 10006 98
## 11 10007 272
## 12 10008 7
## 13 10009 994
## 14 10010 780
## 15 10011 2350
## 16 10012 687
## 17 10013 708
## 18 10014 1277
## 19 10015 1
## 20 10016 895
## 21 10017 334
## 22 10018 272
## 23 10019 1149
## 24 10020 19
## 25 10021 1081
## 26 10022 1046
## 27 10023 2280
## 28 10024 2341
## 29 10025 2582
## 30 10026 420
## 31 10027 636
## 32 10028 1214
## 33 10029 319
## 34 10030 123
## 35 10031 331
## 36 10032 287
## 37 10033 466
## 38 10034 290
## 39 10035 147
## 40 10036 742
## 41 10037 81
## 42 10038 307
## 43 10039 93
## 44 10040 277
## 45 10041 1
## 46 10044 153
## 47 10055 2
## 48 10065 685
## 49 10069 135
## 50 10075 591
## 51 10090 2
## 52 10101 5
## 53 10103 7
## 54 10104 3
## 55 10105 1
## 56 10106 8
## 57 10107 23
## 58 10108 1
## 59 10110 6
## 60 10111 10
## 61 10112 4
## 62 10113 24
## 63 10115 2
## 64 10116 5
## 65 10118 14
## 66 10119 2
## 67 10120 1
## 68 10121 1
## 69 10122 1
## 70 10128 1380
## 71 10130 1
## 72 10150 5
## 73 10151 2
## 74 10152 2
## 75 10153 5
## 76 10154 3
## 77 10155 4
## 78 10158 1
## 79 10159 4
## 80 10162 27
## 81 10163 19
## 82 10165 15
## 83 10166 6
## 84 10167 1
## 85 10168 5
## 86 10169 1
## 87 10170 8
## 88 10171 1
## 89 10174 3
## 90 10175 1
## 91 10176 5
## 92 10177 2
## 93 10178 4
## 94 10179 2
## 95 10185 21
## 96 10268 17
## 97 10271 1
## 98 10274 3
## 99 10276 14
## 100 10279 6
## 101 10280 218
## 102 10281 2
## 103 10282 122
## 104 10285 1
## 105 10301 158
## 106 10302 18
## 107 10303 24
## 108 10304 109
## 109 10305 113
## 110 10306 144
## 111 10307 45
## 112 10308 62
## 113 10309 105
## 114 10310 83
## 115 10312 139
## 116 10314 183
## 117 10451 43
## 118 10452 66
## 119 10453 47
## 120 10454 17
## 121 10455 30
## 122 10456 30
## 123 10457 49
## 124 10458 54
## 125 10459 29
## 126 10460 16
## 127 10461 88
## 128 10462 164
## 129 10463 588
## 130 10464 46
## 131 10465 63
## 132 10466 49
## 133 10467 87
## 134 10468 54
## 135 10469 93
## 136 10470 61
## 137 10471 404
## 138 10472 38
## 139 10473 48
## 140 10474 4
## 141 10475 40
## 142 10501 1
## 143 10502 64
## 144 10503 4
## 145 10504 121
## 146 10505 2
## 147 10506 98
## 148 10507 67
## 149 10509 73
## 150 10510 149
## 151 10511 30
## 152 10512 87
## 153 10514 321
## 154 10515 1
## 155 10516 134
## 156 10517 4
## 157 10518 9
## 158 10519 8
## 159 10520 182
## 160 10522 179
## 161 10523 18
## 162 10524 86
## 163 10526 35
## 164 10527 17
## 165 10528 83
## 166 10530 174
## 167 10532 34
## 168 10533 147
## 169 10535 1
## 170 10536 161
## 171 10537 20
## 172 10538 410
## 173 10540 3
## 174 10541 83
## 175 10542 1
## 176 10543 210
## 177 10545 4
## 178 10546 49
## 179 10547 23
## 180 10548 24
## 181 10549 238
## 182 10550 15
## 183 10552 150
## 184 10553 10
## 185 10560 42
## 186 10562 268
## 187 10565 1
## 188 10566 99
## 189 10567 105
## 190 10570 139
## 191 10573 121
## 192 10576 92
## 193 10577 75
## 194 10578 2
## 195 10579 61
## 196 10580 239
## 197 10583 557
## 198 10588 4
## 199 10589 71
## 200 10590 105
## 201 10591 307
## 202 10594 15
## 203 10595 27
## 204 10596 1
## 205 10597 15
## 206 10598 182
## 207 10601 81
## 208 10602 1
## 209 10603 98
## 210 10604 26
## 211 10605 191
## 212 10606 116
## 213 10607 49
## 214 10701 119
## 215 10703 44
## 216 10704 70
## 217 10705 105
## 218 10706 271
## 219 10707 65
## 220 10708 300
## 221 10709 48
## 222 10710 80
## 223 10801 154
## 224 10803 178
## 225 10804 204
## 226 10805 126
## 227 10901 118
## 228 10913 19
## 229 10914 1
## 230 10915 1
## 231 10916 15
## 232 10917 2
## 233 10918 38
## 234 10919 9
## 235 10920 35
## 236 10921 17
## 237 10922 11
## 238 10923 38
## 239 10924 48
## 240 10925 47
## 241 10926 12
## 242 10927 30
## 243 10928 8
## 244 10930 22
## 245 10931 2
## 246 10940 121
## 247 10941 16
## 248 10949 8
## 249 10950 92
## 250 10952 68
## 251 10953 4
## 252 10954 101
## 253 10956 166
## 254 10958 10
## 255 10960 300
## 256 10962 21
## 257 10963 4
## 258 10964 32
## 259 10965 62
## 260 10968 37
## 261 10969 1
## 262 10970 88
## 263 10973 3
## 264 10974 8
## 265 10976 13
## 266 10977 72
## 267 10979 8
## 268 10980 38
## 269 10981 4
## 270 10983 39
## 271 10984 5
## 272 10986 14
## 273 10987 20
## 274 10988 1
## 275 10989 48
## 276 10990 111
## 277 10992 21
## 278 10993 6
## 279 10994 43
## 280 10996 6
## 281 10998 7
## 282 11 1
## 283 11001 87
## 284 11002 1
## 285 11003 93
## 286 11004 26
## 287 11005 18
## 288 11010 52
## 289 11020 40
## 290 11021 183
## 291 11022 2
## 292 11023 57
## 293 11024 30
## 294 11030 163
## 295 11040 119
## 296 11042 2
## 297 11050 276
## 298 11096 12
## 299 11101 279
## 300 11102 186
## 301 11103 218
## 302 11104 182
## 303 11105 230
## 304 11106 282
## 305 11109 120
## 306 11201 1960
## 307 11202 15
## 308 11203 96
## 309 11204 48
## 310 11205 370
## 311 11206 279
## 312 11207 90
## 313 11208 39
## 314 11209 378
## 315 11210 147
## 316 11211 636
## 317 11212 34
## 318 11213 121
## 319 11214 125
## 320 11215 1896
## 321 11216 377
## 322 11217 979
## 323 11218 566
## 324 11219 44
## 325 1122 1
## 326 11220 210
## 327 11221 234
## 328 11222 416
## 329 11223 131
## 330 11224 56
## 331 11225 273
## 332 11226 409
## 333 11228 82
## 334 11229 198
## 335 11230 204
## 336 11231 751
## 337 11232 127
## 338 11233 170
## 339 11234 165
## 340 11235 146
## 341 11236 118
## 342 11237 190
## 343 11238 1058
## 344 11239 16
## 345 11242 1
## 346 11243 22
## 347 11247 4
## 348 11249 327
## 349 11281 1
## 350 11339 1
## 351 11352 2
## 352 11354 63
## 353 11355 89
## 354 11356 31
## 355 11357 114
## 356 11358 88
## 357 11360 97
## 358 11361 101
## 359 11362 62
## 360 11363 65
## 361 11364 110
## 362 11365 75
## 363 11366 49
## 364 11367 60
## 365 11368 63
## 366 11369 70
## 367 11370 50
## 368 11372 266
## 369 11373 101
## 370 11374 165
## 371 11375 490
## 372 11377 266
## 373 11378 71
## 374 11379 66
## 375 11380 1
## 376 11385 256
## 377 11411 37
## 378 11412 59
## 379 11413 76
## 380 11414 60
## 381 11415 82
## 382 11416 39
## 383 11417 33
## 384 11418 59
## 385 11419 28
## 386 11420 18
## 387 11421 55
## 388 11422 60
## 389 11423 44
## 390 11426 51
## 391 11427 41
## 392 11428 18
## 393 11429 33
## 394 11432 205
## 395 11433 14
## 396 11434 37
## 397 11435 108
## 398 11436 10
## 399 11442 2
## 400 11501 56
## 401 11507 40
## 402 11509 37
## 403 11510 109
## 404 11514 13
## 405 11516 20
## 406 11518 34
## 407 11520 121
## 408 11530 191
## 409 11542 85
## 410 11545 86
## 411 11547 1
## 412 11548 1
## 413 11550 79
## 414 11552 96
## 415 11553 31
## 416 11554 119
## 417 11557 46
## 418 11558 11
## 419 11559 44
## 420 11560 89
## 421 11561 272
## 422 11563 117
## 423 11565 47
## 424 11566 181
## 425 11568 26
## 426 11569 30
## 427 11570 132
## 428 11572 96
## 429 11575 6
## 430 11576 116
## 431 11577 95
## 432 11579 85
## 433 11580 69
## 434 11581 89
## 435 11582 2
## 436 11590 112
## 437 11596 56
## 438 11598 50
## 439 11691 63
## 440 11692 18
## 441 11693 28
## 442 11694 82
## 443 11697 6
## 444 11701 32
## 445 11702 65
## 446 11703 67
## 447 11704 80
## 448 11705 43
## 449 11706 156
## 450 11707 3
## 451 11709 51
## 452 11710 132
## 453 11713 63
## 454 11714 61
## 455 11715 8
## 456 11716 25
## 457 11717 55
## 458 11718 53
## 459 11719 24
## 460 11720 87
## 461 11721 59
## 462 11722 66
## 463 11724 23
## 464 11725 92
## 465 11726 30
## 466 11727 72
## 467 11729 31
## 468 11730 83
## 469 11731 128
## 470 11732 45
## 471 11733 226
## 472 11735 79
## 473 11738 19
## 474 11740 46
## 475 11741 51
## 476 11742 37
## 477 11743 307
## 478 11746 316
## 479 11747 96
## 480 11749 8
## 481 11751 44
## 482 11752 10
## 483 11753 50
## 484 11754 48
## 485 11755 24
## 486 11756 142
## 487 11757 143
## 488 11758 162
## 489 11762 54
## 490 11763 79
## 491 11764 63
## 492 11765 12
## 493 11766 70
## 494 11767 31
## 495 11768 155
## 496 11769 21
## 497 11770 12
## 498 11771 76
## 499 11772 184
## 500 11776 62
## 501 11777 86
## 502 11778 31
## 503 11779 101
## 504 11780 74
## 505 11782 68
## 506 11783 65
## 507 11784 43
## 508 11786 36
## 509 11787 136
## 510 11788 45
## 511 11789 32
## 512 11790 178
## 513 11791 127
## 514 11792 36
## 515 11793 130
## 516 11795 54
## 517 11796 8
## 518 11797 49
## 519 11798 9
## 520 1180 3
## 521 11801 95
## 522 11803 121
## 523 11804 54
## 524 11901 48
## 525 11930 73
## 526 11931 20
## 527 11932 24
## 528 11933 18
## 529 11934 64
## 530 11935 32
## 531 11937 240
## 532 11939 16
## 533 11940 30
## 534 11941 10
## 535 11942 23
## 536 11944 68
## 537 11946 42
## 538 11947 10
## 539 11948 6
## 540 11949 54
## 541 11950 19
## 542 11951 53
## 543 11952 87
## 544 11953 47
## 545 11954 36
## 546 11955 5
## 547 11956 3
## 548 11957 29
## 549 11958 7
## 550 11959 49
## 551 11960 19
## 552 11961 23
## 553 11962 8
## 554 11963 189
## 555 11964 26
## 556 11965 25
## 557 11967 18
## 558 11968 110
## 559 11969 14
## 560 11970 13
## 561 11971 56
## 562 11972 11
## 563 11973 4
## 564 11975 18
## 565 11976 43
## 566 11977 14
## 567 11978 39
## 568 11980 32
## 569 12008 4
## 570 12009 62
## 571 12010 71
## 572 12015 59
## 573 12017 6
## 574 12018 54
## 575 12019 79
## 576 12020 82
## 577 12023 13
## 578 12025 23
## 579 12027 15
## 580 12028 5
## 581 12029 24
## 582 12031 6
## 583 12032 1
## 584 12033 27
## 585 12035 1
## 586 12037 14
## 587 12040 1
## 588 12041 2
## 589 12042 2
## 590 12043 24
## 591 12045 3
## 592 12046 5
## 593 12047 61
## 594 12051 6
## 595 12052 1
## 596 12053 4
## 597 12054 232
## 598 12056 6
## 599 12057 10
## 600 12058 2
## 601 12059 14
## 602 12060 29
## 603 12061 73
## 604 12062 11
## 605 12063 3
## 606 12064 10
## 607 12065 206
## 608 12066 17
## 609 12067 13
## 610 12068 6
## 611 12069 1
## 612 12070 1
## 613 12071 5
## 614 12072 6
## 615 12074 6
## 616 12075 36
## 617 12076 5
## 618 12077 45
## 619 12078 39
## 620 12082 2
## 621 12083 27
## 622 12084 45
## 623 12086 11
## 624 12087 3
## 625 12090 15
## 626 12092 3
## 627 12093 4
## 628 12094 12
## 629 12095 18
## 630 12106 29
## 631 12110 121
## 632 12115 11
## 633 12116 3
## 634 12117 2
## 635 12118 48
## 636 12120 3
## 637 12121 23
## 638 12122 7
## 639 12123 16
## 640 12124 8
## 641 12125 14
## 642 12130 6
## 643 12131 1
## 644 12132 1
## 645 12134 21
## 646 12136 13
## 647 12137 3
## 648 12138 9
## 649 12139 1
## 650 12140 12
## 651 12143 23
## 652 12144 72
## 653 12147 18
## 654 12148 32
## 655 12149 3
## 656 12150 3
## 657 12151 16
## 658 12153 5
## 659 12154 7
## 660 12155 1
## 661 12156 2
## 662 12157 13
## 663 12158 32
## 664 12159 75
## 665 12164 1
## 666 12165 10
## 667 12166 4
## 668 12167 14
## 669 12168 19
## 670 12169 4
## 671 12170 8
## 672 12173 3
## 673 12174 3
## 674 12175 5
## 675 12176 16
## 676 12180 235
## 677 12181 3
## 678 12182 25
## 679 12183 1
## 680 12184 33
## 681 12185 13
## 682 12186 22
## 683 12187 5
## 684 12188 34
## 685 12189 54
## 686 12192 4
## 687 12193 13
## 688 12196 21
## 689 12198 33
## 690 12201 6
## 691 12202 36
## 692 12203 235
## 693 12204 25
## 694 12205 58
## 695 12206 25
## 696 12207 8
## 697 12208 201
## 698 12209 64
## 699 12210 104
## 700 12211 114
## 701 12212 2
## 702 12220 11
## 703 12234 6
## 704 12301 1
## 705 12302 125
## 706 12303 57
## 707 12304 47
## 708 12305 23
## 709 12306 54
## 710 12307 10
## 711 12308 45
## 712 12309 230
## 713 12345 4
## 714 12401 222
## 715 12402 14
## 716 12404 54
## 717 12405 3
## 718 12406 7
## 719 12407 2
## 720 12409 18
## 721 12410 5
## 722 12411 7
## 723 12412 10
## 724 12413 6
## 725 12414 48
## 726 12416 9
## 727 12418 3
## 728 12419 6
## 729 12422 1
## 730 12423 1
## 731 12427 1
## 732 12428 17
## 733 12429 7
## 734 12430 3
## 735 12431 2
## 736 12433 8
## 737 12436 6
## 738 12439 2
## 739 12440 38
## 740 12441 10
## 741 12442 5
## 742 12443 28
## 743 12444 3
## 744 12446 68
## 745 12448 12
## 746 12449 5
## 747 12451 3
## 748 12454 1
## 749 12455 2
## 750 12456 1
## 751 12457 57
## 752 12458 1
## 753 12459 5
## 754 12461 18
## 755 12463 16
## 756 12464 9
## 757 12465 1
## 758 12466 34
## 759 12468 1
## 760 12470 9
## 761 12471 10
## 762 12472 42
## 763 12473 5
## 764 12474 11
## 765 12475 2
## 766 12477 120
## 767 12480 9
## 768 12481 10
## 769 12483 1
## 770 12484 22
## 771 12485 5
## 772 12486 15
## 773 12487 23
## 774 12490 2
## 775 12491 29
## 776 12492 1
## 777 12493 2
## 778 12494 4
## 779 12495 9
## 780 12496 9
## 781 12498 138
## 782 12501 16
## 783 12502 11
## 784 12503 11
## 785 12504 13
## 786 12506 1
## 787 12507 8
## 788 12508 115
## 789 12510 1
## 790 12513 20
## 791 12514 16
## 792 12515 1
## 793 12516 26
## 794 12517 13
## 795 12518 25
## 796 12520 27
## 797 12521 10
## 798 12522 10
## 799 12523 1
## 800 12524 67
## 801 12525 47
## 802 12526 35
## 803 12527 8
## 804 12528 76
## 805 12529 85
## 806 12531 10
## 807 12533 136
## 808 12534 82
## 809 12538 58
## 810 12540 43
## 811 12541 1
## 812 12542 4
## 813 12545 41
## 814 12546 21
## 815 12547 12
## 816 12548 3
## 817 12549 36
## 818 12550 124
## 819 12551 2
## 820 12553 80
## 821 12561 175
## 822 12563 30
## 823 12564 35
## 824 12565 7
## 825 12566 23
## 826 12567 26
## 827 12568 10
## 828 12569 33
## 829 12570 36
## 830 12571 133
## 831 12572 131
## 832 12574 5
## 833 12575 7
## 834 12577 15
## 835 12578 2
## 836 12580 20
## 837 12581 18
## 838 12582 29
## 839 12583 27
## 840 12584 2
## 841 12585 10
## 842 12586 36
## 843 12589 35
## 844 12590 128
## 845 12592 6
## 846 12594 22
## 847 12601 113
## 848 12602 1
## 849 12603 168
## 850 12604 30
## 851 12701 26
## 852 12719 14
## 853 12720 11
## 854 12721 12
## 855 12723 7
## 856 12724 1
## 857 12725 1
## 858 12726 5
## 859 12729 2
## 860 12732 22
## 861 12734 1
## 862 12736 6
## 863 12737 10
## 864 12740 10
## 865 12746 4
## 866 12747 1
## 867 12748 14
## 868 12749 3
## 869 12752 3
## 870 12754 11
## 871 12758 24
## 872 12760 7
## 873 12762 34
## 874 12764 6
## 875 12765 1
## 876 12768 4
## 877 12770 6
## 878 12771 9
## 879 12775 8
## 880 12777 3
## 881 12778 7
## 882 12779 16
## 883 12781 1
## 884 12785 8
## 885 12787 1
## 886 12788 1
## 887 12789 2
## 888 12790 23
## 889 12791 1
## 890 12792 2
## 891 12801 48
## 892 12803 24
## 893 12804 120
## 894 12808 1
## 895 12809 3
## 896 12810 2
## 897 12812 8
## 898 12814 9
## 899 12815 9
## 900 12816 20
## 901 12822 30
## 902 12824 5
## 903 12827 11
## 904 12828 25
## 905 12831 74
## 906 12832 6
## 907 12833 37
## 908 12834 36
## 909 12835 8
## 910 12836 2
## 911 12837 1
## 912 12839 11
## 913 12841 1
## 914 12842 11
## 915 12843 7
## 916 12845 13
## 917 12846 10
## 918 12847 2
## 919 12849 4
## 920 12850 7
## 921 12852 2
## 922 12853 4
## 923 12856 3
## 924 12857 1
## 925 12859 2
## 926 12860 1
## 927 12861 9
## 928 12863 3
## 929 12864 2
## 930 12865 26
## 931 12866 333
## 932 12870 6
## 933 12871 10
## 934 12873 16
## 935 12878 3
## 936 12883 9
## 937 12885 19
## 938 12887 4
## 939 12901 149
## 940 12903 22
## 941 12914 5
## 942 12915 3
## 943 12916 1
## 944 12917 3
## 945 12918 3
## 946 12919 14
## 947 12920 5
## 948 12921 11
## 949 12923 5
## 950 12926 6
## 951 12927 2
## 952 12928 3
## 953 12932 10
## 954 12935 5
## 955 12936 14
## 956 12937 1
## 957 12939 17
## 958 12941 8
## 959 12942 5
## 960 12943 11
## 961 12944 21
## 962 12945 2
## 963 12946 41
## 964 12950 1
## 965 12952 1
## 966 12953 38
## 967 12957 3
## 968 12958 7
## 969 12959 2
## 970 12960 5
## 971 12962 31
## 972 12965 7
## 973 12970 1
## 974 12972 26
## 975 12974 1
## 976 12975 4
## 977 12976 1
## 978 12978 2
## 979 12979 3
## 980 12980 11
## 981 12983 39
## 982 12986 7
## 983 12989 5
## 984 12992 14
## 985 12993 22
## 986 12995 1
## 987 12996 8
## 988 12997 3
## 989 13020 1
## 990 13021 69
## 991 13026 13
## 992 13027 56
## 993 13028 1
## 994 13029 25
## 995 13030 2
## 996 13031 39
## 997 13032 15
## 998 13033 6
## 999 13034 7
## 1000 13035 71
## 1001 13036 10
## 1002 13037 11
## 1003 13039 26
## 1004 13040 3
## 1005 13041 15
## 1006 13042 3
## 1007 13044 10
## 1008 13045 70
## 1009 13052 4
## 1010 13053 37
## 1011 13054 1
## 1012 13057 57
## 1013 13060 1
## 1014 13061 4
## 1015 13062 3
## 1016 13063 4
## 1017 13066 104
## 1018 13068 56
## 1019 13069 27
## 1020 13071 13
## 1021 13072 2
## 1022 13073 14
## 1023 13074 4
## 1024 13076 1
## 1025 13077 33
## 1026 13078 72
## 1027 13080 2
## 1028 13081 4
## 1029 13082 18
## 1030 13084 26
## 1031 13088 65
## 1032 13089 2
## 1033 13090 76
## 1034 13092 5
## 1035 13101 3
## 1036 13104 109
## 1037 13108 17
## 1038 13110 7
## 1039 13111 8
## 1040 13112 6
## 1041 13113 2
## 1042 13114 11
## 1043 13116 2
## 1044 13118 14
## 1045 13120 14
## 1046 13121 1
## 1047 13122 4
## 1048 13123 3
## 1049 13126 87
## 1050 13131 6
## 1051 13132 11
## 1052 13135 15
## 1053 13138 2
## 1054 13140 8
## 1055 13141 1
## 1056 13142 14
## 1057 13143 4
## 1058 13144 4
## 1059 13146 3
## 1060 13147 2
## 1061 13148 35
## 1062 13152 49
## 1063 13155 5
## 1064 13156 4
## 1065 13157 1
## 1066 13158 4
## 1067 13159 28
## 1068 13160 7
## 1069 13164 8
## 1070 13165 17
## 1071 13166 13
## 1072 13167 3
## 1073 13202 10
## 1074 13203 46
## 1075 13204 29
## 1076 13205 12
## 1077 13206 70
## 1078 13207 38
## 1079 13208 26
## 1080 13209 12
## 1081 13210 117
## 1082 13211 3
## 1083 13212 29
## 1084 13214 69
## 1085 13215 43
## 1086 13217 1
## 1087 13218 7
## 1088 13219 43
## 1089 13224 87
## 1090 13235 2
## 1091 13303 2
## 1092 13304 19
## 1093 13308 1
## 1094 13309 14
## 1095 13310 2
## 1096 13315 10
## 1097 13316 11
## 1098 13317 2
## 1099 13320 13
## 1100 13321 1
## 1101 13323 99
## 1102 13326 75
## 1103 13327 5
## 1104 13328 2
## 1105 13329 8
## 1106 13332 12
## 1107 13334 9
## 1108 13335 4
## 1109 13337 10
## 1110 13339 7
## 1111 13340 9
## 1112 13343 1
## 1113 13346 58
## 1114 13348 18
## 1115 13350 29
## 1116 13354 4
## 1117 13355 10
## 1118 13357 4
## 1119 13363 13
## 1120 13365 8
## 1121 13367 18
## 1122 13402 1
## 1123 13403 7
## 1124 13406 1
## 1125 13407 2
## 1126 13408 6
## 1127 13409 9
## 1128 13411 4
## 1129 13413 65
## 1130 13415 1
## 1131 13416 2
## 1132 13417 2
## 1133 13418 1
## 1134 13420 9
## 1135 13421 30
## 1136 13424 5
## 1137 13431 4
## 1138 13433 4
## 1139 13435 1
## 1140 13438 16
## 1141 13439 17
## 1142 13440 93
## 1143 13442 8
## 1144 13450 11
## 1145 13454 3
## 1146 13459 11
## 1147 13460 4
## 1148 13461 2
## 1149 13464 3
## 1150 13468 2
## 1151 13471 5
## 1152 13473 1
## 1153 13475 1
## 1154 13476 9
## 1155 13478 3
## 1156 13479 6
## 1157 13485 2
## 1158 13488 3
## 1159 13489 6
## 1160 13490 1
## 1161 13491 7
## 1162 13492 28
## 1163 13495 3
## 1164 13501 36
## 1165 13502 31
## 1166 13503 1
## 1167 13601 44
## 1168 13605 4
## 1169 13606 2
## 1170 13607 2
## 1171 13608 7
## 1172 13612 3
## 1173 13616 1
## 1174 13617 40
## 1175 13618 4
## 1176 13619 5
## 1177 13620 3
## 1178 13622 1
## 1179 13624 10
## 1180 13625 24
## 1181 13632 1
## 1182 13634 6
## 1183 13637 2
## 1184 13638 6
## 1185 13640 1
## 1186 13642 23
## 1187 13646 10
## 1188 13648 13
## 1189 13650 1
## 1190 13651 1
## 1191 13652 1
## 1192 13654 4
## 1193 13655 4
## 1194 13662 25
## 1195 13664 1
## 1196 13667 4
## 1197 13668 5
## 1198 13669 21
## 1199 13673 5
## 1200 13676 50
## 1201 13679 3
## 1202 13681 1
## 1203 13682 4
## 1204 13683 3
## 1205 13684 2
## 1206 13685 6
## 1207 13690 1
## 1208 13691 1
## 1209 13693 3
## 1210 13694 1
## 1211 13695 3
## 1212 13697 2
## 1213 13730 9
## 1214 13731 18
## 1215 13732 44
## 1216 13733 12
## 1217 13734 10
## 1218 13736 13
## 1219 13739 5
## 1220 13740 4
## 1221 13743 9
## 1222 13744 1
## 1223 13746 2
## 1224 13748 3
## 1225 13750 1
## 1226 13752 5
## 1227 13753 16
## 1228 13754 9
## 1229 13755 2
## 1230 13756 1
## 1231 13757 10
## 1232 13760 148
## 1233 13762 1
## 1234 13763 1
## 1235 13776 6
## 1236 13777 1
## 1237 13778 10
## 1238 13780 4
## 1239 13782 13
## 1240 13783 1
## 1241 13784 1
## 1242 13787 9
## 1243 13788 10
## 1244 13790 32
## 1245 13795 14
## 1246 13796 3
## 1247 13797 12
## 1248 13802 1
## 1249 13803 4
## 1250 13807 1
## 1251 13808 2
## 1252 13810 2
## 1253 13811 4
## 1254 13812 4
## 1255 13814 2
## 1256 13815 27
## 1257 13820 95
## 1258 13825 19
## 1259 13827 42
## 1260 13830 9
## 1261 13833 3
## 1262 13835 1
## 1263 13838 10
## 1264 13839 16
## 1265 13841 2
## 1266 13842 3
## 1267 13843 1
## 1268 13844 1
## 1269 13846 10
## 1270 13848 1
## 1271 13849 11
## 1272 13850 160
## 1273 13851 2
## 1274 13856 11
## 1275 13862 4
## 1276 13863 2
## 1277 13864 11
## 1278 13865 24
## 1279 13901 30
## 1280 13903 37
## 1281 13904 19
## 1282 13905 141
## 1283 14001 3
## 1284 14004 34
## 1285 14005 4
## 1286 14006 14
## 1287 14009 14
## 1288 14011 11
## 1289 14012 2
## 1290 14020 26
## 1291 14024 1
## 1292 14025 13
## 1293 14026 3
## 1294 14028 9
## 1295 14030 1
## 1296 14031 31
## 1297 14032 28
## 1298 14033 4
## 1299 14034 7
## 1300 14036 5
## 1301 14042 5
## 1302 14043 31
## 1303 14047 17
## 1304 14048 30
## 1305 14051 76
## 1306 14052 84
## 1307 14054 3
## 1308 14055 2
## 1309 14056 1
## 1310 14057 20
## 1311 14059 22
## 1312 14062 5
## 1313 14063 33
## 1314 14067 8
## 1315 14068 20
## 1316 14069 3
## 1317 14070 13
## 1318 14072 86
## 1319 14075 123
## 1320 14080 11
## 1321 14081 3
## 1322 14085 19
## 1323 14086 56
## 1324 14092 44
## 1325 14094 57
## 1326 14095 1
## 1327 14098 6
## 1328 14102 2
## 1329 14103 12
## 1330 14105 6
## 1331 14111 6
## 1332 14120 64
## 1333 14125 1
## 1334 14126 1
## 1335 14127 78
## 1336 14129 8
## 1337 14130 6
## 1338 14131 13
## 1339 14132 6
## 1340 14136 20
## 1341 14138 4
## 1342 14139 9
## 1343 14141 9
## 1344 14143 5
## 1345 14145 1
## 1346 14150 57
## 1347 14167 5
## 1348 14170 5
## 1349 14171 1
## 1350 14172 12
## 1351 14173 1
## 1352 14174 40
## 1353 14200 1
## 1354 14201 56
## 1355 14202 52
## 1356 14203 6
## 1357 14204 8
## 1358 14205 1
## 1359 14206 20
## 1360 14207 23
## 1361 14208 1
## 1362 14209 72
## 1363 14210 20
## 1364 14211 11
## 1365 14212 11
## 1366 14213 48
## 1367 14214 105
## 1368 14215 27
## 1369 14216 109
## 1370 14217 47
## 1371 14218 15
## 1372 14219 11
## 1373 14220 38
## 1374 14221 210
## 1375 14222 113
## 1376 14223 45
## 1377 14224 47
## 1378 14225 84
## 1379 14226 119
## 1380 14227 17
## 1381 14228 55
## 1382 14231 3
## 1383 14260 1
## 1384 14301 11
## 1385 14303 4
## 1386 14304 54
## 1387 14305 22
## 1388 14411 15
## 1389 14414 10
## 1390 14416 6
## 1391 14418 14
## 1392 14420 42
## 1393 14422 7
## 1394 14423 9
## 1395 14424 105
## 1396 14425 20
## 1397 14427 7
## 1398 14428 30
## 1399 14432 4
## 1400 14433 3
## 1401 14435 3
## 1402 14437 4
## 1403 14445 19
## 1404 14450 163
## 1405 14454 30
## 1406 14456 91
## 1407 14462 1
## 1408 14464 1
## 1409 14466 4
## 1410 14467 45
## 1411 14468 55
## 1412 14469 8
## 1413 14470 14
## 1414 14471 6
## 1415 14472 58
## 1416 14476 3
## 1417 14477 2
## 1418 14478 15
## 1419 14480 1
## 1420 14481 3
## 1421 14482 18
## 1422 14485 12
## 1423 14486 1
## 1424 14487 15
## 1425 14489 8
## 1426 14502 16
## 1427 14505 7
## 1428 14506 3
## 1429 14507 7
## 1430 14510 19
## 1431 14512 21
## 1432 14513 17
## 1433 14514 10
## 1434 14516 7
## 1435 14517 6
## 1436 14519 31
## 1437 14521 17
## 1438 14522 7
## 1439 14525 2
## 1440 14526 38
## 1441 14527 26
## 1442 14530 7
## 1443 14532 8
## 1444 14533 5
## 1445 14534 261
## 1446 14535 1
## 1447 14539 1
## 1448 14541 12
## 1449 14543 20
## 1450 14544 1
## 1451 14546 19
## 1452 14548 18
## 1453 14549 1
## 1454 14550 7
## 1455 14551 11
## 1456 14555 5
## 1457 14559 33
## 1458 14560 10
## 1459 14561 7
## 1460 14564 78
## 1461 14568 15
## 1462 14569 21
## 1463 14571 1
## 1464 14572 8
## 1465 14580 139
## 1466 14585 1
## 1467 14586 40
## 1468 14589 23
## 1469 14590 45
## 1470 14591 6
## 1471 14592 2
## 1472 14604 28
## 1473 14605 9
## 1474 14606 25
## 1475 14607 181
## 1476 14608 37
## 1477 14609 107
## 1478 14610 153
## 1479 14611 10
## 1480 14612 68
## 1481 14613 33
## 1482 14614 1
## 1483 14615 23
## 1484 14616 38
## 1485 14617 58
## 1486 14618 219
## 1487 14619 52
## 1488 14620 186
## 1489 14621 24
## 1490 14622 42
## 1491 14623 46
## 1492 14624 106
## 1493 14625 118
## 1494 14626 54
## 1495 14687 3
## 1496 14701 54
## 1497 14706 12
## 1498 14709 15
## 1499 14710 10
## 1500 14711 4
## 1501 14712 4
## 1502 14715 1
## 1503 14717 2
## 1504 14718 3
## 1505 14722 5
## 1506 14723 2
## 1507 14724 1
## 1508 14727 18
## 1509 14728 4
## 1510 14729 1
## 1511 14731 5
## 1512 14733 2
## 1513 14735 4
## 1514 14737 7
## 1515 14738 4
## 1516 14740 3
## 1517 14741 4
## 1518 14742 7
## 1519 14743 1
## 1520 14744 3
## 1521 14747 1
## 1522 14748 1
## 1523 14750 15
## 1524 14752 1
## 1525 14753 6
## 1526 14755 4
## 1527 14757 23
## 1528 14760 32
## 1529 14770 3
## 1530 14772 4
## 1531 14775 11
## 1532 14779 7
## 1533 14781 1
## 1534 14782 2
## 1535 14784 3
## 1536 14787 42
## 1537 14801 5
## 1538 14802 13
## 1539 14803 3
## 1540 14804 19
## 1541 14805 4
## 1542 14806 6
## 1543 14807 3
## 1544 14810 17
## 1545 14812 5
## 1546 14813 5
## 1547 14814 10
## 1548 14817 48
## 1549 14818 14
## 1550 14821 9
## 1551 14823 6
## 1552 14824 3
## 1553 14825 1
## 1554 14826 3
## 1555 14830 88
## 1556 14836 5
## 1557 14837 13
## 1558 14838 1
## 1559 14840 16
## 1560 14841 5
## 1561 14842 5
## 1562 14843 45
## 1563 14845 53
## 1564 14847 23
## 1565 14850 880
## 1566 14851 15
## 1567 14852 9
## 1568 14853 8
## 1569 14858 6
## 1570 14860 3
## 1571 14864 1
## 1572 14865 14
## 1573 14867 52
## 1574 14869 1
## 1575 14870 28
## 1576 14871 1
## 1577 14873 14
## 1578 14874 5
## 1579 14877 2
## 1580 14879 2
## 1581 14880 3
## 1582 14881 7
## 1583 14882 32
## 1584 14883 34
## 1585 14884 5
## 1586 14885 3
## 1587 14886 95
## 1588 14889 5
## 1589 14891 12
## 1590 14892 21
## 1591 14894 1
## 1592 14895 23
## 1593 14897 1
## 1594 14898 1
## 1595 14901 13
## 1596 14903 16
## 1597 14904 12
## 1598 14905 44
## 1599 14912 2
## 1600 19895 1
## 1601 2 1
## 1602 20017 2
## 1603 20803 2
## 1604 2138 1
## 1605 2586 3
## 1606 27312 1
## 1607 30022 3
## 1608 34135 1
## 1609 34145 1
## 1610 34146 2
## 1611 4 1
## 1612 40767 2
## 1613 5 1
## 1614 61397 1
## 1615 6390 1
## 1616 63900 6
## 1617 63907 13
## 1618 63909 1
## 1619 6820 1
## 1620 6840 1
## 1621 7030 2
## 1622 7087 4
## 1623 75016 12
## 1624 75018 1
## 1625 76391 2
## 1626 81260 8
## 1627 8701 1
## 1628 9131 1
## 1629 9309 4
## 1630 9464 1
## 1631 99999 31
Candidate_List$Last_Name<- NY_1[!duplicated(NY_1[,c(‘Last_Name’)]) ,
NY_1<- NY_1 %>% left_join(Freq,
by = c("Zip"="Zip"))
View(NY_1)