library(lattice)
hp <- read.csv("/Users/kimberlyhatlestad/Data Mining/HousePrices.csv")
head(hp)
## HomeID Price SqFt Bedrooms Bathrooms Offers Brick Neighborhood
## 1 1 114300 1790 2 2 2 No East
## 2 2 114200 2030 4 2 3 No East
## 3 3 114800 1740 3 2 1 No East
## 4 4 94700 1980 3 2 3 No East
## 5 5 119800 2130 3 3 3 No East
## 6 6 114600 1780 3 2 2 No North
summary(hp$Price)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 69100 111300 126000 130400 148200 211200
sd(hp$Price)
## [1] 26868.77
barchart(~Price|Neighborhood,data=hp,layout=c(1,5),col="black")
dm <- read.csv("/Users/kimberlyhatlestad/Data Mining/DirectMarketing.csv")
head(dm)
## Age Gender OwnHome Married Location Salary Children History Catalogs
## 1 Old Female Own Single Far 47500 0 High 6
## 2 Middle Male Rent Single Close 63600 0 High 6
## 3 Young Female Rent Single Close 13500 0 Low 18
## 4 Middle Male Own Married Close 85600 1 High 18
## 5 Middle Female Own Single Close 68400 0 High 12
## 6 Young Male Own Married Close 30400 0 Low 6
## AmountSpent
## 1 755
## 2 1318
## 3 296
## 4 2436
## 5 1304
## 6 495
summary(dm$AmountSpent)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 38.0 488.2 962.0 1217.0 1688.0 6217.0
sd(dm$AmountSpent)
## [1] 961.0686
summary(dm$Gender)
## Female Male
## 506 494
fac=factor(dm$Gender)
res=dm$AmountSpent
t4=tapply(res,fac,mean,na.rm=TRUE)
t4
## Female Male
## 1025.34 1412.85
boxplot(Salary~Gender,data=dm,ylab="Salary",xlab="Gender")
boxplot(AmountSpent~Gender,data=dm,ylab="Amount Spent",xlab="Gender")
gd <- read.csv("/Users/kimberlyhatlestad/Data Mining/GenderDiscrimination.csv")
summary(gd)
## Gender Experience Salary
## Female:140 Min. : 2.00 Min. : 53400
## Male : 68 1st Qu.: 7.00 1st Qu.: 66000
## Median :10.00 Median : 74000
## Mean :12.05 Mean : 79844
## 3rd Qu.:16.00 3rd Qu.: 88000
## Max. :39.00 Max. :194000
fac=factor(gd$Salary)
res=gd$Experience
t4=tapply(res,fac,mean,na.rm=TRUE)
t4
## 53400 53600 54000 57000 57200 57520 58000
## 7.000000 11.000000 8.000000 5.500000 4.000000 11.000000 3.000000
## 58200 58400 59000 59200 59300 59600 59800
## 7.000000 16.000000 7.500000 11.000000 8.000000 9.000000 10.500000
## 60000 60900 61000 61200 61500 61600 62000
## 11.250000 2.000000 6.666667 15.000000 4.000000 9.000000 6.666667
## 62400 62600 63000 63400 63800 64000 65000
## 10.666667 16.000000 19.000000 19.000000 13.000000 9.000000 13.000000
## 65200 65480 66000 66400 67000 67400 67600
## 7.500000 22.000000 8.600000 12.000000 9.000000 9.000000 8.000000
## 67800 68000 68200 68400 68600 69000 69200
## 8.000000 10.100000 14.000000 6.000000 14.000000 5.000000 7.500000
## 69400 69800 69840 70000 70600 70800 71000
## 16.000000 11.000000 30.000000 9.750000 15.000000 11.000000 11.000000
## 71200 72000 72200 72400 72600 72800 73000
## 10.000000 5.000000 20.000000 9.000000 10.500000 5.000000 3.000000
## 74000 74500 74600 75000 75200 76000 76400
## 11.000000 11.000000 8.000000 7.000000 13.000000 9.000000 16.000000
## 77600 78000 78040 78200 79000 79400 79600
## 20.000000 10.000000 8.000000 15.000000 4.500000 14.000000 10.000000
## 80000 80400 80520 80600 81320 82000 82600
## 6.000000 5.000000 10.000000 30.000000 27.000000 10.500000 15.000000
## 82800 83000 83600 84000 84400 84800 85000
## 9.000000 4.000000 4.000000 9.666667 22.000000 22.000000 10.000000
## 85400 86000 86200 86400 87000 87200 87600
## 9.000000 16.000000 21.000000 9.000000 35.000000 11.500000 15.000000
## 87800 88000 88800 89000 89600 90000 90600
## 7.000000 9.600000 19.000000 8.250000 26.000000 10.666667 18.000000
## 91000 91600 93000 94000 95000 96000 97000
## 20.000000 12.000000 12.000000 11.500000 7.500000 11.500000 11.500000
## 98000 100000 102400 104000 105000 108600 110000
## 10.000000 11.000000 15.000000 21.000000 21.000000 27.000000 23.000000
## 114000 116000 117000 118000 120000 123000 123600
## 22.500000 22.000000 15.000000 23.000000 15.000000 14.000000 14.000000
## 130000 148000 176000 188000 190000 194000
## 20.000000 39.000000 32.000000 35.000000 34.000000 36.000000
t5=tapply(gd$Experience,INDEX=list(gd$Salary,gd$Gender),FUN=mean,na.rm=TRUE)
t5
## Female Male
## 53400 NA 7.000000
## 53600 11.000000 NA
## 54000 6.000000 10.000000
## 57000 5.500000 NA
## 57200 4.000000 NA
## 57520 11.000000 NA
## 58000 NA 3.000000
## 58200 7.000000 NA
## 58400 16.000000 NA
## 59000 8.666667 4.000000
## 59200 11.000000 NA
## 59300 8.000000 NA
## 59600 9.000000 NA
## 59800 10.000000 11.000000
## 60000 13.666667 4.000000
## 60900 2.000000 NA
## 61000 7.500000 5.000000
## 61200 15.000000 NA
## 61500 NA 4.000000
## 61600 9.000000 NA
## 62000 3.000000 8.500000
## 62400 8.500000 15.000000
## 62600 16.000000 NA
## 63000 19.000000 NA
## 63400 19.000000 NA
## 63800 13.000000 NA
## 64000 14.000000 4.000000
## 65000 13.000000 NA
## 65200 7.500000 NA
## 65480 22.000000 NA
## 66000 10.000000 6.500000
## 66400 12.000000 NA
## 67000 11.500000 4.000000
## 67400 9.000000 NA
## 67600 8.000000 NA
## 67800 8.000000 NA
## 68000 11.625000 4.000000
## 68200 14.000000 NA
## 68400 6.000000 NA
## 68600 14.000000 NA
## 69000 NA 5.000000
## 69200 7.500000 NA
## 69400 16.000000 NA
## 69800 11.000000 NA
## 69840 NA 30.000000
## 70000 9.750000 NA
## 70600 15.000000 NA
## 70800 11.000000 NA
## 71000 22.000000 5.500000
## 71200 10.000000 NA
## 72000 5.000000 5.000000
## 72200 20.000000 NA
## 72400 9.000000 NA
## 72600 12.000000 9.000000
## 72800 5.000000 NA
## 73000 NA 3.000000
## 74000 18.000000 4.000000
## 74500 11.000000 NA
## 74600 8.000000 NA
## 75000 7.000000 NA
## 75200 13.000000 NA
## 76000 9.000000 NA
## 76400 16.000000 NA
## 77600 20.000000 20.000000
## 78000 12.000000 8.000000
## 78040 8.000000 NA
## 78200 15.000000 NA
## 79000 4.000000 5.000000
## 79400 14.000000 NA
## 79600 10.000000 NA
## 80000 6.000000 NA
## 80400 5.000000 NA
## 80520 10.000000 NA
## 80600 30.000000 NA
## 81320 27.000000 NA
## 82000 16.000000 5.000000
## 82600 15.000000 NA
## 82800 9.000000 NA
## 83000 NA 4.000000
## 83600 NA 4.000000
## 84000 11.000000 7.000000
## 84400 22.000000 NA
## 84800 22.000000 NA
## 85000 12.500000 7.500000
## 85400 9.000000 NA
## 86000 16.000000 NA
## 86200 21.000000 NA
## 86400 9.000000 NA
## 87000 35.000000 NA
## 87200 11.500000 NA
## 87600 15.000000 NA
## 87800 7.000000 NA
## 88000 11.000000 8.666667
## 88800 19.000000 NA
## 89000 9.500000 7.000000
## 89600 26.000000 NA
## 90000 12.000000 8.000000
## 90600 18.000000 NA
## 91000 17.000000 23.000000
## 91600 12.000000 NA
## 93000 NA 12.000000
## 94000 NA 11.500000
## 95000 NA 7.500000
## 96000 16.000000 7.000000
## 97000 15.000000 8.000000
## 98000 NA 10.000000
## 100000 11.000000 NA
## 102400 15.000000 NA
## 104000 NA 21.000000
## 105000 21.000000 NA
## 108600 27.000000 NA
## 110000 NA 23.000000
## 114000 NA 22.500000
## 116000 NA 22.000000
## 117000 15.000000 NA
## 118000 NA 23.000000
## 120000 NA 15.000000
## 123000 14.000000 NA
## 123600 14.000000 NA
## 130000 NA 20.000000
## 148000 NA 39.000000
## 176000 NA 32.000000
## 188000 NA 35.000000
## 190000 NA 34.000000
## 194000 NA 36.000000
levelplot(Salary~Gender*Experience,data=gd,xlab="Gender",ylab="Experience")
ld <- read.csv("/Users/kimberlyhatlestad/Data Mining/LoanData.csv")
summary(ld)
## Status Credit.Grade Amount Age
## Current:5186 HR :1217 Min. : 1000 Min. : 0.000
## Default: 75 E :1129 1st Qu.: 2025 1st Qu.: 2.000
## Late : 350 D : 927 Median : 3001 Median : 4.000
## C : 843 Mean : 4817 Mean : 4.504
## B : 553 3rd Qu.: 6000 3rd Qu.: 7.000
## AA : 451 Max. :25000 Max. :14.000
## (Other): 491
## Borrower.Rate Debt.To.Income.Ratio
## Min. :0.0000 Min. : 0.00
## 1st Qu.:0.1425 1st Qu.: 0.09
## Median :0.1950 Median : 0.16
## Mean :0.1937 Mean : 45.38
## 3rd Qu.:0.2500 3rd Qu.: 0.25
## Max. :0.4975 Max. :51280.07
##
dob.dm.tbl=table(WK=ld$Age,MM=ld$Borrower.Rate)
dob.dm.tbl
## MM
## WK 0 0.0021 0.0099 0.01 0.015 0.0295 0.03 0.04 0.045 0.05 0.0575 0.06
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## 1 1 0 0 1 0 0 0 0 0 1 0 1
## 2 0 0 0 0 0 0 0 1 1 5 0 0
## 3 1 1 1 0 1 0 0 0 0 1 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 1
## 5 0 0 0 0 0 0 1 0 0 0 0 1
## 6 0 0 0 0 0 1 0 0 0 1 2 0
## 7 0 0 0 0 0 0 0 0 0 0 0 1
## 8 0 0 0 0 0 0 1 0 0 1 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 1 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0 1 1
## 12 0 0 0 0 0 0 0 0 0 1 0 0
## 13 0 0 0 0 0 0 0 0 0 0 0 2
## 14 0 0 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0612 0.062 0.0625 0.065 0.0655 0.068 0.0685 0.069 0.0695 0.07
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 1 0 1 1 0 1 0 9
## 2 0 0 0 1 0 0 0 0 0 3
## 3 0 0 0 0 0 1 0 0 0 4
## 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 1
## 6 0 0 0 0 0 0 0 0 0 1
## 7 0 0 0 1 1 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 1 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 1 0 0 1 0 0 1 0 2 4
## 11 0 0 1 1 0 0 0 0 0 5
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 1
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0712 0.0715 0.072 0.0725 0.0735 0.0739 0.074 0.0749 0.075 0.0752
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 0 3 1 0 0 0 7 0
## 2 0 0 0 1 0 0 0 0 3 0
## 3 0 0 0 1 0 0 0 0 1 0
## 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 2 0
## 6 0 0 0 0 0 1 1 0 2 0
## 7 0 0 1 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 1 1 0
## 9 0 1 0 0 0 0 0 0 1 0
## 10 1 0 1 3 0 0 0 0 3 1
## 11 0 0 0 0 0 0 0 0 1 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0755 0.0762 0.0765 0.077 0.0774 0.0775 0.078 0.0782 0.0784 0.0785
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 1 3 5 1 0 1 3
## 2 0 0 0 0 0 0 1 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0
## 6 1 0 1 0 0 2 0 0 0 0
## 7 0 0 1 0 0 1 1 0 0 0
## 8 0 0 0 0 0 2 0 0 0 0
## 9 0 0 0 0 0 1 1 0 0 0
## 10 0 1 0 1 0 2 0 1 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0788 0.079 0.0793 0.0795 0.0799 0.08 0.0803 0.0805 0.081 0.0812
## 0 0 0 0 0 0 0 0 0 1 0
## 1 1 3 1 1 3 10 1 0 2 0
## 2 0 1 0 2 1 7 0 0 2 0
## 3 1 0 0 3 0 7 0 0 0 0
## 4 0 0 0 2 0 5 0 0 0 1
## 5 0 0 0 0 0 5 0 1 0 1
## 6 0 0 0 1 0 5 0 0 0 1
## 7 0 0 0 0 0 5 0 0 1 0
## 8 0 0 0 1 0 5 0 0 0 0
## 9 0 0 0 0 0 5 0 0 1 0
## 10 0 1 0 1 0 2 0 0 0 0
## 11 0 0 0 0 0 5 0 0 0 0
## 12 0 0 0 0 0 2 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0815 0.082 0.0822 0.0824 0.0825 0.0826 0.0829 0.083 0.0834 0.0835
## 0 0 0 0 0 0 0 0 0 0 0
## 1 2 5 0 1 5 0 1 0 0 0
## 2 0 2 0 0 1 0 0 0 0 0
## 3 0 1 0 0 2 0 0 0 1 0
## 4 0 1 0 0 1 0 0 1 0 0
## 5 1 1 0 0 1 0 0 0 0 0
## 6 0 2 1 0 0 1 0 0 0 0
## 7 0 1 0 0 0 0 0 0 0 1
## 8 0 0 0 0 1 0 0 0 0 0
## 9 0 0 0 0 2 0 0 1 0 0
## 10 0 0 0 0 1 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0838 0.0839 0.084 0.0844 0.0845 0.0846 0.0847 0.0849 0.085 0.0854
## 0 0 0 0 0 0 0 0 0 1 0
## 1 0 1 1 0 1 1 0 0 5 1
## 2 0 0 1 0 1 0 0 1 1 0
## 3 0 0 1 0 0 0 0 0 4 0
## 4 1 0 1 0 2 0 1 1 3 0
## 5 0 0 1 1 2 0 0 0 5 0
## 6 0 0 1 0 1 0 0 1 0 0
## 7 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 1 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 1 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0855 0.086 0.0862 0.0865 0.087 0.0872 0.0873 0.0874 0.0875 0.0879
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 2 0 0 0 0 1 0 5 1
## 2 0 1 0 0 1 0 0 1 1 0
## 3 0 1 0 0 0 0 0 1 1 0
## 4 0 0 1 0 0 0 0 0 0 0
## 5 0 1 1 0 1 0 0 0 4 0
## 6 0 0 1 0 1 1 0 0 4 0
## 7 0 1 0 0 1 0 0 0 5 0
## 8 0 0 0 1 0 0 0 0 3 0
## 9 1 0 0 0 0 0 0 0 2 0
## 10 0 1 0 0 0 0 0 0 2 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.088 0.0883 0.0884 0.0885 0.0889 0.089 0.0892 0.0894 0.0895 0.0899
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 1 0 1 1 0 0 2 0
## 2 0 0 0 1 0 1 0 1 0 0
## 3 0 0 0 0 2 0 0 0 1 0
## 4 0 0 0 1 0 1 0 0 1 0
## 5 0 0 1 1 0 1 0 0 1 1
## 6 0 1 0 0 0 0 0 2 0 1
## 7 1 0 0 0 0 1 1 0 0 2
## 8 0 1 0 0 0 0 0 0 0 0
## 9 0 0 0 1 0 0 0 0 1 0
## 10 0 0 0 2 0 1 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.09 0.0904 0.091 0.0911 0.0912 0.0915 0.092 0.0922 0.0924 0.0925
## 0 0 0 0 0 0 0 0 0 0 0
## 1 17 0 1 0 0 1 0 0 1 3
## 2 9 0 0 0 0 0 2 0 0 3
## 3 9 0 0 0 0 0 0 0 0 2
## 4 2 0 0 0 2 0 0 0 0 1
## 5 7 0 0 0 1 0 1 0 0 2
## 6 5 1 0 0 0 0 0 0 0 1
## 7 4 0 0 1 0 0 0 0 0 1
## 8 2 0 0 0 0 0 0 0 0 0
## 9 3 0 0 0 0 1 0 1 0 0
## 10 3 0 0 0 0 0 0 0 0 1
## 11 2 0 0 0 0 0 0 0 0 0
## 12 1 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.093 0.0937 0.0938 0.094 0.0944 0.0945 0.0949 0.095 0.0952 0.0958
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 0 0 0 3 0 0
## 2 0 0 0 0 1 1 0 3 0 0
## 3 1 0 0 1 0 0 0 3 0 0
## 4 0 0 0 0 0 0 1 4 0 0
## 5 0 1 0 0 0 1 0 6 0 0
## 6 0 0 0 0 0 0 0 1 1 0
## 7 1 0 1 0 0 1 0 0 0 0
## 8 0 0 1 0 0 0 0 0 0 1
## 9 0 0 1 0 0 0 0 3 0 0
## 10 0 0 0 1 0 1 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 1 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0959 0.096 0.0962 0.0963 0.0965 0.0969 0.097 0.0972 0.0975 0.098
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 0 0 1 0 1 1
## 2 0 0 0 0 1 0 1 0 0 0
## 3 0 1 0 0 0 0 0 0 0 1
## 4 1 0 1 1 0 0 0 0 1 1
## 5 0 0 0 0 0 1 0 0 1 0
## 6 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 1 2 0
## 8 0 0 0 0 0 0 0 0 1 0
## 9 0 0 0 0 0 0 0 0 1 0
## 10 0 0 0 0 0 0 0 0 2 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0981 0.0982 0.0985 0.0987 0.0989 0.099 0.0992 0.0993 0.0995 0.0997
## 0 0 0 0 0 0 1 0 0 0 0
## 1 0 0 0 0 0 1 0 0 1 1
## 2 0 0 0 0 0 1 0 0 0 0
## 3 0 0 0 0 0 1 0 0 1 0
## 4 1 0 0 0 1 1 0 0 1 0
## 5 0 0 0 0 0 1 0 0 0 0
## 6 0 0 0 0 0 0 0 0 1 0
## 7 0 0 0 1 0 1 1 1 0 0
## 8 0 1 2 0 0 0 0 0 1 0
## 9 0 0 0 0 0 0 0 0 1 0
## 10 0 0 0 0 0 0 0 0 1 1
## 11 0 0 0 0 0 0 0 0 0 1
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.0999 0.1 0.1002 0.1007 0.1009 0.101 0.1012 0.1015 0.1018 0.1019
## 0 0 1 0 0 0 0 0 0 0 0
## 1 1 6 0 0 0 1 0 0 0 0
## 2 1 6 0 0 0 0 0 0 1 0
## 3 2 7 0 1 1 0 1 0 0 1
## 4 0 4 0 0 0 0 1 0 0 0
## 5 0 6 1 0 0 0 1 1 0 1
## 6 1 7 0 0 0 0 0 1 0 0
## 7 0 6 0 0 0 0 0 0 0 0
## 8 0 3 0 0 0 0 0 0 0 0
## 9 0 7 0 0 0 2 0 0 0 0
## 10 0 5 0 0 0 0 0 0 0 0
## 11 0 5 0 0 0 0 0 0 0 0
## 12 0 1 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.102 0.1023 0.1025 0.103 0.1033 0.1035 0.1038 0.104 0.1043 0.1045
## 0 0 0 0 0 0 0 0 0 0 1
## 1 0 0 4 0 0 0 1 0 1 0
## 2 0 0 1 0 0 0 0 0 0 1
## 3 0 0 1 0 0 1 1 0 0 0
## 4 0 0 0 1 0 1 0 0 0 0
## 5 1 0 2 0 0 0 1 2 0 0
## 6 0 1 2 0 0 0 0 0 0 0
## 7 0 0 4 0 0 0 1 0 0 0
## 8 0 0 0 0 1 0 0 0 0 0
## 9 0 0 1 0 0 0 0 0 0 1
## 10 1 0 1 0 0 0 0 1 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1049 0.105 0.1053 0.1055 0.1061 0.1062 0.1065 0.107 0.1071 0.1074
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 1 0 0 0 0 2 1 0
## 2 0 2 0 1 0 0 0 0 0 1
## 3 0 2 0 0 0 0 0 0 0 0
## 4 0 0 0 1 0 0 0 0 0 0
## 5 0 1 0 0 1 0 2 1 0 0
## 6 1 3 0 0 0 0 1 1 0 0
## 7 0 3 1 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0
## 9 0 1 0 0 0 1 0 0 0 0
## 10 0 2 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1075 0.1076 0.1079 0.108 0.1083 0.1085 0.1086 0.1089 0.109 0.1091
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 0 1 2 0 1 0 0 0 0
## 2 3 0 0 1 0 0 0 0 0 0
## 3 0 0 0 2 0 1 0 0 3 0
## 4 0 0 0 0 0 0 1 1 0 0
## 5 2 0 0 1 1 0 0 0 1 0
## 6 0 1 0 1 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 1 0
## 8 1 0 0 1 0 0 0 0 0 1
## 9 1 0 0 0 0 0 0 0 1 0
## 10 1 0 0 0 0 0 0 0 0 0
## 11 1 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1094 0.1095 0.1097 0.1098 0.11 0.1104 0.1105 0.111 0.1111 0.1114
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 13 0 0 0 0 1
## 2 0 0 0 0 9 0 1 0 0 0
## 3 0 0 0 0 12 0 0 0 0 0
## 4 0 0 0 0 14 0 0 0 1 0
## 5 1 1 0 1 12 0 0 1 0 0
## 6 0 1 0 0 0 0 0 0 0 0
## 7 0 0 0 0 4 0 0 0 0 0
## 8 0 2 0 0 0 0 0 0 1 0
## 9 0 0 1 0 4 0 0 1 0 0
## 10 0 2 0 0 1 1 0 1 0 0
## 11 0 0 0 0 4 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1115 0.1119 0.112 0.1121 0.1122 0.1124 0.1125 0.113 0.1135 0.1137
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 1 1 1 0 0 1
## 4 1 1 0 0 0 0 0 0 0 0
## 5 0 0 0 1 0 0 1 0 0 0
## 6 0 0 1 0 0 0 1 0 1 0
## 7 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 1 0 0
## 9 0 0 0 0 0 0 1 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 1 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.114 0.1141 0.1143 0.1144 0.1145 0.1148 0.1149 0.115 0.1155 0.1159
## 0 0 0 0 0 0 0 0 0 0 0
## 1 2 0 0 0 0 0 0 1 1 0
## 2 0 0 0 1 0 0 0 3 0 1
## 3 0 0 0 0 1 0 0 2 0 0
## 4 1 0 0 0 2 1 0 3 0 0
## 5 0 1 0 0 0 1 0 3 0 0
## 6 0 0 1 0 0 0 1 2 0 0
## 7 0 0 0 0 0 0 0 3 0 0
## 8 1 0 0 0 0 0 0 4 0 0
## 9 1 0 0 0 0 0 0 2 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 1 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1162 0.1163 0.1169 0.117 0.1172 0.1175 0.118 0.1183 0.1185 0.1189
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 1 0 4 2 0 0 0
## 2 0 0 0 1 0 0 0 0 0 0
## 3 0 0 0 0 0 1 1 0 0 0
## 4 0 0 0 0 0 0 2 0 0 1
## 5 0 0 0 0 0 0 1 0 0 0
## 6 0 0 0 0 0 6 0 0 0 0
## 7 1 0 1 1 0 5 1 0 0 0
## 8 0 2 0 0 1 2 1 1 0 0
## 9 0 0 0 0 0 2 0 0 0 0
## 10 0 0 0 0 0 1 0 0 1 0
## 11 0 0 0 1 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.119 0.1195 0.1197 0.1199 0.12 0.1201 0.1205 0.1208 0.121 0.122
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 6 0 0 0 0 0
## 2 0 0 0 0 7 0 0 0 0 0
## 3 0 1 1 0 4 0 0 0 1 1
## 4 1 3 0 0 5 0 0 1 1 1
## 5 0 0 0 2 6 0 0 0 1 0
## 6 1 0 0 0 4 0 0 0 0 0
## 7 0 1 0 0 3 0 0 0 0 0
## 8 2 0 0 0 2 0 0 0 0 0
## 9 0 0 0 0 5 0 1 0 0 0
## 10 1 1 0 0 3 0 0 0 0 0
## 11 0 0 0 0 4 1 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1222 0.1225 0.123 0.1235 0.1238 0.1239 0.124 0.1241 0.1242 0.1245
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 0 0 0 1 1 0 1 0
## 2 0 0 0 0 0 1 0 1 0 1
## 3 0 0 0 1 0 0 0 0 0 0
## 4 0 0 1 0 1 0 0 0 0 1
## 5 0 3 0 0 0 0 1 0 0 0
## 6 1 1 0 0 0 0 2 0 0 0
## 7 0 2 0 0 0 0 0 0 0 0
## 8 0 1 0 0 1 0 0 0 0 0
## 9 0 1 0 1 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1248 0.1249 0.125 0.1255 0.1259 0.126 0.1262 0.1264 0.1265 0.1269
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 6 0 0 0 0 0 1 0
## 2 0 0 1 0 0 0 0 0 0 0
## 3 1 0 5 1 0 0 0 0 0 2
## 4 0 1 4 1 1 1 1 0 0 0
## 5 0 0 1 0 0 0 0 0 0 0
## 6 0 0 2 0 0 0 0 1 0 0
## 7 0 0 4 1 0 0 0 0 0 0
## 8 0 0 1 0 0 1 0 0 0 0
## 9 0 0 2 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.127 0.1272 0.1275 0.128 0.1285 0.1288 0.129 0.1293 0.1295 0.1298
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 0 2 0 0 0 1 0 1 0
## 2 0 0 0 1 0 0 1 0 2 0
## 3 0 0 1 2 0 0 2 0 1 0
## 4 0 0 2 1 0 0 0 0 1 1
## 5 1 1 0 1 1 1 0 1 1 0
## 6 2 0 1 0 0 0 0 0 1 0
## 7 0 0 1 0 0 0 2 0 0 0
## 8 0 0 1 0 0 0 1 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 1 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1299 0.13 0.1308 0.1309 0.131 0.1312 0.1313 0.1315 0.1318 0.132
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 11 0 1 0 0 0 1 1 1
## 2 0 3 0 0 0 0 0 1 0 1
## 3 1 11 0 0 0 0 0 0 0 0
## 4 0 4 0 0 0 1 0 0 0 0
## 5 2 3 1 0 0 0 0 0 0 0
## 6 0 2 0 0 0 0 0 0 0 0
## 7 0 3 0 0 0 0 0 0 0 1
## 8 0 5 0 0 1 0 1 0 0 0
## 9 0 1 0 0 0 0 0 0 0 2
## 10 0 3 0 0 0 0 0 0 0 1
## 11 0 4 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 1 0 0 0 0 0 0 0 0
## MM
## WK 0.1324 0.1325 0.133 0.1333 0.1335 0.1339 0.134 0.1342 0.1344 0.1345
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 1 0 1 0 0 0 1 0
## 2 0 0 0 0 0 0 0 0 0 0
## 3 0 1 1 1 0 0 0 0 0 0
## 4 1 1 2 0 0 0 1 0 0 0
## 5 0 3 1 0 0 0 1 0 0 1
## 6 0 0 1 0 0 0 0 1 0 0
## 7 0 1 2 0 0 0 0 0 0 0
## 8 0 2 0 0 0 1 0 0 0 0
## 9 0 2 1 0 0 0 0 0 0 1
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 1 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.135 0.1353 0.1354 0.1355 0.1365 0.1366 0.1367 0.137 0.1371 0.1373
## 0 0 0 0 0 0 0 0 0 0 0
## 1 3 0 0 1 0 0 1 2 0 0
## 2 8 0 0 0 0 1 0 0 0 0
## 3 3 0 0 0 1 0 0 1 0 0
## 4 2 0 0 0 0 0 0 0 1 1
## 5 3 0 1 1 1 0 0 0 0 0
## 6 2 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 2 0 0
## 8 2 2 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 2 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1375 0.138 0.1385 0.1386 0.1387 0.1388 0.1389 0.139 0.1393 0.1394
## 0 0 1 0 0 0 0 0 0 0 0
## 1 1 3 0 1 0 0 0 3 0 0
## 2 2 0 0 0 0 0 0 0 0 0
## 3 1 2 1 0 0 0 1 0 1 0
## 4 2 1 0 0 0 1 0 0 0 1
## 5 2 3 0 0 1 0 0 1 0 0
## 6 1 3 1 0 0 0 0 1 0 0
## 7 0 0 2 0 0 0 0 0 0 0
## 8 1 0 1 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 1 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 2 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1395 0.1398 0.1399 0.14 0.1401 0.1403 0.1405 0.141 0.1415 0.142
## 0 0 0 0 1 0 0 0 0 0 0
## 1 1 0 0 9 0 0 2 0 0 1
## 2 2 0 1 11 0 0 0 0 0 0
## 3 0 1 2 4 0 0 0 1 0 0
## 4 0 0 0 9 0 0 0 1 0 0
## 5 2 0 1 5 0 2 0 0 0 0
## 6 0 0 0 9 1 0 0 0 0 0
## 7 0 0 0 6 0 0 0 0 0 0
## 8 1 0 0 3 0 0 0 1 0 2
## 9 0 0 0 5 0 0 0 0 1 0
## 10 0 0 0 0 0 0 1 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 1 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1423 0.1424 0.1425 0.143 0.1435 0.1438 0.144 0.1444 0.1445 0.1448
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 2 0 0 0 1 0 1 1
## 2 0 0 1 2 1 0 0 0 0 0
## 3 0 0 0 1 0 0 1 0 0 0
## 4 1 0 3 2 0 0 1 1 0 0
## 5 0 0 2 2 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0
## 7 0 1 1 0 0 0 0 1 0 0
## 8 0 0 2 0 0 1 0 0 0 0
## 9 0 0 3 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.145 0.1455 0.146 0.1466 0.1468 0.1469 0.147 0.1471 0.1474 0.1475
## 0 0 0 0 0 0 0 0 0 0 0
## 1 4 0 0 0 0 0 1 0 0 1
## 2 0 0 1 0 0 0 1 0 0 1
## 3 3 0 1 0 0 0 1 0 0 0
## 4 5 0 0 1 0 1 1 0 0 2
## 5 6 0 1 0 1 0 1 0 0 3
## 6 4 0 0 0 0 0 0 1 0 1
## 7 5 1 0 0 0 0 0 0 1 0
## 8 2 0 0 0 0 0 0 0 0 1
## 9 3 0 0 0 0 0 0 0 0 1
## 10 1 0 1 0 0 0 0 0 0 0
## 11 1 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1479 0.148 0.1483 0.1484 0.1485 0.1488 0.1489 0.149 0.1492 0.1493
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 1
## 3 0 3 0 0 0 0 0 1 0 0
## 4 0 1 0 0 0 1 0 2 0 0
## 5 0 0 0 0 1 0 0 1 0 0
## 6 1 0 0 0 0 0 0 0 0 0
## 7 0 1 1 1 0 0 1 2 0 1
## 8 0 0 0 0 1 0 0 0 0 0
## 9 0 0 0 0 0 0 0 2 1 0
## 10 0 0 0 0 0 0 0 1 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1495 0.1497 0.1498 0.1499 0.15 0.1505 0.151 0.1514 0.1515 0.1519
## 0 0 0 0 0 1 0 0 0 0 0
## 1 2 1 0 1 43 0 0 1 0 1
## 2 0 0 1 0 38 0 0 0 0 0
## 3 0 0 0 0 43 0 1 0 0 0
## 4 0 0 0 0 31 0 0 0 0 0
## 5 3 0 0 3 35 2 0 0 2 1
## 6 0 0 0 0 14 0 0 0 0 0
## 7 2 0 1 0 8 0 1 0 0 0
## 8 0 0 0 0 23 0 0 0 0 0
## 9 1 0 0 0 11 2 0 0 0 0
## 10 1 0 0 0 15 0 0 0 0 0
## 11 0 0 0 0 4 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.152 0.1525 0.1528 0.153 0.1538 0.1539 0.154 0.1543 0.1544 0.1545
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 0 0 0 0 0 0 0 2
## 2 0 1 0 0 0 0 0 0 2 0
## 3 1 0 0 2 0 0 0 1 0 0
## 4 0 1 0 0 0 0 0 0 0 0
## 5 0 0 0 1 0 0 2 0 0 1
## 6 1 1 0 0 0 0 1 0 1 2
## 7 2 2 0 0 0 1 1 0 0 0
## 8 0 2 1 1 1 0 0 0 0 1
## 9 0 0 0 1 0 0 0 0 0 0
## 10 0 1 0 0 0 0 1 0 0 0
## 11 0 1 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1547 0.1549 0.155 0.1552 0.1555 0.1556 0.1561 0.1562 0.1565 0.1567
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 1 1 1 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0
## 3 0 1 5 0 0 0 1 0 0 0
## 4 0 0 4 0 0 0 0 0 2 1
## 5 1 1 2 0 0 1 0 0 0 0
## 6 0 0 3 0 0 0 0 1 0 0
## 7 0 0 2 0 0 0 0 0 0 0
## 8 0 0 6 0 0 0 0 0 2 0
## 9 0 0 0 0 1 0 0 0 0 0
## 10 0 0 3 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1568 0.157 0.1575 0.1577 0.158 0.1585 0.1588 0.159 0.1593 0.1595
## 0 0 0 0 0 0 0 0 0 0 0
## 1 2 0 1 0 1 0 0 0 0 0
## 2 0 0 0 0 0 1 0 1 1 1
## 3 0 0 0 0 1 0 0 1 0 0
## 4 0 0 0 0 1 0 0 0 0 2
## 5 0 0 1 1 2 0 0 0 0 2
## 6 0 2 18 0 3 0 1 0 1 0
## 7 0 0 16 0 1 0 0 0 0 0
## 8 0 0 14 0 0 0 0 1 0 0
## 9 0 0 5 0 0 0 0 0 0 0
## 10 0 0 9 0 0 0 0 1 0 0
## 11 0 0 3 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1599 0.16 0.1605 0.1614 0.1615 0.162 0.1623 0.1624 0.1625 0.163
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 12 0 1 1 0 0 0 2 0
## 2 0 10 1 0 1 0 0 0 0 0
## 3 0 9 0 0 1 0 0 1 1 1
## 4 1 6 0 0 0 1 1 0 0 0
## 5 0 7 0 0 0 2 0 0 0 3
## 6 0 11 0 0 0 0 0 0 1 0
## 7 0 2 0 1 0 0 0 0 2 1
## 8 0 7 0 0 0 0 0 0 1 0
## 9 0 2 0 0 0 0 0 0 1 0
## 10 0 3 0 0 0 0 0 0 1 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1639 0.164 0.1644 0.1645 0.1649 0.165 0.1655 0.166 0.1665 0.167
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 1 2 0 6 1 0 1 2
## 2 0 1 0 0 0 5 0 0 0 0
## 3 0 1 0 0 0 3 0 0 0 0
## 4 0 0 0 0 0 3 0 0 0 1
## 5 1 0 0 1 0 2 1 1 1 0
## 6 0 0 0 0 0 3 0 0 0 1
## 7 0 0 0 0 0 1 0 0 0 1
## 8 0 0 0 0 1 3 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1675 0.168 0.1685 0.1687 0.1688 0.169 0.1692 0.1694 0.1695 0.1697
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 2 1 0 0 0 1 1 0 0
## 2 0 1 0 1 0 1 0 0 4 1
## 3 1 0 0 0 0 3 0 0 1 0
## 4 2 1 0 0 1 1 0 0 1 0
## 5 1 1 1 0 0 1 0 0 1 0
## 6 0 1 1 0 0 0 0 0 1 0
## 7 1 0 0 0 0 1 0 1 0 0
## 8 1 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1699 0.17 0.1714 0.1715 0.1721 0.1724 0.1725 0.173 0.1735 0.174
## 0 0 3 0 0 0 0 0 0 0 0
## 1 0 38 1 0 0 0 1 1 0 1
## 2 0 41 0 0 0 1 1 0 0 0
## 3 0 28 0 0 0 0 1 0 0 1
## 4 0 26 1 1 1 0 2 0 2 3
## 5 1 23 0 0 0 0 1 1 0 0
## 6 0 12 0 0 0 0 0 0 0 1
## 7 2 5 0 0 0 0 2 1 0 1
## 8 0 8 0 0 0 0 0 0 1 0
## 9 0 3 0 0 0 0 1 0 0 0
## 10 0 2 0 0 0 0 1 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1742 0.1744 0.1745 0.1749 0.175 0.176 0.1761 0.1765 0.177 0.1775
## 0 1 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 6 2 0 0 0 3
## 2 0 0 0 0 1 0 0 0 0 0
## 3 0 0 2 0 3 0 0 0 0 2
## 4 1 0 1 0 2 0 0 0 0 2
## 5 0 1 0 1 2 0 1 0 0 0
## 6 0 0 0 0 2 1 0 0 0 23
## 7 0 0 0 0 6 0 0 1 0 11
## 8 0 0 0 0 3 0 0 0 0 10
## 9 0 0 0 0 3 1 0 0 0 10
## 10 0 0 0 0 1 0 0 0 1 6
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.178 0.1784 0.1785 0.1788 0.1789 0.179 0.1793 0.1795 0.1797 0.1798
## 0 0 0 0 0 0 0 0 1 0 0
## 1 0 0 1 0 0 1 0 2 1 0
## 2 0 0 0 0 0 0 1 0 0 0
## 3 1 0 0 0 0 0 0 2 0 1
## 4 1 1 0 1 2 1 0 1 0 0
## 5 0 0 0 0 0 1 0 1 0 0
## 6 0 0 0 0 0 0 0 0 0 0
## 7 1 0 0 0 0 0 0 2 0 0
## 8 0 0 0 0 0 0 0 1 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1799 0.18 0.1805 0.181 0.1815 0.1819 0.182 0.1825 0.1826 0.183
## 0 0 1 0 0 0 0 0 0 0 0
## 1 2 19 0 0 0 0 1 0 1 1
## 2 0 11 1 0 1 0 0 0 0 1
## 3 0 19 0 0 0 0 0 1 0 2
## 4 0 5 0 0 0 1 0 0 0 0
## 5 0 12 0 1 0 0 1 0 0 1
## 6 1 5 0 0 0 0 0 0 0 0
## 7 0 7 0 0 0 0 0 1 0 1
## 8 0 5 0 0 0 0 1 3 0 0
## 9 0 2 0 1 0 0 0 0 0 0
## 10 0 2 0 0 0 0 0 0 0 0
## 11 0 1 0 0 0 0 0 1 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1838 0.184 0.1844 0.1845 0.1849 0.185 0.1855 0.1865 0.1866 0.187
## 0 0 0 0 0 0 1 0 0 0 0
## 1 1 0 1 0 1 8 0 0 0 2
## 2 0 0 0 3 0 4 1 1 0 0
## 3 0 0 0 1 0 4 1 0 0 1
## 4 0 0 0 0 0 3 0 0 0 0
## 5 0 1 0 0 1 2 0 0 1 0
## 6 0 1 0 0 0 1 0 0 0 0
## 7 0 0 0 0 0 2 0 0 0 1
## 8 0 0 0 1 0 3 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1871 0.1875 0.188 0.1883 0.1885 0.1888 0.1889 0.189 0.1894 0.1895
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 1 0 1 0 0 0
## 2 0 0 1 1 0 0 0 1 1 0
## 3 0 5 0 0 0 0 0 0 0 1
## 4 1 1 1 0 0 0 0 1 0 0
## 5 0 1 0 0 0 0 0 1 0 1
## 6 0 0 0 0 0 0 0 0 0 0
## 7 0 2 0 0 0 1 0 2 0 0
## 8 0 0 0 0 0 0 0 0 0 1
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1897 0.1898 0.1899 0.19 0.1902 0.1905 0.1911 0.1914 0.1915 0.1919
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 9 1 0 0 0 0 0
## 2 0 0 1 10 0 0 0 1 0 0
## 3 0 0 0 18 0 1 1 0 0 1
## 4 0 0 0 6 0 1 0 0 0 0
## 5 0 1 0 7 0 0 0 0 0 0
## 6 0 0 1 4 0 0 0 0 1 0
## 7 1 0 0 2 0 0 0 0 0 0
## 8 0 0 0 4 0 0 0 0 1 0
## 9 0 0 0 4 0 0 0 0 0 0
## 10 0 0 0 2 0 0 0 0 0 0
## 11 0 0 0 1 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.192 0.1925 0.193 0.1938 0.1939 0.194 0.1945 0.1948 0.1949 0.195
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 1 0 0 0 0 2 1 0 5
## 2 1 0 1 1 1 0 0 0 0 10
## 3 0 3 0 0 0 2 1 0 0 4
## 4 1 1 0 0 0 0 1 0 0 2
## 5 3 1 0 0 0 0 1 0 1 2
## 6 0 1 0 0 0 0 0 0 0 2
## 7 1 2 0 0 0 0 0 0 0 1
## 8 1 1 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.1954 0.1955 0.196 0.1969 0.197 0.1975 0.198 0.1985 0.1988 0.1989
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 2 0 1 1 0 1 0 0
## 2 0 2 1 1 0 0 0 0 0 0
## 3 0 0 0 0 0 3 0 0 1 2
## 4 0 0 0 0 1 1 0 0 2 0
## 5 1 0 0 0 2 1 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 1
## 7 0 0 0 0 0 0 0 1 0 0
## 8 0 0 0 0 1 3 0 0 0 0
## 9 0 0 0 0 0 0 1 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.199 0.1995 0.1997 0.1998 0.1999 0.2 0.2014 0.2015 0.2019 0.202
## 0 0 0 0 0 0 2 0 0 0 0
## 1 2 4 0 1 0 56 0 0 1 0
## 2 0 1 0 1 2 54 0 0 0 0
## 3 1 1 0 0 2 33 1 0 0 1
## 4 1 1 0 0 0 22 0 0 0 0
## 5 1 2 1 0 0 31 0 1 0 0
## 6 2 1 0 0 1 15 0 0 0 0
## 7 3 0 0 0 0 16 0 0 0 0
## 8 0 1 0 0 0 12 0 0 0 1
## 9 0 3 0 0 0 14 0 0 0 0
## 10 0 0 0 0 0 6 0 0 0 0
## 11 0 0 0 0 0 1 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2025 0.2034 0.204 0.2044 0.2045 0.205 0.2055 0.2059 0.206 0.2065
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 1 1 0 0 5 0 0 0 0
## 2 0 0 0 0 0 4 0 0 0 0
## 3 0 0 1 0 0 1 1 0 0 0
## 4 0 0 0 1 0 0 0 0 0 0
## 5 3 0 0 0 1 0 0 0 1 0
## 6 0 0 1 0 0 1 0 1 0 0
## 7 2 0 0 0 0 0 0 0 0 0
## 8 1 0 0 0 0 2 0 0 0 1
## 9 0 0 0 0 0 1 0 0 0 0
## 10 1 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2069 0.207 0.2075 0.208 0.2088 0.2089 0.2095 0.2098 0.2099 0.21
## 0 0 0 0 0 0 0 0 0 1 0
## 1 1 1 1 0 0 1 0 0 1 14
## 2 0 0 0 0 0 0 0 0 0 7
## 3 0 0 0 0 1 0 0 1 0 4
## 4 0 0 1 0 0 0 0 0 0 3
## 5 0 0 1 0 0 1 0 1 0 8
## 6 0 0 12 0 0 0 0 0 0 5
## 7 0 1 16 1 0 0 2 0 0 9
## 8 0 0 12 0 0 0 0 0 0 5
## 9 0 0 2 0 0 0 1 0 0 5
## 10 0 0 2 0 0 0 0 0 0 3
## 11 0 0 0 0 0 0 0 0 0 1
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2105 0.211 0.212 0.2123 0.2125 0.2129 0.2134 0.2135 0.214 0.2144
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 2 0 0 0 0 0 2 0
## 2 0 0 1 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 1 0 0 0
## 4 0 0 0 0 3 0 0 1 0 0
## 5 1 0 0 1 0 0 0 0 0 1
## 6 0 0 0 0 1 0 0 0 0 0
## 7 0 0 1 0 0 1 0 0 0 1
## 8 0 1 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2145 0.2149 0.215 0.2155 0.2175 0.218 0.2186 0.2188 0.2189 0.219
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 1 1 0 1 0 0 1 0
## 2 0 0 2 0 0 0 0 0 0 1
## 3 1 0 1 0 0 1 0 0 0 0
## 4 0 0 1 0 2 0 0 2 0 1
## 5 1 0 2 0 0 2 0 0 0 0
## 6 0 0 2 0 0 1 0 0 0 0
## 7 0 0 1 0 0 0 1 0 0 0
## 8 0 0 4 0 0 0 0 0 0 0
## 9 0 0 1 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2195 0.2198 0.22 0.2205 0.2208 0.221 0.2218 0.222 0.2223 0.2225
## 0 0 0 2 0 0 0 0 0 0 0
## 1 1 1 27 1 1 0 0 0 1 0
## 2 0 0 13 0 0 0 0 2 0 0
## 3 2 0 20 0 0 0 1 6 0 0
## 4 0 0 9 0 0 0 0 1 0 0
## 5 1 1 16 1 0 0 0 3 0 1
## 6 0 0 10 0 1 0 0 0 0 0
## 7 0 0 6 0 0 0 0 1 0 0
## 8 1 0 9 0 0 1 0 0 0 1
## 9 0 0 8 0 0 0 0 0 0 1
## 10 0 0 5 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2235 0.224 0.2244 0.2245 0.225 0.2253 0.226 0.2265 0.227 0.2275
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 0 0 1 4 0 1 0 1 0
## 2 0 0 0 1 2 1 0 0 0 0
## 3 0 0 0 0 2 0 0 0 1 0
## 4 0 0 0 0 4 0 0 0 1 0
## 5 0 0 1 0 3 0 0 0 0 0
## 6 0 1 0 0 1 0 0 0 0 3
## 7 0 0 0 0 2 0 0 1 0 2
## 8 0 0 0 0 5 0 0 0 0 2
## 9 0 0 0 0 2 0 0 0 0 3
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 1
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2279 0.228 0.229 0.2293 0.2294 0.2295 0.2298 0.23 0.2305 0.231
## 0 0 0 0 0 0 0 0 1 0 0
## 1 0 0 1 0 0 5 1 25 0 1
## 2 0 0 1 0 0 2 0 23 0 0
## 3 0 0 0 0 1 0 1 18 0 0
## 4 0 0 0 0 0 1 0 14 0 0
## 5 1 1 1 0 0 1 0 15 0 0
## 6 0 0 0 0 0 1 0 1 1 0
## 7 0 0 0 1 0 1 0 8 0 0
## 8 0 0 1 0 0 0 0 14 0 0
## 9 0 0 0 0 0 0 0 8 0 0
## 10 0 0 0 0 0 0 0 4 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2312 0.232 0.2321 0.2323 0.2325 0.233 0.2333 0.2335 0.234 0.2345
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 1 0 0 0 0 1 1
## 2 1 0 0 0 0 1 0 0 0 0
## 3 0 2 0 0 4 0 1 1 1 0
## 4 0 0 0 0 1 0 0 0 0 0
## 5 0 0 1 0 2 0 0 0 1 0
## 6 0 0 0 0 1 0 0 0 1 0
## 7 0 0 0 0 0 2 0 0 0 0
## 8 0 0 0 0 2 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2349 0.235 0.2355 0.236 0.2364 0.2365 0.237 0.2373 0.2374 0.2375
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 3 1 0 0 0 0 0 0 1
## 2 0 4 0 1 0 1 0 1 0 0
## 3 0 1 0 0 0 0 1 0 0 1
## 4 0 1 0 0 0 0 1 0 0 4
## 5 0 3 0 1 1 0 0 0 0 1
## 6 0 2 0 0 0 0 1 0 0 11
## 7 0 1 0 0 0 0 1 0 0 15
## 8 0 2 0 1 0 0 0 0 1 103
## 9 0 1 0 0 0 0 1 0 0 29
## 10 0 1 0 0 0 0 0 0 0 1
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.238 0.2385 0.239 0.2395 0.2399 0.24 0.2415 0.242 0.2421 0.2425
## 0 0 0 0 0 1 1 0 0 0 0
## 1 1 0 2 5 1 34 0 1 0 0
## 2 0 1 0 3 0 25 0 0 1 0
## 3 0 0 2 0 0 18 0 0 0 1
## 4 0 0 2 0 1 20 0 0 0 0
## 5 0 1 2 0 0 21 1 0 0 0
## 6 1 0 0 0 0 15 0 0 0 1
## 7 0 0 0 1 0 6 0 1 0 1
## 8 0 0 0 0 0 5 0 0 0 0
## 9 0 0 0 0 0 1 0 0 0 0
## 10 0 0 1 0 0 2 0 0 0 0
## 11 0 0 0 0 0 1 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2429 0.243 0.244 0.2443 0.2445 0.2449 0.245 0.2454 0.2459 0.246
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 0 0 0 0 2 0 1 0
## 2 0 0 0 1 0 0 0 0 0 0
## 3 0 0 0 0 0 0 2 0 0 1
## 4 0 0 1 0 0 0 0 0 0 1
## 5 1 0 0 0 1 1 2 0 0 1
## 6 0 0 0 0 0 0 0 0 0 0
## 7 0 1 0 0 0 1 1 1 0 0
## 8 0 0 0 0 0 0 1 0 0 0
## 9 0 0 0 0 0 0 1 0 0 0
## 10 0 0 0 0 0 0 1 0 0 1
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2466 0.2469 0.247 0.2475 0.248 0.2484 0.2485 0.2489 0.249 0.2493
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 1 0 0 0 0 1 0 0 1
## 2 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 1 0 0 0 0 3 0
## 4 1 0 0 0 2 0 0 0 2 0
## 5 0 0 1 0 0 1 1 1 0 0
## 6 0 0 0 13 0 0 0 0 0 0
## 7 0 0 1 22 0 0 0 0 0 0
## 8 0 0 0 3 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 2 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2495 0.2499 0.25 0.251 0.2525 0.253 0.2539 0.254 0.2548 0.255
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 0 23 1 1 0 0 1 0 0
## 2 0 0 22 0 0 0 0 0 1 1
## 3 1 0 29 0 1 1 1 0 0 1
## 4 0 0 16 0 0 0 0 0 0 2
## 5 0 0 25 0 0 0 0 1 0 2
## 6 0 1 13 0 0 1 0 1 0 2
## 7 0 0 21 0 1 0 0 0 0 2
## 8 0 0 1 0 0 0 0 0 0 0
## 9 0 0 3 0 1 0 0 0 0 0
## 10 0 0 2 0 0 0 0 0 0 1
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2559 0.2565 0.2567 0.2575 0.2579 0.2583 0.2584 0.2585 0.259 0.2595
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 1 1 0 0 0 0 0 0
## 2 0 0 0 1 1 1 1 0 0 2
## 3 0 0 0 2 0 0 0 0 4 0
## 4 0 0 0 0 0 0 0 0 0 0
## 5 1 0 0 1 0 0 0 0 0 0
## 6 0 1 0 0 0 0 0 0 1 0
## 7 0 0 0 1 0 0 0 1 1 0
## 8 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2598 0.2599 0.26 0.2615 0.262 0.2621 0.2625 0.263 0.2639 0.264
## 0 0 0 1 0 0 0 0 0 0 0
## 1 1 1 12 0 0 0 1 0 1 0
## 2 0 1 11 0 0 1 0 0 0 1
## 3 0 0 5 1 0 0 0 1 0 1
## 4 0 1 6 0 0 0 0 0 0 0
## 5 0 1 13 0 0 0 2 0 0 1
## 6 0 0 12 0 2 0 0 0 0 0
## 7 0 0 6 0 2 0 2 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 1 0 0 0 1 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.265 0.2655 0.266 0.2665 0.2666 0.2675 0.2685 0.2689 0.269 0.2695
## 0 0 0 0 0 0 0 0 0 0 0
## 1 2 0 0 0 0 1 0 0 0 0
## 2 0 0 0 0 0 0 1 1 0 0
## 3 1 1 0 0 1 1 0 0 1 0
## 4 1 0 1 0 0 0 0 0 3 1
## 5 0 0 0 0 0 2 0 1 0 0
## 6 1 0 0 1 0 2 0 0 0 0
## 7 0 0 0 0 0 1 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2699 0.27 0.2715 0.2725 0.273 0.274 0.2743 0.275 0.276 0.277 0.2775
## 0 0 0 0 0 0 0 0 0 0 0 0
## 1 1 24 0 0 1 1 0 0 0 0 1
## 2 0 15 0 0 0 0 0 1 0 1 0
## 3 0 16 1 2 0 0 0 0 0 0 1
## 4 0 9 0 0 0 3 0 5 0 0 0
## 5 0 10 0 2 0 1 0 2 0 0 0
## 6 0 1 0 1 0 0 1 3 1 0 0
## 7 0 10 1 0 0 0 0 1 0 0 0
## 8 0 1 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0
## 10 0 3 0 0 0 0 0 2 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.278 0.279 0.2793 0.2795 0.2799 0.28 0.2815 0.282 0.2825 0.283
## 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 1 16 0 0 0 0
## 2 0 1 0 2 0 12 0 0 0 0
## 3 1 1 0 1 0 10 1 0 1 0
## 4 1 1 0 0 0 4 1 0 1 1
## 5 0 1 1 0 0 16 0 1 4 0
## 6 0 3 0 0 0 28 0 0 3 0
## 7 0 0 0 0 0 15 0 0 0 0
## 8 0 0 0 0 0 1 0 0 0 0
## 9 0 0 0 0 1 0 0 0 0 0
## 10 0 0 0 0 0 1 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2835 0.284 0.2844 0.2845 0.2848 0.285 0.2855 0.2865 0.287 0.2875
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 1 0 1 0 3 0 0 0 0
## 2 0 1 0 0 0 1 0 0 0 0
## 3 0 1 1 0 0 3 0 1 1 2
## 4 0 0 0 0 0 1 0 0 0 0
## 5 0 2 0 0 0 3 0 0 0 10
## 6 0 0 0 0 1 3 1 0 0 57
## 7 0 1 0 0 0 2 0 0 2 47
## 8 0 0 0 0 0 0 0 0 0 4
## 9 0 0 0 0 0 1 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2877 0.288 0.2881 0.2885 0.2888 0.2889 0.289 0.2892 0.2895 0.2898
## 0 0 0 0 0 0 0 0 0 0 0
## 1 1 0 0 0 0 0 3 0 3 0
## 2 0 0 0 0 0 0 0 0 1 0
## 3 0 0 1 1 1 1 0 0 2 0
## 4 0 1 0 0 0 0 2 1 2 1
## 5 0 0 0 0 0 2 1 0 1 0
## 6 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.2899 0.29 0.295 0.2963 0.2975 0.3 0.3025 0.31 0.3125 0.32 0.3295
## 0 0 1 0 0 0 0 0 0 0 0 0
## 1 0 133 0 0 0 2 0 0 0 0 0
## 2 3 102 1 0 0 2 0 0 0 0 0
## 3 0 97 0 0 1 2 0 0 0 0 0
## 4 0 115 0 0 0 3 0 0 0 0 0
## 5 0 128 0 1 0 1 0 0 0 0 0
## 6 0 5 0 0 0 0 0 0 0 0 0
## 7 1 1 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 3 1 1 0 0 0
## 10 0 2 0 0 0 7 0 0 1 3 1
## 11 0 0 0 0 0 1 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.33 0.3325 0.34 0.345 0.3475 0.348 0.35 0.357 0.3575 0.36 0.375 0.4
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 1 1 1 1 1 8 2 14 0 0 0
## 10 0 0 0 0 0 0 3 0 7 1 1 2
## 11 1 0 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0 0 0 0
## MM
## WK 0.45 0.48 0.4975
## 0 0 0 0
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## 7 0 0 0
## 8 0 0 0
## 9 0 0 0
## 10 3 1 1
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 0 0 0
barchart(dob.dm.tbl,ylab="Age")
barchart(dob.dm.tbl,horizontal=TRUE,groups=TRUE,xlab="Borrower Rate")
densityplot(~Age|Amount,data=ld,layout=c(1,14),plot.points=FALSE,col="black")
fi <- read.csv("/Users/kimberlyhatlestad/Data Mining/FinancialIndicators.csv")
summary(fi)
## Company.Name Industry.Name
## @Road Inc : 1 Bank : 487
## 1-800 Contacts Inc : 1 Computer Software/Svcs: 395
## 1-800-ATTORNEY Inc : 1 Drug : 306
## 1-800-FLOWERS.COM : 1 Internet : 306
## 1mage Software Inc : 1 Medical Supplies : 261
## 1st Centennial Bancorp: 1 Financial Svcs. (Div.): 244
## (Other) :7106 (Other) :5113
## SIC Exchange Country Stock.Price
## Min. : 0 0 : 6 Foreign:1783 Min. : 0.00
## 1st Qu.:3533 AMS : 431 US :5329 1st Qu.: 2.15
## Median :4911 INDE: 12 Median : 12.40
## Mean :5000 NDQ :4607 Mean : 37.63
## 3rd Qu.:6720 NYS :1806 3rd Qu.: 27.68
## Max. :9975 OTC : 48 Max. :88500.00
## TSE : 202
## X..Chg.in.last.year Trading.Volume X..of.shares.outstanding
## Min. :-0.920000 Min. :0.000e+00 Min. : 0.0
## 1st Qu.:-0.010000 1st Qu.:1.115e+04 1st Qu.: 7.2
## Median : 0.000000 Median :7.400e+04 Median : 22.3
## Mean : 0.003768 Mean :7.523e+05 Mean : 100.4
## 3rd Qu.: 0.000000 3rd Qu.:2.793e+05 3rd Qu.: 57.9
## Max. : 2.000000 Max. :1.677e+09 Max. :13073.5
##
## Market.Cap Total.Debt Firm.Value
## Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 12.9 1st Qu.: 0.0 1st Qu.: 18.7
## Median : 132.9 Median : 5.5 Median : 172.8
## Mean : 2823.3 Mean : 1000.7 Mean : 3824.0
## 3rd Qu.: 938.4 3rd Qu.: 148.0 3rd Qu.: 1174.7
## Max. :370978.1 Max. :478539.0 Max. :741342.1
##
## Enterprise.Value Cash Revenues..Last.yr
## Min. : -9671.9 Min. : 0.00 Min. : 0.1
## 1st Qu.: 13.6 1st Qu.: 0.80 1st Qu.: 20.0
## Median : 142.3 Median : 12.70 Median : 143.3
## Mean : 3520.7 Mean : 303.30 Mean : 2341.9
## 3rd Qu.: 1057.2 3rd Qu.: 79.92 3rd Qu.: 882.3
## Max. :726014.1 Max. :122152.00 Max. :285222.0
## NA's :1887
## Trailing.12.mth.Revenues Current.PE Trailing.PE
## Min. : 0.1 Min. : 0.00 Min. : 0.00
## 1st Qu.: 25.1 1st Qu.: 14.66 1st Qu.: 13.88
## Median : 174.8 Median : 20.50 Median : 19.04
## Mean : 2520.3 Mean : 40.08 Mean : 40.53
## 3rd Qu.: 968.4 3rd Qu.: 32.66 3rd Qu.: 29.45
## Max. :325891.0 Max. :5270.50 Max. :28518.28
## NA's :1857 NA's :3011 NA's :3165
## Forward.EPS Forward.PE PEG.Ratio PBV.Ratio
## Min. : -30.26 Min. : 4.38 Min. : 0.120 Min. : 0.000
## 1st Qu.: 0.50 1st Qu.: 14.54 1st Qu.: 1.200 1st Qu.: 1.430
## Median : 1.33 Median : 18.18 Median : 1.700 Median : 2.290
## Mean : 3.15 Mean : 29.93 Mean : 2.644 Mean : 5.338
## 3rd Qu.: 2.30 3rd Qu.: 25.53 3rd Qu.: 2.377 3rd Qu.: 4.020
## Max. :4000.00 Max. :2710.00 Max. :234.240 Max. :863.650
## NA's :4433 NA's :4715 NA's :4934 NA's :1469
## PS.Ratio EV.EBIT EV.EBITDA
## Min. : 0.00 Min. : 0.070 Min. : 0.1
## 1st Qu.: 0.59 1st Qu.: 7.225 1st Qu.: 5.3
## Median : 1.44 Median : 10.540 Median : 8.1
## Mean : 18.40 Mean : 25.108 Mean : 135.7
## 3rd Qu.: 3.82 3rd Qu.: 16.790 3rd Qu.: 13.2
## Max. :27304.00 Max. :10638.300 Max. :455000.0
## NA's :1887 NA's :3321 NA's :3127
## EV..Invested.Capital Value.BV.of.Capital EV.Sales
## Min. :0.000e+00 Min. : 0.000 Min. : 0.01
## 1st Qu.:1.000e+00 1st Qu.: 1.240 1st Qu.: 0.73
## Median :2.000e+00 Median : 1.830 Median : 1.63
## Mean :6.964e+12 Mean : 3.411 Mean : 18.89
## 3rd Qu.:4.000e+00 3rd Qu.: 3.150 3rd Qu.: 3.87
## Max. :3.363e+16 Max. :332.000 Max. :33657.50
## NA's :1410 NA's :1369 NA's :1977
## EV..Trailing.Sales Growth.in.EPS..Last.5.years
## Min. : 0.01 Min. :-0.500
## 1st Qu.: 0.70 1st Qu.:-0.030
## Median : 1.50 Median : 0.070
## Mean : 14.22 Mean : 0.073
## 3rd Qu.: 3.41 3rd Qu.: 0.170
## Max. :7667.55 Max. : 0.950
## NA's :2143 NA's :4898
## Expected.Growth.in.EPS..next.5.years
## Min. :-0.130
## 1st Qu.: 0.100
## Median : 0.140
## Mean : 0.167
## 3rd Qu.: 0.200
## Max. : 0.950
## NA's :4566
## Expected.Growth.in.Revenues..next.5.years Growth.in.Revenue..last.year
## Min. :-0.430 Min. :-0.7500
## 1st Qu.: 0.060 1st Qu.: 0.0000
## Median : 0.090 Median : 0.0000
## Mean : 0.096 Mean : 0.1041
## 3rd Qu.: 0.120 3rd Qu.: 0.1500
## Max. : 0.800 Max. : 4.8600
## NA's :5663
## X3.yr.Regression.Beta Value.Line.Beta HiLo.risk
## Min. :-9.4800 Min. :0.0000 Min. :0.0200
## 1st Qu.: 0.0000 1st Qu.:0.5000 1st Qu.:0.1700
## Median : 0.4400 Median :0.8000 Median :0.2700
## Mean : 0.7639 Mean :0.8231 Mean :0.3299
## 3rd Qu.: 1.1900 3rd Qu.:1.1000 3rd Qu.:0.4400
## Max. : 9.6100 Max. :7.9000 Max. :1.0000
## NA's :893
## X3.yr.Standard.Deviation..Stock.Price. Reinvestment
## Min. : 0.000 Min. :-108003.3
## 1st Qu.: 0.000 1st Qu.: -0.9
## Median : 0.280 Median : 0.0
## Mean : 0.437 Mean : 288.4
## 3rd Qu.: 0.560 3rd Qu.: 2.9
## Max. :29.190 Max. :1977007.2
##
## Correlation Payout.Ratio Reinvestment.Rate ROE
## Min. :-0.690 Min. : 0.0000 0 : 153 Min. :-97.0000
## 1st Qu.: 0.190 1st Qu.: 0.0000 0.06 : 85 1st Qu.: -0.0400
## Median : 0.440 Median : 0.0000 0.02 : 76 Median : 0.0800
## Mean : 0.445 Mean : 0.2212 0.04 : 74 Mean : -0.2009
## 3rd Qu.: 0.700 3rd Qu.: 0.2900 0.03 : 73 3rd Qu.: 0.1400
## Max. : 2.430 Max. :34.8300 (Other):4764 Max. :246.3500
## NA's :2090 NA's :3011 NA's :1887 NA's :1369
## ROC Net.Margin Pre.tax.Operating.Margin
## 0.1 : 182 Min. :-414.000 Min. :-99.6100
## 0.12 : 173 1st Qu.: -0.100 1st Qu.: -0.0200
## 0.14 : 167 Median : 0.030 Median : 0.0900
## 0.11 : 162 Mean : -1.882 Mean : -0.8673
## 0.13 : 162 3rd Qu.: 0.080 3rd Qu.: 0.1900
## (Other):4379 Max. : 19.670 Max. : 1.0000
## NA's :1887 NA's :1887 NA's :1887
## Invested.Capital BV.of.Assets Non.cash.WC
## Min. :-15212.5 Min. : 0.0 Min. :-12205.0
## 1st Qu.: 2.3 1st Qu.: 10.3 1st Qu.: -0.6
## Median : 48.0 Median : 146.8 Median : 0.0
## Mean : 1687.8 Mean : 4889.1 Mean : 247.0
## 3rd Qu.: 392.9 3rd Qu.: 925.1 3rd Qu.: 24.7
## Max. :503605.0 Max. :1484101.0 Max. :430192.0
##
## Chg.in.non.cash.WC Net.Income EBIT
## Min. :-109004.3 Min. :-13996.0 Min. : -925.44
## 1st Qu.: 0.0 1st Qu.: -1.2 1st Qu.: -0.19
## Median : 0.0 Median : 1.8 Median : 13.74
## Mean : 281.7 Mean : 133.7 Mean : 399.75
## 3rd Qu.: 1.1 3rd Qu.: 33.1 3rd Qu.: 130.29
## Max. :1978006.0 Max. : 25330.0 Max. :99485.19
## NA's :1887
## EBIT.1.t. EBITDA FCFF
## Min. : -925.44 Min. : -537.44 Min. :-1976050.3
## 1st Qu.: -0.19 1st Qu.: 0.33 1st Qu.: -0.9
## Median : 10.65 Median : 20.68 Median : 6.9
## Mean : 280.61 Mean : 522.56 Mean : -111.2
## 3rd Qu.: 91.56 3rd Qu.: 171.11 3rd Qu.: 71.4
## Max. :81701.22 Max. :107870.19 Max. : 108003.3
## NA's :1887 NA's :1887 NA's :1887
## Eff.Tax.Rate Non.cash.WC.as...of.Revenues Cash.as...of.Firm.Value
## Min. :0.0000 Min. :-241.0000 Min. : 0.0000
## 1st Qu.:0.0000 1st Qu.: -0.0700 1st Qu.: 0.0200
## Median :0.0300 Median : 0.0600 Median : 0.0700
## Mean :0.1627 Mean : -0.2979 Mean : 0.2539
## 3rd Qu.:0.3400 3rd Qu.: 0.1700 3rd Qu.: 0.1700
## Max. :0.6000 Max. : 29.6500 Max. :369.5000
## NA's :1887 NA's :553
## Cash.as...of.Revenues Cash.as...of.Total.Assets Capital.Expenditures
## Min. : 0.000 Min. :0.0000 Min. : 0.00
## 1st Qu.: 0.020 1st Qu.:0.0200 1st Qu.: 0.00
## Median : 0.100 Median :0.0900 Median : 1.20
## Mean : 2.089 Mean :0.1985 Mean : 96.90
## 3rd Qu.: 0.360 3rd Qu.:0.2900 3rd Qu.: 18.82
## Max. :1369.000 Max. :1.0000 Max. :17909.00
## NA's :1857 NA's :719
## Depreciation SG.A.Expenses Trailing.Revenues
## Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 2.20 1st Qu.: 0.0
## Median : 1.60 Median : 13.90 Median : 48.5
## Mean : 90.23 Mean : 326.86 Mean : 1862.2
## 3rd Qu.: 19.00 3rd Qu.: 85.72 3rd Qu.: 516.4
## Max. :33750.00 Max. :51105.00 Max. :325891.0
##
## Trailing.Net.Income Dividends Intangible.Assets.Total.Assets
## Min. :-4365.0 Min. : 0.00 Min. :0.0000
## 1st Qu.: -0.6 1st Qu.: 0.00 1st Qu.:0.0000
## Median : 1.4 Median : 0.00 Median :0.0300
## Mean : 133.9 Mean : 46.41 Mean :0.1239
## 3rd Qu.: 30.9 3rd Qu.: 0.56 3rd Qu.:0.1900
## Max. :25330.0 Max. :10586.40 Max. :1.0000
## NA's :719
## Fixed.Assets.Total.Assets Market.D.E Market.Debt.to.Capital
## Min. :0.0000 Min. : 0.000 Min. :0.0000
## 1st Qu.:0.0200 1st Qu.: 0.000 1st Qu.:0.0000
## Median :0.1100 Median : 0.120 Median :0.1100
## Mean :0.2055 Mean : 6.249 Mean :0.1995
## 3rd Qu.:0.3100 3rd Qu.: 0.440 3rd Qu.:0.3000
## Max. :1.0000 Max. :8933.000 Max. :1.0000
## NA's :719 NA's :553 NA's :553
## Book.Debt.to.Capital Dividend.Yield Insider.Holdings
## Min. :0.0000 Min. :0.000000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.000000 1st Qu.:0.020
## Median :0.2100 Median :0.000000 Median :0.050
## Mean :0.2641 Mean :0.006947 Mean :0.102
## 3rd Qu.:0.4500 3rd Qu.:0.000000 3rd Qu.:0.110
## Max. :0.9900 Max. :3.540000 Max. :1.000
## NA's :1369 NA's :5673
## Institutional.Holdings
## Min. :0.0000
## 1st Qu.:0.0000
## Median :0.2000
## Mean :0.3185
## 3rd Qu.:0.6200
## Max. :1.0000
##
densityplot(~Net.Income,groups=Country,data=fi,plot.points=FALSE)
xyplot(Payout.Ratio~Growth.in.Revenue..last.year|Country,data=fi,layout=c(1,2),col="black")