There are 3 dice so number of possible outcomes is \(6^{3}\). Out of these possible outcomes, only 1 outcome (three sixes) is in favour of the bet. So the probability of getting at least one time three sixes is equal to the probability 1 minus the probability of not getting three sixes in n trials. Therefore, the required probabillty will be
\(p = f(n)\)
\(p = 1-\left ( \frac{6^{3}-1}{6^{3}} \right )^{n}\)
For any favourable bet, probability of success should be equal to 0.5 or higher. The following code shows the probability for different n from 1 to 160. The code breaks out of the loop as soon as the probability reaches 0.50 or higher:
for (n in 1:160) {
p = 1-((6^3-1)/6^3)^n
message(sprintf("%s %s ", n, round(p, 4)))
if(p >= 0.50) {
print (n)
break
}
}
## 1 0.0046
## 2 0.0092
## 3 0.0138
## 4 0.0184
## 5 0.0229
## 6 0.0275
## 7 0.032
## 8 0.0364
## 9 0.0409
## 10 0.0453
## 11 0.0498
## 12 0.0542
## 13 0.0585
## 14 0.0629
## 15 0.0672
## 16 0.0716
## 17 0.0759
## 18 0.0801
## 19 0.0844
## 20 0.0886
## 21 0.0929
## 22 0.0971
## 23 0.1012
## 24 0.1054
## 25 0.1095
## 26 0.1137
## 27 0.1178
## 28 0.1218
## 29 0.1259
## 30 0.13
## 31 0.134
## 32 0.138
## 33 0.142
## 34 0.146
## 35 0.1499
## 36 0.1538
## 37 0.1578
## 38 0.1617
## 39 0.1655
## 40 0.1694
## 41 0.1733
## 42 0.1771
## 43 0.1809
## 44 0.1847
## 45 0.1885
## 46 0.1922
## 47 0.196
## 48 0.1997
## 49 0.2034
## 50 0.2071
## 51 0.2107
## 52 0.2144
## 53 0.218
## 54 0.2217
## 55 0.2253
## 56 0.2288
## 57 0.2324
## 58 0.236
## 59 0.2395
## 60 0.243
## 61 0.2465
## 62 0.25
## 63 0.2535
## 64 0.2569
## 65 0.2604
## 66 0.2638
## 67 0.2672
## 68 0.2706
## 69 0.274
## 70 0.2773
## 71 0.2807
## 72 0.284
## 73 0.2873
## 74 0.2906
## 75 0.2939
## 76 0.2972
## 77 0.3004
## 78 0.3037
## 79 0.3069
## 80 0.3101
## 81 0.3133
## 82 0.3165
## 83 0.3197
## 84 0.3228
## 85 0.3259
## 86 0.3291
## 87 0.3322
## 88 0.3353
## 89 0.3383
## 90 0.3414
## 91 0.3444
## 92 0.3475
## 93 0.3505
## 94 0.3535
## 95 0.3565
## 96 0.3595
## 97 0.3624
## 98 0.3654
## 99 0.3683
## 100 0.3713
## 101 0.3742
## 102 0.3771
## 103 0.38
## 104 0.3828
## 105 0.3857
## 106 0.3885
## 107 0.3914
## 108 0.3942
## 109 0.397
## 110 0.3998
## 111 0.4025
## 112 0.4053
## 113 0.4081
## 114 0.4108
## 115 0.4135
## 116 0.4163
## 117 0.419
## 118 0.4216
## 119 0.4243
## 120 0.427
## 121 0.4296
## 122 0.4323
## 123 0.4349
## 124 0.4375
## 125 0.4401
## 126 0.4427
## 127 0.4453
## 128 0.4479
## 129 0.4504
## 130 0.453
## 131 0.4555
## 132 0.458
## 133 0.4605
## 134 0.463
## 135 0.4655
## 136 0.468
## 137 0.4705
## 138 0.4729
## 139 0.4753
## 140 0.4778
## 141 0.4802
## 142 0.4826
## 143 0.485
## 144 0.4874
## 145 0.4898
## 146 0.4921
## 147 0.4945
## 148 0.4968
## 149 0.4991
## 150 0.5015
## [1] 150
From the above results we can say that the smallest value of n necessary for a favorable bet that a triple-six will occur is 150.
n_DeMoivre = 216*log(2)
print (n_DeMoivre)
## [1] 149.7198
I would agree with DeMoivre that we can use \(216*log(2)\) to determine the n necessary for a favorable bet.