Discrete Probability Distributions (Chapter 1 - Section 1.1) - Question 5

Week05 Discussion

Solution:

There are 3 dice so number of possible outcomes is \(6^{3}\). Out of these possible outcomes, only 1 outcome (three sixes) is in favour of the bet. So the probability of getting at least one time three sixes is equal to the probability 1 minus the probability of not getting three sixes in n trials. Therefore, the required probabillty will be

\(p = f(n)\)

\(p = 1-\left ( \frac{6^{3}-1}{6^{3}} \right )^{n}\)

For any favourable bet, probability of success should be equal to 0.5 or higher. The following code shows the probability for different n from 1 to 160. The code breaks out of the loop as soon as the probability reaches 0.50 or higher:

for (n in 1:160) {
  p = 1-((6^3-1)/6^3)^n
  message(sprintf("%s  %s ", n, round(p, 4)))
  
  if(p >= 0.50) {
    print (n)
    break
  }
}
## 1  0.0046
## 2  0.0092
## 3  0.0138
## 4  0.0184
## 5  0.0229
## 6  0.0275
## 7  0.032
## 8  0.0364
## 9  0.0409
## 10  0.0453
## 11  0.0498
## 12  0.0542
## 13  0.0585
## 14  0.0629
## 15  0.0672
## 16  0.0716
## 17  0.0759
## 18  0.0801
## 19  0.0844
## 20  0.0886
## 21  0.0929
## 22  0.0971
## 23  0.1012
## 24  0.1054
## 25  0.1095
## 26  0.1137
## 27  0.1178
## 28  0.1218
## 29  0.1259
## 30  0.13
## 31  0.134
## 32  0.138
## 33  0.142
## 34  0.146
## 35  0.1499
## 36  0.1538
## 37  0.1578
## 38  0.1617
## 39  0.1655
## 40  0.1694
## 41  0.1733
## 42  0.1771
## 43  0.1809
## 44  0.1847
## 45  0.1885
## 46  0.1922
## 47  0.196
## 48  0.1997
## 49  0.2034
## 50  0.2071
## 51  0.2107
## 52  0.2144
## 53  0.218
## 54  0.2217
## 55  0.2253
## 56  0.2288
## 57  0.2324
## 58  0.236
## 59  0.2395
## 60  0.243
## 61  0.2465
## 62  0.25
## 63  0.2535
## 64  0.2569
## 65  0.2604
## 66  0.2638
## 67  0.2672
## 68  0.2706
## 69  0.274
## 70  0.2773
## 71  0.2807
## 72  0.284
## 73  0.2873
## 74  0.2906
## 75  0.2939
## 76  0.2972
## 77  0.3004
## 78  0.3037
## 79  0.3069
## 80  0.3101
## 81  0.3133
## 82  0.3165
## 83  0.3197
## 84  0.3228
## 85  0.3259
## 86  0.3291
## 87  0.3322
## 88  0.3353
## 89  0.3383
## 90  0.3414
## 91  0.3444
## 92  0.3475
## 93  0.3505
## 94  0.3535
## 95  0.3565
## 96  0.3595
## 97  0.3624
## 98  0.3654
## 99  0.3683
## 100  0.3713
## 101  0.3742
## 102  0.3771
## 103  0.38
## 104  0.3828
## 105  0.3857
## 106  0.3885
## 107  0.3914
## 108  0.3942
## 109  0.397
## 110  0.3998
## 111  0.4025
## 112  0.4053
## 113  0.4081
## 114  0.4108
## 115  0.4135
## 116  0.4163
## 117  0.419
## 118  0.4216
## 119  0.4243
## 120  0.427
## 121  0.4296
## 122  0.4323
## 123  0.4349
## 124  0.4375
## 125  0.4401
## 126  0.4427
## 127  0.4453
## 128  0.4479
## 129  0.4504
## 130  0.453
## 131  0.4555
## 132  0.458
## 133  0.4605
## 134  0.463
## 135  0.4655
## 136  0.468
## 137  0.4705
## 138  0.4729
## 139  0.4753
## 140  0.4778
## 141  0.4802
## 142  0.4826
## 143  0.485
## 144  0.4874
## 145  0.4898
## 146  0.4921
## 147  0.4945
## 148  0.4968
## 149  0.4991
## 150  0.5015
## [1] 150

From the above results we can say that the smallest value of n necessary for a favorable bet that a triple-six will occur is 150.

n_DeMoivre = 216*log(2)
print (n_DeMoivre)
## [1] 149.7198

I would agree with DeMoivre that we can use \(216*log(2)\) to determine the n necessary for a favorable bet.