library(Zelig)
library(maxLik)
data(turnout)
head(turnout)
## race age educate income vote
## 1 white 60 14 3.3458 1
## 2 white 51 10 1.8561 0
## 3 white 24 12 0.6304 0
## 4 white 38 8 3.4183 1
## 5 white 25 12 2.7852 1
## 6 white 67 12 2.3866 1
tail(turnout)
## race age educate income vote
## 1995 white 22 7 0.2364 0
## 1996 white 26 16 3.3834 0
## 1997 white 34 12 2.9170 1
## 1998 white 51 16 7.8949 1
## 1999 white 22 10 2.4811 0
## 2000 white 59 10 0.5523 0
ols.lf2 <- function(param) {
mu <- param[1]
theta <- param[-1]
y <- as.vector(turnout$income)
x <- cbind(1, turnout$educate, turnout$age)
sigma <- x%*%theta
sum(dnorm(y, mu, sigma, log = TRUE))
}
mle_ols2 <- maxLik(logLik = ols.lf2, start = c(mu = 1, theta1 = 1, theta2 = 1, theta3= 1), method="BFGS")
summary(mle_ols2)
## --------------------------------------------
## Maximum Likelihood estimation
## BFGS maximization, 150 iterations
## Return code 0: successful convergence
## Log-Likelihood: -4843.15
## 4 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## mu 3.555011 0.069193 51.378 < 2e-16 ***
## theta1 0.362114 0.204550 1.770 0.0767 .
## theta2 0.133349 0.010756 12.398 < 2e-16 ***
## theta3 0.017507 0.002852 6.139 8.32e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --------------------------------------------
When looking at the relationship between age, education and income we see a positive relationship between the variables, as both theta’s (2 and 3) are positive. Looking at both variables slopes, we can see that education has a greater impact on the changes in income than age (0.13 and 0.02, respectively). When we look at the p-values for both variables we see that both theta 2 (education) and theta 3 are statistically significant at 99% significane, indicating that both education and age affect changes in income. This can also be interpreted by looking at the two t-values for both variables (12.4 and 6.1, respectively), which are greater than the critical value (2.58) for the 99% confidence level in t-distributions.