Main LME
Note on control variables: we include tone contrast (1-2, 1-3, 1-4, 2-3, 2-4, 3-4) and speaker (tv1, tv2, tv4) as fixed effects. Both could contribute to the model but neither is of specific interest. ### All FOUR sessions
training4 <- lizCenter(training, list("cond", "session", "version"))
training4 = lizContrasts6(training4, training4$tone_contrast, "T12")
training4 = lizContrasts4(training4, training4$speaker, "tv1")
training4.mod1 = glmer (acc ~
+ cond.ct * session.ct
+ (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 + tv1_VERSUS_tv4)
+ (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 + T12_VERSUS_T24 + T12_VERSUS_T34)
+ (session.ct|pt_N),
data = training4, family = binomial, control = glmerControl(optimizer = "bobyqa"))
# converges - now find slope structure for items
training4.mod2 = glmer (acc ~
+ cond.ct * session.ct
+ (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 + tv1_VERSUS_tv4)
+ (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 + T12_VERSUS_T24 + T12_VERSUS_T34)
+ (session.ct|pt_N)
+ (session.ct* cond.ct|item),
data = training4, family = binomial, control = glmerControl(optimizer = "bobyqa"))
training4.mod3 = glmer (acc ~
+ cond.ct * session.ct
+ (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 + tv1_VERSUS_tv4)
+ (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 + T12_VERSUS_T24 + T12_VERSUS_T34)
+ (session.ct|pt_N)
+ (session.ct* cond.ct||item),
data = training4, family = binomial, control = glmerControl(optimizer = "bobyqa"))
anova(training4.mod2, training4.mod3)
## Data: training4
## Models:
## training4.mod3: acc ~ +cond.ct * session.ct + (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 +
## training4.mod3: tv1_VERSUS_tv4) + (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 +
## training4.mod3: T12_VERSUS_T24 + T12_VERSUS_T34) + (session.ct | pt_N) +
## training4.mod3: (session.ct * cond.ct || item)
## training4.mod2: acc ~ +cond.ct * session.ct + (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 +
## training4.mod2: tv1_VERSUS_tv4) + (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 +
## training4.mod2: T12_VERSUS_T24 + T12_VERSUS_T34) + (session.ct | pt_N) +
## training4.mod2: (session.ct * cond.ct | item)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## training4.mod3 19 25506 25656 -12734 25468
## training4.mod2 25 25516 25713 -12733 25466 2.3674 6 0.883
## p>.2 so move to simpler slope structure
training4.mod4 = glmer (acc ~
+ cond.ct * session.ct
+ (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 + tv1_VERSUS_tv4)
+ (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 + T12_VERSUS_T24 + T12_VERSUS_T34)
+ (session.ct|pt_N)
+ (session.ct+ cond.ct||item),
data = training4, family = binomial, control = glmerControl(optimizer = "bobyqa"))
anova(training4.mod3, training4.mod4)
## Data: training4
## Models:
## training4.mod4: acc ~ +cond.ct * session.ct + (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 +
## training4.mod4: tv1_VERSUS_tv4) + (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 +
## training4.mod4: T12_VERSUS_T24 + T12_VERSUS_T34) + (session.ct | pt_N) +
## training4.mod4: (session.ct + cond.ct || item)
## training4.mod3: acc ~ +cond.ct * session.ct + (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 +
## training4.mod3: tv1_VERSUS_tv4) + (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 +
## training4.mod3: T12_VERSUS_T24 + T12_VERSUS_T34) + (session.ct | pt_N) +
## training4.mod3: (session.ct * cond.ct || item)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## training4.mod4 18 25507 25649 -12735 25471
## training4.mod3 19 25506 25656 -12734 25468 2.6461 1 0.1038
## p<.2 so move to stick with more complex slope structure
training4.mod = training4.mod3
round(summary(training4.mod)$coefficients,3)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.434 0.072 6.030 0.000
## cond.ct -0.035 0.144 -0.247 0.805
## session.ct 0.126 0.026 4.849 0.000
## tv1_VERSUS_tv2 -0.020 0.042 -0.466 0.641
## tv1_VERSUS_tv3 0.013 0.042 0.297 0.766
## tv1_VERSUS_tv4 0.060 0.042 1.403 0.161
## T12_VERSUS_T13 0.230 0.095 2.412 0.016
## T12_VERSUS_T14 -0.037 0.095 -0.390 0.697
## T12_VERSUS_T23 0.198 0.095 2.076 0.038
## T12_VERSUS_T24 -0.010 0.095 -0.106 0.915
## T12_VERSUS_T34 0.162 0.095 1.699 0.089
## cond.ct:session.ct -0.057 0.053 -1.075 0.282
First TWO sessions only
training2 <- droplevels(subset(training, session != "3"))
training2 <- droplevels(subset(training2, session != "4"))
training2 <- lizCenter(training2, list("cond", "session"))
training2 = lizContrasts6(training2, training2$tone_contrast, "T12")
training2 = lizContrasts4(training2, training2$speaker, "tv1")
training2.mod = glmer (acc ~
+ cond.ct * session.ct
+ (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 + tv1_VERSUS_tv4)
+ (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 + T12_VERSUS_T24 + T12_VERSUS_T34)
+ (tv1_VERSUS_tv2 + tv1_VERSUS_tv3 + tv1_VERSUS_tv4)
+ (T12_VERSUS_T13 + T12_VERSUS_T14 + T12_VERSUS_T23 + T12_VERSUS_T24 + T12_VERSUS_T34)
+ (session.ct|pt_N)
+ (session.ct+ cond.ct||item),
data = training2, family = binomial, control = glmerControl(optimizer = "bobyqa"))
round(summary(training2.mod)$coefficients,3)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.317 0.062 5.139 0.000
## cond.ct 0.001 0.124 0.009 0.993
## session.ct 0.249 0.067 3.703 0.000
## tv1_VERSUS_tv2 0.007 0.059 0.118 0.906
## tv1_VERSUS_tv3 -0.021 0.059 -0.354 0.723
## tv1_VERSUS_tv4 0.077 0.059 1.303 0.193
## T12_VERSUS_T13 0.127 0.110 1.148 0.251
## T12_VERSUS_T14 -0.040 0.110 -0.366 0.714
## T12_VERSUS_T23 0.132 0.110 1.199 0.231
## T12_VERSUS_T24 -0.116 0.110 -1.055 0.291
## T12_VERSUS_T34 0.054 0.110 0.490 0.624
## cond.ct:session.ct -0.206 0.105 -1.970 0.049